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Abstract

In recent years, the generation of accurate topographic reconstructions has found ap-
plications ranging from geomorphic sciences to remote sensing and urban planning,
among others. The production of high resolution, high-quality digital elevation models
(DEMs) requires a significant investment in personnel time, hardware, and software.
Photogrammetry offers clear advantages over other methods of collecting geomatic
information. Airborne cameras can cover large areas more quickly than ground survey
techniques, and the generated Photogrammetry-based DEMs often have higher resolu-
tion than models produced with other remote sensing methods such as LiDAR (Laser
Imaging Detection and Ranging) or RADAR (radar detection and ranging). In this work,
we introduce a Structure from Motion (SfM) pipeline using Unmanned Aerial Vehicles
(UAVs) for generating DEMs for performing topographic reconstructions and assessing
the microtopography of a terrain. SfM is a computer vision technique that consists in
estimating the 3D coordinates of many points in a scene using two or more 2D images
acquired from different positions. The output from an SfM stage is a sparse point cloud
in a local XY Z coordinate system. We scale the XY Z point clouds using Ground
Control Points (GCP) and GPS information enabling this process georeferenced metric
measurements. To evaluate the results, we carried out three experiments in two different
lands, computing the contour lines and generating a terrain digital elevation model,
assessing the accuracy of the reconstruction, and carrying out a rainfall-runoff analysis
in a flood area. Encouraging results show that our approach is highly cost-effective,
providing a means for generating high-quality, low-cost DEMs.

Keywords: Digital Elevation Models, Structure from Motion, Open source soft-
ware.
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Resumen

En los últimos años, la generación de reconstrucciones topográficas precisas ha encon-
trado aplicaciones que van desde las ciencias geomorfológicas hasta la detección remota
y la planificación urbana, entre otras. La producción de modelos digitales de elevación
(DEM por sus siglas en inglés) de alta resolución y alta calidad requiere una inversión
significativa en tiempo de personal, hardware y software. La fotogrametría ofrece claras
ventajas sobre otros métodos de recopilación de información geomática. Las cámaras
aerotransportadas pueden cubrir grandes áreas más rápidamente que las técnicas de
levantamiento de terrenos, y los DEMs basados en fotogrametría a menudo tienen una
resolución más alta que los modelos producidos con otros métodos de detección remota
como LiDAR (Laser Imaging Detection and Ranging) o RADAR (radar detection and
ranging). En este trabajo, presentamos un pipeline de reconstrucción basado en la téc-
nica Strucutre from Motion (SfM) haciendo uso de vehículos aéreos no tripulados (UAVs
por sus siglas en inglés) para generar DEMs para realizar reconstrucciones topográficas y
evaluar la microtopografía de un terreno. SfM es una técnica de visión por computadora
que consiste en estimar las coordenadas 3D de muchos puntos en una escena usando dos
o más imágenes 2D adquiridas desde diferentes posiciones. La salida de la etapa de SfM
es una nube de puntos sparse en un sistema local de coordenadas XY Z. Escalamos las
nubes de puntos XY Z usando puntos de control en tierra (GCPs) y la información GPS,
lo que nos permite mediciones métricas georreferenciadas. Para evaluar los resultados,
llevamos a cabo tres experimentos en dos terrenos diferentes, calculando las curvas de
nivel y generando un modelo digital de elevación de un terreno, evaluando la precisión
de la reconstrucción y generando un análisis de precipitación-escorrentía en un área
de inundación. Los resultados muestran que nuestro enfoque es altamente rentable,
proporcionando un medio para generar DEMs de alta calidad y bajo costo.

Palabras claves: Modelos digitales de elevación, Structure from Motion, Software de
código abierto.
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1Introduction

The reward of the young scientist is the emotional
thrill of being the first person in the history of the
world to see something or to understand something.
Nothing can compare with that experience... The
reward of the old scientist is the sense of having
seen a vague sketch grow into a masterly
landscape.

— Cecilia Payne-Gaposchkin
(British-born American astronomer and

astrophysicist)

The digital elevation model (DEM) is a three-dimensional visual representation
of a terrestrial zone topography made with the elevation data of a terrain. DEM
data is a commonly used geomatics tool for different land analysis properties such
as slopes, height, curvature, among others. There are different technologies for the
generation of DEMs, which include LiDAR (Laser Imaging Detection and Ranging),
RADAR (Radio Detection and Ranging) or the conventional total station theodolites
(Nelson et al., 2009). However, these techniques often do not offer enough spatial
resolution to recover the terrain microtopography. For example, on the one hand, it is
frequently difficult to accurately measure the intricate drain networks with conventional
techniques because they are within the measurement resolution. On the other, they are
also difficult to measure in the field due to access limitations. As an alternative to these
methods, Unmanned Aerial Vehicles (UAVs) equipped with high-resolution cameras have
recently attracted the attention of researchers (Carbonneau and Dietrich, 2016). The
UAVs acquire many images of an area of interest and by using stereo-photogrammetry
techniques generate a terrain point cloud. This point cloud represents an accurate
terrestrial zone DEM (Nex and Remondino, 2014). However, UAV operation for precise
digital terrain model estimation requires certain flight parameters, captured images
characteristics, among other aspects (James and Robson, 2012).
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Stereo-photogrammetry techniques consist in estimating 3D coordinates of several
points in a scene using two or more 2D images taken from different positions. Within
these images common points are identified, that is, the same physical object point as seen
in different images. Then a line-of-sight or ray is constructed from the camera location
to the detected object point. Finally, the intersection between these rays is calculated,
this process being known as triangulation, which yields the three-dimensional location
of the physical point. By doing the above for a significant number of points in the
scene, it is possible to obtain a point cloud in the three-dimensional space which is
representative of the object or the surface.

