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Abstract. The present study shows a parametric analysis of the meshfree method, Element
Free Galerkin (EFG), on the elastic analysis of a cantilever beam. This study allows us to
determine the best convergence conditions of the solutions varying characteristic. EFG is based
on the construction of Moving Least Squares (MLS) approximations using the weighted residual
method on the weak formulation, with MLS form functions as the same weighting functions.
We consider the parameters of the method such as the order of the basic functions of MLS
functions, the size of the support domain of the local MLS functions and the density of Gauss
points against errors calculated according to the L2 norm and processing time. It is shown that
by increasing the order of basic functions it is possible to obtain more precise results, however,
a larger support diameter and Gauss points higher density are required in order to stabilize the
solution, considerably increasing processing times. Therefore, it is only advisable to use high-
order base functions when the precision in the results is the priority and a high computational
resource is available.

1. Introduction
As FEM (The Finite Element Method) has proven its efficiency and capacity in all areas
of engineering, from a practical point of view, its use on real models is always associated
with numerous man-hours dedicated to the generation of meshes. Geometric irregularities
in mechanical engineering parts usually represent great difficulties to obtain proper geometric
discretizations as required by FEM. Therefore, meshfree methods have arisen, which try not to
base the approximation on meshes, but on independent points that do not require a pre-defined
interconnection [1].

Meshfree methods would allow us to solve problems with large deformations, and complex
geometries, of topological optimization without the great difficulties that afflict finite element
method. All this, thanks to the fact that the approach is based on nodes that have associated
support domains, see Fig. 1. These nodes do not require a pre-defined connectivity within of
the general domain [2], which implies that the approach functions do not require a mesh.

On the other hand, not requiring a mesh to achieve a good approximation results, in a greater
difficulty when imposing border conditions [3]. This aspect has been overcome by applying
more elaborate methods to guarantee the imposition of values at the borders. Methods such
as penalization and lagrange multipliers are widely used with meshfree methods achieving good
results [4][5][6].
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The approximation functions by Moving Least Squares (MLS) to allow local discretization,
with arbitrarily located points, has become one of the most outstanding options for use in the
meshfree methods. For that reason there are currently a good number of researchers developing
and demonstrating the advantages of it’s use. Examples of this can be observed in the works
developed by E. Shivanian [7],where you test a methodology based on local approaches with
MLS functions (“Meshless Local Petrov-Galerkin”, MLPG) to solve wave problems in three
dimensions, by Hongping R. [8] and F.X. Sun [9] demonstrating the convergence of MLS functions
in the study of problems in two and n dimensions, respectively, by Mehdi D. and Vahind M.
[10] that use the generalized formulation of MLS (GMLS) to simulate problems of scalar fields
in the theory of quantum physics and by E. Dabboura [11] who demonstrates the versatility
of MLS functions by solving the nonlinear equation of “Kuramoto-Sivashinsky”, among other
works that are found in the literature ([12], [13], [14], [15], [16]).

One of the most used and robust mesh free methods is the Element Free Galerking (EFG)
[17]. Which seeks to solve the weak formulation of a partial differential equation, using the same
MLS functions as approximation functions and as weighting functions. EFG, although is one
of the most used methods, uses of several parameters that must be adjusted to ensure good
convergence. The present work contains a sensitivity study of these parameters of the method.

2. Methodology
2.1. Support domain
The general domain will be discretized using randomly located points, which will be associated
with a support domain with the surrounding nodes. These domains will be constructed with
simple geometric forms (Circles or rectangles, see Fig. 1) and from their contributions it will be
possible to construct the approximation on the general domain.

At the moment of generating the support domains, we have to think how big it should
be. If we can locate as many nodes as terms are in the base function for the approximation
(p(x) = [1 x y]), we will achieve a better approximation that satisfies the Kronecker delta
condition. However, the idea of MLS approach is to use randomly distributed nodes so that it
can not always be predictes how many nodes will there be in support domains. For this reason
the Kronecker Delta property is not always met. It is necessary to emphasize that very small
support domains can cause the momentum matrix M(x) (See Eq. 5) to be singular; and very
large domains require a great computational resources.

Figure 1. Support domain circular
and rectangular mean in a general
domain limited by boundary Γ.

2.2. MLS approximation
We want to approximate a function u(x) in a domain Ω to use MLS approximation functions,
as defined in Eq. (1).

u(x) = pt(x)a(x) (1)

where,
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• u(x) is the function to approximate.

