
Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2013, Article ID 967618, 6 pages
http://dx.doi.org/10.1155/2013/967618

Research Article
Two-Dimensional Einstein Manifolds in
Geometrothermodynamics

Antonio C. Gutiérrez-Piñeres,1,2 Cesar S. López-Monsalvo,1 and Francisco Nettel3

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 Mexico, DF, Mexico
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We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric
approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular,
for systems constrained by the vanishing of theHessian curvaturewewrite down the systems of partial differential equations. In such
a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives
of the isothermal coordinates.We conjecture that solutions on the characteristic circumference are of physical relevance, separating
them from those of puremathematical interest.We present the case of a one-parameter family of fundamental relations that—when
lying in the circumference—describe a polytropic fluid.

1. Introduction

The study of physical systems that admit a geometric descrip-
tion in terms of Riemannian manifolds is an interesting
and timely subject. Over the last few years, there have been
a number of efforts towards an integrated description of
thermodynamics in terms of Legendre invariant quantities. In
particular, analogously to the case of field theories, it has been
argued that the curvature of the appropriate manifold should
be linked to the notion of thermodynamic interaction [1].
There have been numerous proposals in this direction.On the
one hand, there are the conformally related metric theories
of Ruppeiner andWeinhold, where the metric takes the form
of a Hessian of the extensive parameters in the entropy and
energy representations, respectively [2, 3]. However, both fail
to comply with the spirit of the geometric construction of
field theories; that is, those are not invariant under the natural
set of transformations in thermodynamics. On the other
hand, the Geometrothermodynamics programme (GTD) has
successfully managed to provide us with a set of metrics

which are independent of the potential used [1] and the
fundamental representation one uses [4, 5]. Once the metric
parameters are fully specified the Riemannian manifold is
uniquely defined.

In theGTDprogramme one posits that the physical infor-
mation about a thermodynamic system cannot depend on
the potential used to describe it and that such information is
encoded in the curvature of the maximal integral manifold of
the Pfaffian system defining the first law of thermodynamics
(cf. (1)). We call such a manifold the space of equilibrium
states. The curvature of such manifold is obtained from the
first fundamental form, induced from a Legendre invariant
metric for the thermodynamic phase space [4]. In Section 2
we present a brief review of the programme; in particular, we
centre our attention on a metric whose curvature does not
depend on the fundamental representation.

Thus far, the GTD formalism has been applied to a num-
ber of thermodynamic systems in order to test the consistency
of the programme (e.g., ordinary thermodynamic systems
such as ideal gasses, van der Waals, Ising model [5], and
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black hole thermodynamics [6]) In this work, we take a
step forward and set ourselves to the task of finding those
systems which exhibit constant thermodynamic interaction.
That is, we will find the class of fundamental functions
producing a manifold of constant curvature. We will restrict
ourselves to the two-dimensional case; that is, we consider
only systems with two degrees of freedom.These systems are
interesting from the mathematical point of view since any
two-dimensional metric can be cast into a conformally flat
form.

The paper is organised as follows. In Section 2 we present
a brief account of theGeometrothermodynamics programme
and two-dimensional thermodynamic systems of constant
curvature. In Section 3 we analyse the system of partial differ-
ential equations to find the set of isothermal coordinates for
metrics with vanishing Hessian curvature. There we propose
a criterion to single out physical fundamental relations based
on a circumference-like equation in an abstract space related
to the system of differential equations for the isothermal
coordinates. To close this section we present an example
illustrating these matters. Finally, in Section 4 we present
a summary of the results and address future work on the
subject.

2. Two-Dimensional Thermodynamic Systems
of Constant Curvature

The GTD programme promotes the natural formalism of
thermodynamics in terms of contact manifolds to a Legendre
invariant Riemannian structure. Let us begin with a brief
review of the programme by considering the case of two
thermodynamic degrees of freedom. In this case, we need a
five-dimensionalmanifold which admits a set of local coordi-
nates corresponding to the collection of extensive and inten-
sive variables—denoted by 𝑞

𝑖 and 𝑝
𝑖
, respectively—together

with the thermodynamic potential, Φ, such that the kernel of
the 1-form

Θ = dΦ − 𝑝
1
d𝑞
1
− 𝑝
2
d𝑞
2 (1)

generates a maximally nonintegrable set of hyperplanes, 𝜉 ⊂

𝑇T. A manifold T together with the 1-form Θ is called a
contact manifold. In the present case we refer to it as the
thermodynamic phasespace. Of special interest is themaximal
integral submanifold,E ⊂ T, that is, the largest sub-manifold
which can be embedded in T such that 𝑇E ⊂ 𝜉. It is easy to
see that this is a two-dimensionalmanifold defined by the first
law of thermodynamics

dΦ = 𝑝
1
d𝑞
1
+ 𝑝
2
d𝑞
2
,

whereΦ = Φ (𝑞
1
, 𝑞
2
) , 𝑝

𝑖
=

𝜕Φ

𝜕𝑞
𝑖

≡ Φ
,𝑖
.