To obtain a point cloud or to recover structure, correct correspondences between
different images should be obtained, but often incorrect matches appear. The trian-
gulation fails for incorrect matches, therefore, it is carried out in a robust approach.
Recently, photogrammetric methodologies have been proposed to address the robust
estimation problem of structure from multi-views, such as Structure from Motion (SfM)
(Fonstad et al., 2013) and Multi-View Stereo (MVS) (Goesele et al., 2006). SfM is a
methodology that, using a single camera that moves in space, allows us to recover both
the position and orientation of the camera (motion) and the 3D location of the points
seen in different views (structure). MVS allows us to densify the point cloud obtained
with SfM.

Nowadays there are several commercial softwares such as Agisoft (AgiSoft PhotoScan
Professional) or Pix4D (Pix4D) that allow obtaining dense 3D point clouds. However,
being closed code applications they do not favor research reproducibility, and the code
cannot be modified. In this work, we propose a processing tool or reconstruction
pipeline for software-based geomatics applications and open source libraries. The
pipeline is mainly based on the OpenSfM (Mapillary: OpenSfM) and OpenDroneMap
(OpenDroneMap) libraries and the results are evaluated in three experiments. In the first
we generate contour lines and the digital elevation model of a terrain. In the second we
assess the accuracy of the reconstruction and in the last we develop a rainfall-runoff
model to study a flood area using the digital terrain model (DTM) of the land.

1.1 Photogrammetry

Photogrammetry is the science of obtaining information about an object or a scene
through photographic images. With this information it is possible to generate a map, a
drawing, a measurement, or a 3D model of the object or scene. Photogrammetry is as
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old as modern photography, dating back to the mid-19th century and in the simplest
example, the distance between two points that lie on a plane parallel to the photographic
image plane, can be determined by measuring their distance on the image, if the scale
(s) of the image is known.

There are several ways to classify photogrammetry, one of which is the way images
are acquired. With this, there are two classes: aerial and terrestrial (or close-range)
photogrammetry. In aerial photogrammetry, we equip an Unmanned Aerial Vehicle
(UAV) or drone with a camera, and it acquires images by flying over the scene. This type
of photogrammetry is useful for topographic applications. In terrestrial or close-range
photogrammetry, the camera is on the ground held by hands or a tripod.

Stereo-photogrammetry consists in the estimation of the three-dimensional coordi-
nates of a point set using measurements made in two or more photographic images
taken from different positions, only using common points identified between image
pairs. The available point matching algorithms usually gives us wrong correspondences,
therefore a robust algorithm has currently been proposed to address this problem. Such
is the case of Structure from Motion (SfM) photogrammetry technique (Ullman, 1979),
which allows us to obtain high spatial resolution datasets taking account of the wrong
point matches.

1.2 Communication of results

Since I enrolled in the group of applied physics and image and signal processing led
by doctors Andrés Marrugo and Lenny Romero, I participated in the research project
FI2006T2001 funded by the Universidad Tecnológica de Bolívar in which this work is
framed. We have communicated the results of this research in different conferences:

• XIV Encuentro Departamental de Semilleros de Investigación EDESI-Nodo
Bolívar, May 2017. Fotogrametría 3D mediante vehículos aéreos notripulados
para el análisis de drenajes pluviales.

• XX Encuentro Nacional y XIV Internacional de Semilleros de Investigación,
October 2017. Fotogrametría 3D mediante vehículos aéreos notripulados para el
análisis de drenajes pluviales.
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• XV Encuentro Nacional de Óptica y VI Conferencia Andina y del Caribe en
Óptica y sus aplicaciones (XV ENO-VI CANCOA), November 2017. 3D Pho-
togrammetry in Geomatic Applications Using Open Source Software.

• 13th Colombian Conference on Computing (13CCC), September 2018. A
Structure-from-Motion Pipeline for Topographic Reconstructions using Unmanned
Aerial Vehicles and Open Source Software.

• VI National Conference of Physical Engineering | 1st Applied Physics, En-
gineering & Innovation, Octubre 2018. A Structure-from-Motion Pipeline for
Generating Digital Elevation Models for Surface-Runoff Analysis.

1.3 Outline

The schematic outline of this work is the following: Chapter 2 is about the state
of the art and fundamentals of the computer vision, in which we discuss the basis for
projective geometry and camera geometry. Chapter 3 covers the state of the art of the
used photogrammetry technique Structure from Motion, that is the primary technique
to recover the three-dimensional information of a scene or object. Chapter 4 details the
proposed method based on open source tools for digital elevation models generation,
which uses the Structure from Motion and Multi-View Stereo approaches, and Digital
Surface Model (DSM) and Digital Terrain Model (DTM) generation. Three experiments
in two different test sites are described in Chapter 5 to evaluate the results of the
proposed pipeline, wherein one of them we carried out a hydrologic analysis of a flood
area. Chapter 6 presents the discussion and conclusions of the work, and finally in
Chapter 7 the publications are appended.
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2
Computer Vision Fundamentals

In this chapter, we introduce the basic 2D and 3D primitives used in this work, the
pinhole camera model which describe the geometric transformations that project these
3D quantities into 2D image features and the camera calibration process that is important
for the geometric projection model.