• pt(x) = [p1(x) p2(x) p3(x) ... pmx)] : are functions created from polynomial bases, defined
for a point xt = [x, y], with m equal to the number of terms that will depend on the degree
of the polynomial constructed with the pascal triangle.

• a(x) is the vector of constant coefficients of the base functions.

2.3. φ function.
To obtain the value of the coefficients a(x) it is necessary to define the functional in Eq. (2)
[18].

J = W (x− xi)[P
T (x)a(x) − u∗]2 (2)

The function W (x− xi) is a diagonal matrix of weight functions(See Eq. (3)).

Wkj(x− xi) = δkjWk(x− xi) (3)

By minimizing the functional J(x), we get:

P T (x)W (x− xi)P (x)a(x) = W (x− xi)P (x)u∗ (4)

Which can be represented as the linear system in Eq. (5):

M(x)a(x) = B(x)u∗ (5)

Where,

• M(x) = P T (x)W (x− xi)P (x) : is defined as the moment matrix and has dimensions [m x
m].

• B(x) = P T (x)W (x− xi) : is a rectangular matrix.

Finally it is possible to rewrite Eq. (1) as shown in Eq. (6).

u(x) = Φ(x)Tu∗ (6)

2.4. EFG formulation
The equation in partial derivatives describing the elastic behavior of a 2D body and its boundary
conditions are posed as follows [19]:

LTσ + b = 0 (7)

ui = ūi en Γu (8)

σijnj = t̄i en Γt (9)

Where, L is a differential matrix operator [18] like the form in Eq.(10).

L =

 ∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 (10)

Using Galerkin’s method with weighted residues [20] on Eq. (7) and imposing boundary
conditions through the penalty method [21], we obtain :
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Table 1. Properties of the study case.
Propiedad Valor

Young’s modulus (E) 30e6 Pa
Poisson’s ratio (υ) 0.3

Load (P) −1000 N
Length (L) 48 m
Heigh (D) 12 m

Thickness (t) 12 m

∫
Φ

(LΦ)tD(LΦ)u · dΩ +

∫
Γu

(ΦtαΦ)u · dΓ =

∫
Ω

Φb · dΩ −
∫
Γt

ΦT · dΓ +

∫
Γu

Φαū · dΓ (11)

Solving the integrals of the Eq. (11) we obtain a system of linear equations:

(K +Kα)u = F + Fα (12)

Where,

K =

∫
Φ

(LΦ)tD(LΦ)u · dΩ (13)

Kα =

∫
Γu

(ΦtαΦ)u · dΓ (14)

F =

∫
Ω

Φb · dΩ −
∫
Γt

ΦT · dΓ (15)

Fα =

∫
Γu

Φαū · dΓ (16)

3. Numerical results and discussions
The case of a “Cantilever beam” [20, 22, 23], which refers to a structural element embedded in
one of its ends with a load perpendicular to the axis of the element (See Fig. 2), will be studied.
The mechanical properties of the model and the load conditions are defined in Table 1.

Figure 2. a)Cantilever beam model. b) Scheme of natural and essential boundary conditions.
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3.1. Boundary Condition.
For Cantilever beams the exact solution is the Timoshenko and Goodier beam, as found in
the literature [22], we will take specified displacements at x = 0, which can be written as Eqs.
(17)-(18).

u(x, y) = − Py

6EI

[
(6L− 3x)x+ (2 + υ)

(
y2 − D2

4

)]
(17)

v(x, y) = − P

6EI

[
3υy2(L− x) + (4 + 5υ)

D2x

4
+ (3L− x)x2

]
(18)

For the natural boundary condition the load P located in the free ending (x=48) will generate
a shear stress distributed in a parabolic form along the beam, according to the Eq. (19).

τxy = − P

2I

(
D2

4
− y2

)
(19)

Finally, both boundary conditions are shown in the Fig. 2.

3.2. Analytical solution
The solution proposed by Timoshenko and Goodier [23] is given by Eqs. (17)-(21) for
displacements, shear stress and normal stress.

σx = −P (L− x)y

I
(20)

σy = 0 (21)

The analytical results given by Timoshenko and Goodier can be plotted as in Fig. 3.

Figure 3. The Cantilever beam analytical solution.
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3.3. Convergence analysis.
Having defined load conditions for the model and an given an analytical solution, we procceed
to perform a sensitivity analysis on the parameters of EFG method, to define configurations
that will give good solutions without requiring excesive computational resources (measured as
processing time). In this sensitivity analysis the parameters to be studied are:

• Order of base functions p(x): Increasing the order of polynomial in the base functions
of EFG method should increases the speed of convergence and the accuracy of EFG [24],
which is why it is proposed to study their effect on the quality of the approximation.