(2)

Thus, we see that if we know the fundamental function Φ =

Φ(𝑞
1
, 𝑞
2
), then we know how E is embedded in T. We call

the sub-manifold E the space of equilibrium states.
In addition, the GTD programme introduces a metric

structure for the thermodynamic phase space. Such a struc-
ture is constructed in order to satisfy the criterion of Legendre

invariance; that is, Legendre transformations correspond to
isometries. Within the GTD programme there have been
two distinct classes of metrics which have been studied
according to their invariance properties, those which are
invariant under every possible Legendre transformation and
those which are only invariant under total Legendre transfor-
mations. The metric structure of T induces a Riemannian
metric on E, its first fundamental form, whose intrinsic
curvature is associated with the thermodynamic interaction
of the system. In our two-dimensional scenario, this whole
information is contained in the curvature scalar of E.

If the curvature of the space of equilibrium states is to
give a faithful account of the thermodynamic interaction,
it should not depend on the choice of fundamental rep-
resentation; that is, one is free to work in the energy or
entropy representation indistinctly. It has been shown that
themetric compatible with both Legendre and representation
invariance is

𝐺
♮
= Θ ⊗ Θ +

1

𝑞
2
𝑝
2

(d𝑞
1
⊗ d𝑝
1
+ d𝑞
2
⊗ d𝑝
2
) . (3)

Thus, the induced metric on E is simply given by

𝑔
♮
= Ω (𝑞

1
, 𝑞
2
) ℎ. (4)

Here ℎ is the Hessian metric

ℎ = Φ
,11
d𝑞
1
⊗ d𝑞
1

+ (Φ
,12

+ Φ
,21

) d𝑞
1
⊗ d𝑞
2
+ Φ
,22
d𝑞
2
⊗ d𝑞
2
,

(5)

where we have used a coma to denote partial differentia-
tion with respect to the corresponding coordinate function
of E and the conformal factor is given by

Ω(𝑞
1
, 𝑞
2
) =

1

𝑞
2
Φ
,2

. (6)

The interested reader in the derivation of the metric (4)
is referred to [4] and to [5] for applications to ordinary
thermodynamic systems.

Note that the components of the metric (4) depend on
the second derivatives of the fundamental function Φ but
are otherwise unspecified. It is an interesting exercise to
find a class of fundamental functions for which the space of
equilibrium states E becomes an Einstein manifold for the
metric (4). That is, we look for solutions of the system

𝑅
♮

𝑎𝑏
= 𝐾𝑔
♮

𝑎𝑏
, (7)

where 𝑅
♮

𝑎𝑏
is the Ricci tensor associated with 𝑔

♮ and 𝐾 is
a constant, which in the present case corresponds to the
Gaussian curvature of E.

It is worth noting that (7) represents a system of three,
third order, nonlinear partial differential equations for the
thermodynamic potential Φ. Indeed, it is straightforward to
show that in two dimensions, the fourth order terms in the
curvature exactly cancel whenever the metric is the Hessian
of a scalar function.
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We can reduce the system (7) by raising one of the indexes
to obtain

𝑅
♮𝑏

𝑎
= 𝐾𝛿
𝑏

𝑎
. (8)

Thus, the system reduces to the single PDE

𝐹 (Φ
,𝑖
, Φ
,𝑖𝑗
, Φ
,𝑖𝑗𝑗

, Φ
,𝑖𝑖𝑖

) = 4𝐾
𝜌
2

Ω5 (𝑞
1
, 𝑞
2
)

with 𝑖, 𝑗 = 1, 2.

(9)

Here 𝜌 is the determinant of the metric (4) given by the
expression

𝜌 = Ω
2
(𝑞
1
, 𝑞
2
) (Φ
,11

Φ
,22

− Φ
2

,12
) , (10)

and the lhs of (9) is

𝐹 (Φ
,𝑖
, Φ
,𝑖𝑗
, Φ
,𝑖𝑗𝑗

, Φ
,𝑖𝑖𝑖

)

= Φ
2

,2
(𝐴Φ
2

,11
+ 𝐵Φ
,11

− 2𝑞
2
Φ
,211

Φ
2

,12
+ 𝐶Φ
,12

+ 𝐷Φ
,22

)