2.1 Geometric primitives and transformations

We denote a 2D point in a R2 space as

x =
[
x

y

]
. (2.1)

In projective geometry, it is common to use the system of homogeneous coordinates, so
a 2D point in a P2 homogeneous space

x =


wx

wy

w

 , (2.2)

where w is any non-zero real number.

To convert the 2D inhomogeneous point (2.1) into a homogeneous vector, let w = 1
in E.q. (2.2). Furthermore, the homogeneous vector (2.2) can be converted back into a
inhomogeneous vector (2.1) by dividing by w and removing the last coordinate. Points
with w = 0 are called ideal points or points at infinity and do not have an equivalent
inhomogeneous representation.
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We denote a 3D point in a R3 Euclidean space as

x =


x

y

z

 , (2.3)

and in a P3 homogeneous space

x =


wx

wy

wz

w

 . (2.4)

We can go back and forward from one 3D representation of the point to the other, in the
same way as with the 2D point.

Finally, let us see the following 3D transformations: a 3D translation can be written
as x′ = x + t or 

x′

y′

z′

 =


x

y

z

+


tx

ty

tz

 . (2.5)

A 3D rotation can be written as x′ = Rx or
x′

y′

z′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



x

y

z

 , (2.6)

where R is a orthonormal matrix with RRT = I and |R| = 1.

A 3D rotation and translation, also known as 3D rigid body motion or the 3D Euclidean
transformation, can be written as x′ = Rx + t or

x′

y′

z′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33



x

y

z

+


tx

ty

tz

 . (2.7)

6 Chapter 2 Computer Vision Fundamentals



Figure 2.1: Pinhole camera model.

An advantage of the use homogeneous coordinate is that we can make rotation and
translation with a single matrix, namely, with a single operation in this way

x′

y′

z′

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




x

y

z

1

 . (2.8)

2.2 Pinhole camera model

The pinhole camera model (Figure 2.1) describes the projection of a three-dimensional
point onto the image plane of an ideal pinhole camera. A point describes the camera
aperture in this model, and no lenses are used to focus light. Moreover, the model does
not take into account the geometric distortions caused by the camera lens and neither
that cameras have only discrete image coordinates. With above, a first approximation of
the mapping from a 3D scene to a 2D image is achieved using the pinhole camera model.
That is, the position of a 3D point Xw described in a world frame (in homogeneous
coordinates) onto the image plane has the coordinates u given by

u = PXw , (2.9)

where P is the projection matrix which makes the mapping R3 → R2. This projection
matrix can be expressed as

P = KMext = K[R | t] , (2.10)

being K the intrinsic matrix of the camera made with the intrinsic values that represent
its internal characteristics like the focal length of the lens, its skew, and optical center.
Mext is the extrinsic matrix of the camera which describes the orientation with the

2.2 Pinhole camera model 7



(a) (b) (c)

Figure 2.2: Radial distortion example: (a) distortion-free image. (b) Pincushion radial distor-
tion. (c) Barrel radial distortion.

rotation matrix R and position with the translation vector t of the camera respect to the
world frame. Then, the projection matrix

P =


fx s x0

0 fy y0

0 0 1


︸ ︷︷ ︸

K


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

Mext

, (2.11)

where fx and fy are the the focal length in x and y direction, s is the skew and x0 and
y0 are the optic center coordinates. So, the projection model (2.9) is finally


xim

yim

1


︸ ︷︷ ︸

u

=


fx s x0

0 fy y0

0 0 1



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

P


Xw

Yw

Zw

1


︸ ︷︷ ︸

Xw

. (2.12)

2.3 Camera calibration

Camera calibration is the process for obtaining the intrinsic parameters of the camera
sensor and the parameters of its lens. The intrinsic parameters of the camera to estimate
are the same discussed above: fx, fy, s, x0 and y0. And the parameters of the lens are
the distortion coefficients k1, k2 and k3 that compensate the geometric distortion in
the images caused by the camera lens, which are not included in the matrix K. Radial
distortion causes the image points are displaced radially from the image center. In
Fig. 2.2(a) there is an example of how an undistorted image looks and how it looks
with two different types of radial lens distortion: Pincushion in Fig. 2.2(b) and Barrel in
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Fig. 2.2(c). The mathematical model for the lens radial distortion is given by (Duane,
1971) [

xd

yd

]
= [1 + k1r

2 + k2r
4 + k3r

6]
[
Xcam/Zcam

Ycam/Zcam

]
, (2.13)

being xd and yd the distorted image coordinates, Xcam, Ycam and Zcam the coordinates
in the camera frame and

r =

√(
Xcam

Zcam

)2
+
(
Ycam

Zcam

)2
. (2.14)

To use E.q.(2.13) we need that our coordinates are given in the camera frame. To
transform the 3D coordinates of the point from world to camera coordinate systems

Xcam

Ycam

Zcam

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




Xw

Yw

Zw

1

 , (2.15)

that is, 
Xcam

Ycam

Zcam

1

 =
[

Mext

0 0 0 1

]
Xw

Yw

Zw

1

 , (2.16)

where Mext is the extrinsic matrix between world and camera frame.
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3Structure from Motion

Structure from Motion is a stereo-photogrammetry technique that, using a set of over-
lapping images of a scene or object, estimates the 3D coordinates of some points in this
scene (structure) and the camera pose (position and orientation) in the space (motion).
This process is carried out using a set of features automatically extracted from the
images, and then an iterative bundle adjustment procedure.