• Size of Support domains: Rectangular regions whose size is measured according to the
percentage of nodes that are covered when taken as support domains. For example, in
a domain with 200 nodes, a support domain of 10% means that on average the support
domains cover 20 nodes.

• Number of Gauss points: The number of Gauss points will be an important factor in
solving the integrals of the EFG formulation. It will be shown how many Gauss points
are required to achieve a good convergence and how to adjust it depending on the support
domain size and the order of polynomial base functions. Experiments were performed using
up to 64 Gauss points within in each cell, and varying this density.

• Processing time and error: Processing time and the relative and absolute error will be
taken as control parameters to test solutions in order to find solutions not so expensive
in processor time but also ones that generate acceptable errors. Error will be measured
in comparison with the analytical response of the model, and calculated according to the
energy standard, as being one of the most used norms in elasticity [25], see equation 22.

ε% =

(∫
(σexac − σefg)D

−1(σexac − σefg)dA
)1/2∫

σexacdA
(22)

The graphs 4, 5, 6 and 7 are the results obtained by varying each of the mentioned parameters
in a sample space of 128 iterations. The vertical axis of the left graphs details the error
percentage, the vertical axis of the right graphs sets the processing time, the horizontal axis
alludes to the number of Gauss points, the colors of the lines represent the size average percentage
of media domains and each graph shows the results for different order polynomials base function.
The studies were performed with uniform’s distributed nodes using a 10x10 rectangular grid
through the beam.

It is possible to appreciate how, as the polynomial basis functions order increases, the response
improves, however, a good density of Gaussian points and large support domains are required to
stabilize it, on the other hand, this causes a considerable increase in the processing time. Given
this, it is only recommended to use higher order functions when higher precision is required and
we have great computational resources.

From the graphs, it is possible to recover the support domains and the number of Gauss
points that produced the least processing times with admissible errors, these best configurations
are found in the table 2.

Table 2. Best results for the second order polynomial base funciont
Order S. Domain # Gauss Point Time (s) Error

1 54% 2304 22, 94 0.485%
2 36% 2304 18, 86 0.392%
3 54% 2304 32, 58 0.215%
4 107% 3106 107, 79 0.099%
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Figure 4. Results of elastic solution to the Cantilever beam problem using EFG with first order
polynomials basis functions.

Figure 5. Results of elastic solution to the Cantilever beam problem using EFG with second
order polynomials basis functions.

3.4. EFG Solution
From the convergence analysis of the previous section it can be seen that the best configuration,
in table 2, was for second order polynomials basis function with rectangular support domains.
The results of this configuration can be seen in Fig. 8. It is worthwhile to clarify that the σy



Expotecnología 2018 "Research, Innovation and Development in Engineering"

IOP Conf. Series: Materials Science and Engineering 519 (2019) 012004

IOP Publishing

doi:10.1088/1757-899X/519/1/012004

8

Figure 6. Results of elastic solution to the Cantilever beam problem using EFG with third
order polynomials basis functions.

Figure 7. Results of elastic solution to the Cantilever beam problem using EFG with fourth
order polynomials basis functions.

absolute error obtained is below 0.0005 when put in the scale of loads applied.
As a last test it is possible to compare the results obtained by EFG in Fig. 3 with the results

of the analytical solution of the Fig. 8 and we can appreciate the great similarity between
them, as well as the continuity in the solutions. So finally EFG achieved a valid solution to the
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Figure 8. Elastic solution for Cantilever beam using EFG.

Cantilever beam.

4. Conclusions
The EFG method can improve its convergence by varying parameters such as the Gauss points
density, the size of support domains, and the polynomial basis functions order (P (x)) of the
functions Φ. The higher the order of polynomial basis functions, the more Gaussian points and
larger support domains will be required to stabilize the method, resulting in longer processing
time.

It is advisable to work with initial support diameters of at least 38% of the total nodes on
average and with first order polynomials basis functions, in order to achieve a rapid convergence
of the problem. For example if we use a 1000 node domain we could to stard, in average, with
support domain of 380 nodes.

For the number of Gauss points, it is recommended to use at least 8 times the number of
variables (In mechanical structural cases u and v) to solve when using first and second order
polynomials basis functions and for third and fourth order polynomials basis function at least
15 times the number of variables.
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