+ Φ
,2
(𝑞
2

2
Φ
,22

Φ
,222

Φ
2

,11
+ 𝐸Φ
,11

+ 2𝑞
2

2
Φ
3

,12
Φ
,221

−𝑞
2

2
Φ
2

,12
Φ
,22

Φ
,211

)

− 2𝑞
2

2
𝜌Ω
−2

(Φ
2

,22
Φ
,11

− Φ
2

,12
Φ
,22

) ,

(11)

where

𝐴 = −𝑞
2
Φ
,222

− 2Φ
,22

,

𝐵 = 2Φ
2

,12
+ 3𝑞
2
Φ
,12

Φ
,221

− 𝑞
2
Φ
,211

Φ
,22

+ 𝑞
2

2
Φ
2

,221
− 𝑞
2

2
Φ
,222

Φ
,211

,

𝐶 = −𝑞
2

2
Φ
,221

Φ
,211

+ 𝑞
2

2
Φ
,111

Φ
,222

+ 𝑞
2
Φ
,22

Φ
,111

,

𝐷 = −𝑞
2

2
Φ
,111

Φ
,221

+ 𝑞
2

2
Φ
2

211
,

𝐸 = −2𝑞
2

2
Φ
,22

Φ
,12

Φ
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− 𝑞
2

2
Φ
2

,12
Φ
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+ 𝑞
2

2
Φ
2

,22
Φ
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.

(12)

Motivated by the results of a previous work by the authors
(c.f. Section III.D in [5, 7]), we know that a solution to (8) is
given by the fundamental relation

Φ = Φ
0
log (𝑞

𝛼

1
+ 𝑐𝑞
𝛼

2
) . (13)

Since we are working in two dimensions, the Gaussian
and scalar curvature are proportional and we see that the
constancy of 𝐾 is satisfied and has the value

𝐾 = −
1

4

𝛼
2

𝛼 − 1
. (14)

Thus, we can propose a general solution of the form

Φ = 𝑓 (𝜉𝑞
1
+ 𝜒𝑞
2
) . (15)

Here 𝑓 is a sufficiently differentiable function of the sum of
the extensive parameters, where 𝜉 and 𝜒 are constants. This

type of ansatz does solve (11). However, a quick inspection
to the metric determinant reveals the degeneracy of this case
(c.f. (17), below). Therefore, let us propose the more general
solution

Φ = 𝑓 (𝜉𝑞
𝛼

1
+ 𝜒𝑞
𝛼

2
) , (16)

where 𝛼 is a constant different from one hence the case of
the dark fluid cannot be analysed with this metric. Now, the
metric determinant is in general different from zero and has
the form

𝜌 =
𝑎 − 1

𝜒𝑞
2+𝑎

2
𝑞2
1
𝑓󸀠

[𝑓
󸀠
+ 𝜉𝑎𝑞
𝑎

1
(𝜉𝑞
𝛼

1
+ 𝜒𝑞
𝛼

2
) 𝑓
󸀠󸀠
] , (17)

where 𝑓
󸀠 and 𝑓

󸀠󸀠 are the first and second total derivatives of
the fundamental relation (16) evaluated at (𝜉𝑞

𝛼

1
+ 𝜒𝑞
𝛼

2
). Now

we can clearly see the degeneracy for 𝛼 = 1.
Substituting our ansatz (16) into (8) we obtain again the

same result as in the case of (13), that is, the Gaussian cur-
vature is the same constant, (14); regardless of the particular
form of the function 𝑓 as long as the argument is (𝜉𝑞

𝛼

1
+

𝜒𝑞
𝛼

2
). Therefore, the generalised Chaplygin gas, (13), belongs

to a class of thermodynamic systems with the same type of
interaction given by (16). Moreover, the Hessian metric for
the logarithmic form of this type of fundamental relation
has vanishing curvature. In this case it becomes a simpler
problem to find the set of isothermal coordinates for the space
of equilibrium states.

3. Isothermal Coordinates

It is a well-known result that every two-dimensional Rieman-
nian manifold is conformally flat. That is, we can always find
a set of coordinates for which the metric takes the form

𝑔 = Ω̃
2
(𝑥, 𝑦) 𝑔

♭
, where 𝑔

♭
= d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦. (18)

Such a coordinate system is called isothermal. In this section
we find the isothermal coordinates for the space of equi-
librium states (E, 𝑔

♮
) under the assumption of the Hessian

flatness, that is, by demanding that the curvature scalar of the
Hessian part of the metric (4) vanishes.