Unlike traditional photogrammetry or soft-copy photogrammetry, where it is necessary
to know the position of some points in the scene or camera pose to estimate a point
cloud, SfM offers us the advantage of estimating simultaneously the scene geometry and
the camera pose using only a set of automatically estimated correspondences features
between image pairs, without any other a priori information (Westoby et al., 2012).
Then with this set of feature correspondences, it is calculated an initial estimation of
camera pose and 3D coordinates. We recover the camera pose between two views
with the Essential or Fundamental matrix defined by the epipolar geometry and the
3D points through triangulation. Later, using a non-linear optimization process known
as Bundle Adjustment, this first approximation obtained with the above procedure is
refined minimizing the reprojection error.

But as a disadvantage, camera position estimated with SfM lacks scale, and this
produces that 3D points of the scene are in a relative "image-space" which also absence
the scale (Westoby et al., 2012; Scaramuzza et al., 2009). That does not happen with
the soft-copy photogrammetry where on a real scale both camera and point positions
are reconstructed. Then, for transforming the measurements from the relative image-
space to an absolute object-space (in a absolute scale), it is necessary more information
in addition to the correspondences. On the one hand, we can use a set of Ground
Control Points (GCPs) which are a series of points in the scene with known object-space
coordinates that we use to align the point cloud from the image-space to the object-space,
but they must be identified in the images for the aligning process, i.e., we must know
the 2D coordinate of each GCP in each image. On the other hand, we can measure the
camera pose using, for example, an Inertial Measurement Unit (IMU) or a GPS sensor
(Pollefeys et al., 2008; Scaramuzza et al., 2009) that allow us to have the scale of the
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camera projection matrix, that is, the camera pose in the object-space coordinate system.
Importantly, the more accurate be our additional information, the more accurate our
point cloud will be.

3.1 Feature detection and matching

Feature detection and matching is an essential stage in the SfM technique. The
principal approach in this process is to find features or keypoints in each image and
then match or search correspondences between points of image pairs based on their
local appearance. The feature detection and matching process take place in three steps:
feature detection, feature description, and feature matching.

The first step, feature detection, consists of looking for points in each photograph that
probably we detect in the other ones. I.e., we calculate distinctive points on the images,
which are necessary to find a relationship between photographs. This process should be
repeatable in such a way that in different images the same points must be detected, and
if we calculate features in the same image more than once, the same features must be
estimated.

At the feature description step, we assign a vector or descriptor to each keypoint
with the objective to use it in the matching process. We build a descriptor with a
region or patch around the detected keypoint location. This descriptor must be a robust
representation to changes in scale or orientation because the local appearance in the
patch between images may change.

The feature matching step is the process to search for likely matching candidates in
other images, that is, to identify the 3D points of the same object which appear in more
than one image with the help of descriptors calculated in each keypoint. For this task,
we assume that in the feature space the Euclidian distance between descriptors gives
us a raking of potential matches. Then, the simplest matching strategy is to define a
maximum distance (threshold) and to return all matches from other images within this
threshold, taking into account a Euclidian distance metric.

There are many feature detectors in the literature, but one of the most popular is
SIFT (Scale-Invariant Feature Transform) (Lowe, 2004), where the feature descriptors
are invariant to rotation and scale. Using the Difference-of-Gaussians (DoG) in multiple
scales, we determine the location and scale of the features, and moreover, the orientation
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of each point is determined based on local image gradient directions. The above ensures
invariance to image location, scale and rotation. For each feature, we take a 16 × 16
neighborhood which is split into 16 sub-blocks of 4× 4 and in each division we create
an 8 bin orientation histogram. The descriptor then becomes a vector of 128 elements
(4× 4× 8 = 128) of all the values of these histograms.

Another widely used feature detector is SURF (Speeded Up Robust Features) proposed
by Bay et al. in 2006 (Bay et al., 2006). SURF uses a Hessian matrix with integral
images for keypoints detection. For descriptors, it uses a distribution of Haar wavelet
responses in a neighborhood of features. This detector is faster than SIFT because SURF
descriptors have 64 elements. Recently Ethan Rublee et al. in 2011 proposed the feature
detector ORB (Oriented FAST and rotated BRIEF) (Rublee et al., 2011). It uses the
feature detector FAST and the feature descriptor BRIEF, and as a result, we have a
detector that is faster than SIFT and SURF. But as a disadvantage, the scale invariance
cannot be guaranteed.

For feature matching procedure a simple k-nearest neighbor classification in feature
space can be used. E.g., an efficient run-time matching approach called k-d trees (Brown
and Lowe, 2007) based on multi-dimensional search trees has been proposed to address
this problem. A k-d tree split the feature space at the mean in the dimension with the
highest variance.

3.2 Finding motion and structure

After feature detection and matching, we use the correspondences to estimate the
relative camera position and orientation (motion) and the 3D coordinates of matching
points (structure).

Taking into account two views (two images) and a 3D point X (Fig. 3.1), if the
projection of this point in the first image is u1 and in the second image is u2 in
homogeneous coordinates, then they are corresponding points. These points can be
related to the 3× 3 Fundamental matrix F as

uT
2 F u1 = 0 . (3.1)

This equation is known as the epipolar constrain, and the fundamental matrix F describes
the epipolar geometry of two camera views. This epipolar geometry depends only on
the relative pose of the camera and its intrinsic parameters.
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Figure 3.1: Epipolar geometry: the geometry of two views which depends only on the relative
pose of the camera and its intrinsic parameters.

Let the projection matrix (discussed on the section 2.2) of the first view be P1 = K1[I | 0]
and for the second view be P2 = K2[R | t]. Let

[t]× =


0 −tz ty

tz 0 −tx
−ty tx 0

 , (3.2)

based on the translation vector of P2 so that [t]×u = t × u. Then the fundamental
matrix is

F = K−T
2 [t]×RK−1

1 . (3.3)

We use the fundamental matrix when the intrinsic matrices K1 and K2 are not known
but if we have them, i.e., if the camera or cameras are calibrated we rewrite the epipolar
constrain (3.1) as

ûT
2 E û1 = 0 , (3.4)

where û1 and û2 are

û1 = K−1
1 u1 û2 = K−1

2 u2 , (3.5)

and

E = [t]×R , (3.6)
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is called the Essential matrix which is a 3× 3 matrix that contain the relative pose of the
second view, namely, we can estimate the extrinsic matrix Mext estimating the essential
matrix E and taking into account that the first view is the origin with rotation I (identity
matrix) and translation 0 (zero vector).

The 8-point (Longuet-Higgins, 1981) and 7-point (Huang and Netravali, 1994)
algorithms are well-known methods for estimating the essential matrix, which use eight
and seven points respectively. But the minimal case for this problem is the so-called
five-point problem (Nistér, 2004) where efficiency and accuracy are higher than the
8-point algorithm (Li and Hartley, 2006).

3.2.1 Motion estimation

Now, having the essential matrix, R and t can be recovered. Let

D =


0 1 0
−1 0 0
0 0 1

 , (3.7)

and let singular value decomposition (SVD) of the essential matrix be E = USVT.
Then

t =


u13

u23

u33

 , (3.8)

that is, t is the third column of the matrix U and it is the possible translation vector.
Furthermore

Ra = UDVT Rb = UDTVT , (3.9)

are the possible rotation matrix.

To resolve the inherent ambiguities, we assume that [I | 0] is the extrinsic matrix of
the first view and that t is of unit length. Then, we have four possible Mext for the
projection matrix of the second view

PA = K2[Ra | t] PB = K2[Ra | − t] PC = K2[Rb | t] PD = K2[Rb | − t] ,
(3.10)
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Figure 3.2: The four possible solutions for extrinsic matrix of the second view (Hartley and
Zisserman, 2003, Fig. 9.12).

where one of them is the correct extrinsic matrix so that the reconstructed point X
lies in front of both cameras (Fig. 3.2(a)), another one is the true configuration with
one of the views rotated 180 degrees about the line joining the two camera centers,
Fig. 3.2(c). The remaining two are the reflexion of the true configuration, Fig. 3.2(b),
and its respective version with a view rotated 180 degrees, Fig. 3.2(d).

3.2.2 Structure estimation

The 3D points recovery or structure estimation is carried out through the triangulation
process (Fig. 3.3). Ideally, 3D points should lie at the intersection of the back-projected
rays (red and green line on figure 3.3), but measurement noise makes the back-projected
rays do not intersect. A triangulation strategy, using equation (2.9) and the projection
matrices P1 and P2 previously stated, works based on the homogeneous vector ui and
the projection line PiX since they are parallel, then it is possible to write

u1 ×P1X = 0 u2 ×P2X = 0 . (3.11)
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Figure 3.3: Triangulation: three-dimensional position of correspondences are computed using
the back-projected rays (red an green lines).

These constraints can be arranged into a matrix equation of the form[
[u1]×P1

[u2]×P2

]
︸ ︷︷ ︸

A

X = 0 , (3.12)

where A is a 6 × 4 matrix. Moreover, the homogeneous 3D point solution X should
minimize ||AX|| subject to ||X|| = 1.

With the projection matrices recovered with the fundamental matrix, the reconstruc-
tion is made up to a projective ambiguity. However, with the essential matrix, this
ambiguity is removed, and the point cloud is upgraded to a metric reconstruction with
arbitrary scale, so the reconstruction preserves length ratios and angles between lines
like the real world, but the scale is still indeterminable (Adorjan, 2016).

To recover the real or absolute scale it is necessary to align the point cloud to the real
world or object-space by using five or more Ground Control Points (GCPs) with known
object-space coordinate XWi. Then, using XWi we compute a transformation matrix T
that makes the aligning of estimated points Xi, such that XWi = TXi. So, the metric
projection matrices and metric 3D points based on T are

PM1 = P1T−1 PM2 = P2T−1 XMi = HXi . (3.13)
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Figure 3.4: Bundle adjustment procedure where global reprojection error is minimized using
an initial estimation of pose and point cloud.

In addition to GCPs, we can use IMU sensors or GPS information to build the projection
matrices in absolute scale and thus our point cloud will be on a real scale.