Let us consider the diffeomorphism 𝜑 : E → E
accounting for the change of coordinates 𝑥 = 𝑥(𝑞

1
, 𝑞
2
) and

𝑦 = 𝑦(𝑞
1
, 𝑞
2
). Then we can pull back the metric 𝑔

♭ (c.f. (18))
and solve the equation

𝜑
∗
𝑔
♭
− ℎ = 0 (19)

for the coordinate functions 𝑥, 𝑦 and the thermodynamic
potential Φ. This will provide us thermodynamic fundamen-
tal relations with zero Hessian curvature together with their
isothermal coordinates. Equation (19) above corresponds to
the system of equations

𝑥
2

,1
+ 𝑦
2

,1
= Φ
,11

,

𝑥
,1
𝑥
,2
+ 𝑦
,1
𝑦
,2

= Φ
,12

,

𝑥
2

,2
+ 𝑦
2

,2
= Φ
,22

.

(20)
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There is a large family of solutions for such a system. In
particular, for separable fundamental relations,

Φ = 𝑆 (𝑞
1
) + 𝑇 (𝑞

2
) , (21)

we have that the change of coordinates is given by

𝑥 = ∫√(1 − 𝑐2) 𝑆󸀠󸀠d𝑞
1
+ 𝑐∫√𝑇̈d𝑞

2
,

𝑦 = ∫√(1 − 𝑐2) 𝑇̈d𝑞
2
− 𝑐∫√𝑆󸀠󸀠 d𝑞

1
,

(22)

where 𝑐 is a constant and the primes and dots denote differ-
entiation with respect to 𝑞

1
and 𝑞

2
, respectively.

A more general solution is given by those fundamental
functions satisfying the third order system of PDE’s

Φ
,211

=
Φ
,222

Φ
2

,12

Φ2
,22

, Φ
,1,22

=
Φ
,222

Φ
1,2

Φ
22

. (23)

In this case, the isothermal coordinates must satisfy the
system

𝑥
2

,1
=

1

Φ
,22

(2Φ
,12

𝑥
,1
𝑥
,2
+ Φ
,11

Φ
,22

− 𝑥
2

,2
Φ
,11

− Φ
2

,12
) , (24)

𝑥
,22

=
1

2

Φ
,222

𝑥
,2

Φ
,22

, (25)

𝑦 = ∫√Φ
,22

− 𝑥2
,2
d𝑞
2
+

1

2
∫

1

√Φ
,22

− 𝑥2
,2

×
[
[

[

√Φ
,22

− 𝑥2
,2
∫

2𝑥
,2
𝑥
,12

− Φ
,221

√Φ
,22

− 𝑥2
,2

d𝑞
2

−2𝑥
,1
𝑥
,2
+ 2Φ
,12

]
]

]

d𝑞
1
.

(26)

One can verify that a fundamental relation of the form
(15) is a solution of (23). We have seen that this type of
functions generates degenerate Hessian metrics. However,
we can use them to learn some properties about the space
of solutions of the system (20). For example, consider the
fundamental relations given by

Φ = log (𝜉𝑞
1
+ 𝜒𝑞
2
) . (27)

In this case we can solve the pair of equations for 𝑥, that is,
(24), and (25) to obtain

𝑥 = 𝑐 log(𝑞
2
+

𝜉

𝜒
𝑞
1
) , (28)

and substitution in (26) yields

𝑦 = √− (1 + 𝑐2) log (𝜉𝑞
1
+ 𝜒𝑞
2
) . (29)

Thus we see that, indeed, this type of fundamental relation
fails to produce a real change of coordinates satisfying (19).
Moreover, note that we can find particular solutions to the
system (20) if we restrict ourselves to a circumference in an
abstract 𝑋𝑌 plane. Thus, we have

𝑋
2
+ 𝑌
2
= 𝑅
2
, (30)

where

𝑋
2
= (𝑥
,1
+ 𝑥
,2
)
2
,

𝑌
2
= (𝑦
,1
+ 𝑦
,2
)
2
,

𝑅
2
= Φ
,11

+ 2Φ
,12

+ Φ
,22

.

(31)

From this point of view, we observe that the fundamental
relation (27) corresponds to an “imaginary” radius of the
circumference (30); that is

𝑅
2
= −

(𝜉 + 𝜒)
2

(𝜉𝑞
1
+ 𝜒𝑞
2
)
2
. (32)

This is not surprising since we knew that the Hessian
corresponding to this fundamental relation is degenerate and
thus the system is not well posed except for the case 𝜉 = −𝜒 =

1, for which 𝑅 = 0.
We can use this geometric construction to probe the space

of solutions for a fixed fundamental relation by noting that
a solution to the system (20) must lie on the circumference
associated with the particular fundamental relation we use
(c.f. (32)), but not every solution lying on the circumference
solves the system we are probing.