3.2.3 Bundle Adjustment

Pose and structure estimation yielded with the above procedures are used as initial-
ization in a non-linear optimization process called Bundle Adjustment, where they are
refined minimizing the reprojection error.

Given n images and n initial estimates for the projection matrices Pi and given m
initial estimates for the 3D points Xj , both from the n ×m correspondences uij , we
want to minimize the global reprojection error

E(P,X) =
n∑
i

m∑
j

||uij −PiXj ||2 , (3.14)

i.e., we want to minimize the Euclidean distance dij between the measured point uij

and the reprojected 3D point Xj onto the image plane PiXj , as shown Fig. 3.4.
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4Method

In this chapter, we describe a processing pipeline for generating a Digital Elevation
Model in section 4.1, and a strategy for Digital Surface Model (DSM) and Digital Terrain
Model (DTM) generation in section 4.2, using the output data from the reconstruction
pipeline.

4.1 Digital Elevation Model generation

Our implemented reconstruction strategy consists of four stages (one of them is
optional) as depicted in Fig. 4.1 based mainly on the OpenSfM and OpenDroneMap
libraries. To illustrate our reconstruction approach, we have acquired 140 images with a
DJI Phantom 3 Professional drone of a specific land located in the south zone from the

Figure 4.1: Reconstruction process for DEM generation: Camera calibration with OpenCV
(optional step). First stage consists of image acquisition with a drone and Altizure
app. The second stage is based on the OpenSfM library for the 3D reconstruction.
The final stage is based on the OpenDroneMap library for post-processing the point
cloud.
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Figure 4.2: Testing site: land located in the south zone from the Campus Tecnológico of the
Universidad Tecnológica de Bolívar (Cartagena de Indias, Colombia)

Campus Tecnológico of the Universidad Tecnológica de Bolívar (Cartagena de Indias,
Colombia) as shown in Fig. 4.2.

The camera calibration stage is an optional step in the proposed methodology. For
this reason, we show this block in a dotted line in Fig. 4.1. We carried out the camera
calibration with the OpenCV library (Bradski and Kaehler, 2000) for estimating the
intrinsic camera parameters for the drone camera.

The first stage consists in setting the flight path for the drone to carry out the image
acquisition. We used the Altizure application (Altizure) to set a flight strategy. The
second stage is about performing the 3D reconstruction process. This stage is based
mainly on the SfM photogrammetric technique implemented with the OpenSfM library
that produces a scene point cloud. If it is required, we can edit the obtained point cloud
in MeshLab (Cignoni et al., 2008) an open source system for processing and editing 3D
triangular meshes and point clouds.

The final stage is the point cloud post-processing obtained with OpenSfM which
is done with the OpenDroneMap library. In this part, we convert the point cloud to
LAS format; we generate a 3D surface with texture and with the captured images we
generate an orthophoto mosaic.
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4.1.1 OpenCV Stage: Camera Calibration

Camera calibration, previously discussed in Chapter 2, is a fundamental prerequisite
for metric 3D sparse reconstruction from images (Nex and Remondino, 2014). It is
necessary to know the intrinsic and extrinsic parameters of a camera to estimate the
projection matrix P. With this matrix, we can find the u position in the image plane of
a three-dimensional point, as stated in E.q. (2.9).

u = PX = K[R | t]X =


fx s x0

0 fy y0

0 0 1


︸ ︷︷ ︸

K


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz


︸ ︷︷ ︸

Mext


X

Y

Z

1


︸ ︷︷ ︸

X

, (4.1)

where the extrinsic parameters matrix Mext describe camera orientation and it consists
of a rotation matrix R and a translation vector t, and the intrinsic parameters matrix K
contains the camera internal parameters like the focal length in x and y direction (fx

and fy), skew (s) and optic center (x0 and y0).

In addition, the camera lens radial distortion parameters k1 and k2 are important
values for compensating geometric distortions in the images caused by the camera
lens, which are not included in the matrix K. The mathematical model for the lens
radial distortion is the same given by E.q. (2.13) but in this case we set k3 = 0 because
OpenSfM library only uses two radial distortion coefficients. Then[

xd

yd

]
= [1 + k1r

2 + k2r
4]
[
Xc/Zc

Yc/Zc

]
, r2 =

(
Xc

Zc

)2
+
(
Yc

Zc

)2
. (4.2)

where (xd, yd) are the distorted image coordinates and (Xc, Yc, Zc) are the normalized
camera coordinates.

The camera position and orientation, or the camera extrinsic parameters, are com-
puted in the SfM pipeline. Therefore, only the intrinsic parameters have to be known
before the reconstruction process. Usually, calibration of aerial cameras is performed in
the laboratory (Nex and Remondino, 2014). For this work, the camera calibration was
carried out with OpenCV by acquiring images from a flat black and white chessboard as
seen in Fig. 4.3. The intrinsic parameters required by OpenSfM are the focal ratio and
the radial distortion parameters k1 and k2. The focal ratio is the ratio between the focal
length in millimeters and the camera sensor width also in millimeters.
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Figure 4.3: Black and white chessboard for camera calibration.

This calibration process is optional because OpenSfM gives us the possibility to use
the values stored in the EXIF information for the images. These parameters can be
optimized during the reconstruction process.

4.1.2 Altizure Stage: Image Acquisition

Three-dimensional reconstruction algorithms require images of the object or scene
of interest acquired from different positions. There has to be an overlap between the
acquired images to be able to reconstruct an area. Any specific region must be observable
in at least three images to be reconstructed (James and Robson, 2012).

Usually, image-based surveying with an airborne camera requires a flight mission
which is often planned with dedicated software (Nex and Remondino, 2014). In this
work, we used Altizure (Altizure), a free mobile application that allows us to design

Figure 4.4: Screenshot of Altizure, the mobile application used to implement the flight strategy
for image acquisition.
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flight paths specified in a satellite view based on Google Maps (Google Maps) as shown
in Fig.4.4. Further, with this application, we can adjust specific parameters such as flight
height, camera angle and forward and side overlap percent between images.

4.1.3 OpenSfM Stage: Reconstruction Pipeline

The following stage is the 3D reconstruction process which we implemented with the
OpenSfM library. This library is based on the SfM and MVS techniques. In Figure 4.5
we show a workflow diagram for the 3D reconstruction process. First, the algorithm
searches for features on the input images. A feature is an image pattern that stands out
from its surrounding area, and it is likely to be identifiable in other images (Tuytelaars
and Mikolajczyk, 2008). The following step is to find point correspondences between
the images. Finally, the SfM technique uses the matched points to compute both the
camera orientation and the 3D structure of the object.

These steps lead to a sparse point cloud, which only includes the best-matched
features from the input images. It is possible to obtain a denser point cloud using MVS.
This additional process increases the number of points resulting in a more realistic
view of the scene (Bolick and Harguess, 2016). The obtained reconstruction is then
georeferenced converting the XYZ coordinates of each point to GPS coordinates. Finally,
we used MeshLab for the visualization of the obtained point cloud in PLY format.

Figure 4.5: Pipeline reconstruction: each image goes through the stages of feature detection,
point matching, camera pose estimation (motion), sparse reconstruction (structure)
and finally, dense reconstruction using multi-view stereo (MVS).
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Figure 4.6: (a) Feature detection using HAHOG algorithm. (b) Matching of detected features in
two photographs of the same scene using FLANN algorithm.

Feature detection and matching.

The search for characteristics or feature detection consists in calculating distinctive
points of interest in an image which are readily identifiable in another image of the same
scene. The feature detection process should be repeatable so that the same features
are found in different photographs of the same object. Moreover, the detected features
should be unique, so that they can be told apart from each other (Grauman and Leibe,
2011).

The detector used with the OpenSfM library is the HAHOG which is the combination
of Hessian Affine feature point detector and HOG descriptor of SIFT, but apart from
this, we have the AKAZE, SURF, SIFT and ORB detectors available (Lindeberg, 1998).
These detectors calculate features descriptors that are invariant to scale or rotation. This
property enables matching features, regardless of orientation or scale. In Figure 4.6(a)
we show with red marks the detected features for a given image.

Using these descriptors, we can find correspondences between the images, that is, to
identify the 3D points of the same physical object which appear in more than one image.
This process is implemented with the FLANN algorithm (Muja and Lowe, 2009) available
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in the OpenSfM library. FLANN (Fast Library for Approximate Nearest Neighbors) is
a library that contains a collection of algorithms optimized for fast nearest neighbor
matching in large datasets and for high-dimensional feature spaces (Muja and Lowe,
2009). We can see an example of this process in Figure 4.6(b).

Sparse (SfM) and dense (MVS) reconstruction.

The SfM technique uses the matched points uij for calculating both the camera pose, to
compute the projection matrix Pi with the pose estimation process with the essential
matrix E stated in Chapter 3, and the 3D position Xj of specific points through triangu-
lation. The triangulation process and pose estimation with E give an initial estimation of
Pi and Xj which usually is refined using iterative non-linear optimization to minimize
the reprojection error given by

E(P,X) =
n∑

i=1

m∑
j=1

d(uij ,PiXj)2 , (4.3)

where d(x, y) denotes the Euclidean distance, n is the number of total images and m
the number of 3D points. This minimization problem is known as bundle adjustment
(Triggs et al., 1999) which yields a sparse point cloud. If beforehand we do not know the
camera calibration matrix K to construct the projection matrix Pi, OpenSfM uses the
parameters of the EXIF information of images for building K and in this optimization
process are refined.

This approach is implemented in OpenSfM with the incremental reconstruction
pipeline that consists of performing an initial reconstruction with only two views and
then enlarging this initial point cloud by adding other views until all have been included.
After each image is added the bundle adjustment procedure is used. This process yields
a point cloud like the one shown in Figure 4.7(a).

With the sparse 3D reconstruction, we can generate dense point clouds with the
Multi-View Stereo (MVS) technique. There are many approaches to MVS, but according
to Furukawa and Ponce (Furukawa and Ponce, 2010), these can be classified into four
categories according to the representation of the generated scene. These approaches
are Voxels, polygonal meshes, multiple depth maps, and patches. In OpenSfM, the MVS
approach is multiple depth maps, creating one for each input image. The obtained depth
maps are merged and clusters of points are extracted according to their positions and
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Figure 4.7: Reconstruction outputs from OpenSfM library. (a) Sparse point cloud. (b) Dense
point cloud.

then a single 3D representation of the scene is performed (Adorjan, 2016) obtaining a
dense reconstruction as shown in Fig.4.7(b).