Example 1. To see how this construction works, let us
choose a family of fundamental relations in the form of (13)
parametrised by the exponent 𝛼. We work in the entropy
representation using molar quantities. Thus we set by 𝑞

1
=

𝑢 the specific energy and 𝑞
2
= V is the specific volume. The

fundamental relation is written as

𝑠
𝛼
= log (𝑢

𝛼
+ V𝛼) . (33)

Each of these functions defines a Hessian metric of zero
curvature and a natural metric of constant thermodynamic
interaction (c.f. (14)). The change to isothermal coordinates
for this type of functions cannot be expressed analytically.
However, we can use the circumference to classify the various
types of differential equations obtained for each value of 𝛼.

The squared radii of the circles associated with each
function are given by

𝑅
2

𝛼
= −

𝛼

𝑢2V2 (𝑢𝛼 + V𝛼)

× [𝑢
2𝛼V2 − V𝛼𝑢𝛼

× ((𝛼 − 1) 𝑢
2
− 2𝛼𝑢V + V2 (𝛼 − 1)) + V2𝛼𝑢2] .

(34)
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Figure 1:The three qualitatively different types of radial functions.The horizontal axis corresponds to the energy, while the vertical represents
the radius of the circumference. We observe that only the curves corresponding to negative values of the exponent 𝛼 are positive definite in
the full physical domain, that is, positive values of energy and volume.

Thus, fixing the volume of the system, we find the subset
of fundamental functions for which the PDE represented by
the circumference (30) is well defined.The three qualitatively
different types of behaviour are depicted in Figure 1. It is
easy to observe that for 𝛼 > 0, even in the case when 𝛼 <

1 (c.f. Figure 2), the PDE is ill defined; thus, only fundamental
relations for which 𝛼 < 0 are meaningful. This corresponds
to a positive thermodynamic curvature as can be seen from
(14). Furthermore, noticing the symmetry of 𝑢 and V in the
expression for the circumference radius (34), it is easy
to observe that the PDE also restrict the domain of the
thermodynamic variables to 𝑢, V > 0. The fundamental
relationwith 𝛼 < 0 describes a polytropic fluidwith equation
of state given by

𝑃 = 𝜌
1−𝛼

, (35)

where 𝜌 = 𝑢/V is the energy density of the fluid. It is a simple
task to obtain the heat capacity at constant volume for these
systems

𝑐V =
𝑎𝑢
𝛼

𝑢𝛼 + (1 − 𝛼) V𝛼
. (36)

From this expression we observe that the heat capacity
remains finite for any value of the thermodynamic variables
and is always negative whenever 𝛼 < 0.

4. Closing Remarks

In this paper we studied two-dimensional Einstein man-
ifolds for the Geometrothermodynamics programme. We
found the differential equation that must be satisfied by the
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Figure 2: These plots correspond to the radial function for −1 ≤ 𝛼 ≤ 1. We observe that only those values of 𝛼 < 0 can be associated with
physical systems.

fundamental relation in order to describe a system with
constant thermodynamic interaction, that is, a fundamental
relation producing a representation invariant metric whose
associated curvature is constant. In particular, building on
previous work (c.f. [5]) we analysed the one-parameter family
of fundamental relations given by (16).

Noting the conformal structure of 𝑔♮ (see (4)), we centre
our study in the class of functions whose associated Hessian
metric has vanishing curvature. With this assumption, we
set up the system of differential equations defining the set of
isothermal coordinates. As expected, we found an analytic
expression for the change of coordinates for the case in
which the fundamental function is separable. An interesting
exercise allowed us to explore some properties of the space
of solutions of (19), that is, the set of isothermal coordinates
with their corresponding fundamental relation of vanishing
Hessian curvature.

Observing the algebraic structure of the system (20),
we note that there will be a class of fundamental relations
satisfying the Hessian curvature constraint for which we can
build a characteristic circumference onwhich the solutions of
the PDE system lie.This can be donewhenever the derivatives
of the fundamental relation define a positive squared radial
function. Moreover, we conjecture that only the set of fun-
damental relations for which such a construction is possible
can describe physical systems of constant thermodynamic
interaction. In particular, we work out the example given
by (13). Here, we work in specific thermodynamic variables
in the entropy representation of a system characterised by
the exponent 𝛼. Indeed, only those systems for which 𝛼 <

0 correspond to a polytropic fundamental relation.
In sum, we have analysed a particular class of funda-

mental relations of constant thermodynamic curvature. It
remains to explore the larger class of functions within the
set of solutions of (19) and study their thermodynamic
implications. This will be done in a forthcoming article.
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