Reconstruction Georeferencing

The Global Positioning System (GPS) is based on the World Geodetic System (WGS)
standard which is helpfully for defining positions on the Earth. The latest revision is
WGS 84 established in 1984 and last revised in 2004. In the coordinate system defined
by the WGS84 standard (colored in blue in Fig. 4.8), we use the Earth’s center of mass
as the origin location, a reference ellipsoid (colored in gray in Fig. 4.8) approximating
the Earth’s surface and a geoid derived from a gravitational model, that defines the

26 Chapter 4 Method



Z

Y

X

North

East

Up

ecef

ecef

ecef

φ

λ

Figure 4.8: Different coordinates systems: ECEF (blue), Geodetic (orange) and ENU (green).

nominal or mean sea level. The WGS84 frame is a so-called Earth-centered, Earth-fixed
(ECEF) coordinate system, as the origin is the Earth’s center of mass and the coordinate
system rotates with it.

With the reference ellipsoid we also define a so-called geodetic coordinate system
(colored in orange in Fig. 4.8) which is a curvilinear frame defined by a geodetic latitude
ϕ that is the angle between the equatorial plane and the normal to the reference ellipsoid
at a given point, a geodetic longitude λ that is the angle between the plane of the prime
meridian and the plane of a given meridian, and the altitude or height that is measured
above the reference ellipsoid.

Usually, a local reference frame is more convenient than the ECEF system. The
topocentric or East-North-Up (ENU) coordinates system (colored in green in Fig. 4.8)
is a local frame defined by a tangent plane to the reference ellipsoid of WGS84 at a
observer’s location as the reference point or origin, where X-axis is pointing eastwards,
the Y -axis to northward and the Z-axis to normal to the tangent plane.

The obtained point cloud in the SfM and MVS processes are in an XY Z topocentric
coordinates system. The reference point or origin in OpenSfM is set as the average
value of the GPS coordinates from all photographs, as long as all the images have this
information, but if not the origin is set as the point (0, 0, 0). With this reference point,
we convert the point cloud from topocentric coordinates to GPS coordinates. From
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this transformation, we obtain the georeferenced point cloud, where each point has an
associated GPS position.

A disadvantage of using GPS information from photographs is that it is usually not
very accurate, because while the drone flies and takes images, the time between each
capture is not enough to make an exact measurement. Then, another possibility to
obtain a geo-referenced point cloud is to use a set of Ground Control Points (GCPs)
which are points over the scene with GPS coordinates known. To use GCPs in OpenSfM
we have to make a text file where the first line should contain the name of the projection
used for the geo-coordinates, and following lines should contain the data for each
ground control point observation in the format:

<geo_x> <geo_y> <geo_z> <im_x> <im_y> <image_name>

where geo_x, geo_y and geo_z are the geospatial coordinates of the GCP and im_x and
im_y are the pixel coordinates where the GCP is observed. In order to identify easily the
pixel coordinates of GCPs, we usually use a 2× 2 chessboard target like the one shown
in Fig. 4.9.

Figure 4.9: Target example used for easy GCP detection in the images.

To construct this text file, we have created a semi-automatic tracker algorithm based
on OpenCV (Algorithm 1), that uses optical flow with the Kanade-Lucas-Tomasi (KLT)
algorithm (Bouguet, 2001) to track the center of target, this is because OpenSfM does
not provide a tool for making the text file. In the designed algorithm we use the Shi-
Tomasi feature detector that provide us good features to track in the object-space, and
we must select beforehand the images where GCPs are. Then, as initialization, the user
must manually pick out the point to track with the Lucas-Kanade pyramidal method. If
tracking estimate fails, the user must again indicate the GCP center.
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Algorithm 1 Tracking GCP

Require: Path to the N images of a specific target
1: Initialization
2: Read the first image as im1
3: Estimate n Shi-Tomasi features in im1
4: Select the feature of target center and assign to p1
5: Write line in the text file with the p1 coordinate
6: for remaining images N − 1 do
7: Read the image and assign to im2
8: Use KL algorithm to find p1 in im2
9: Store tracking estimation of point in p2

10: if Tracker error > threshold then
11: Estimate n Shi-Tomasi features in im2
12: Select the feature of target center and assign to p2
13: Write line in the text file with the p2 coordinate
14: else
15: Write line in the text file with the p2 coordinate
16: Update: im1 = im2
17: Update: p1 = p2
18: end if
19: end for
20: Save text file in the current path

With the GCPs we can align the reconstruction to the real world or object-space and
upgrade the reconstruction to an absolute scale. As a result and using the Google Earth
tool, we can locate the point cloud in the real world as shown in Fig. 4.10.

Figure 4.10: Sparse point cloud georeferenced seen from Google Earth.
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4.1.4 OpenDroneMap (ODM) Stage: Post-processing

With the sparse and dense reconstruction generated with OpenSfM in PLY format,
we use OpenDroneMap to post-process the point cloud. The post-processing consists in
generating a geo-referenced point cloud in LAS format, a geo-referenced 3D textured
mesh (Figure 4.11(a)) and an orthophoto mosaic in GeoTIFF format (Figure 4.11(b)).

Figure 4.11: Outputs files from OpenDroneMap: (a) georeferenced 3D textured mesh. (b)
Orthophoto made with 140 images.

The LAS format is a standard binary format for the storage of LiDAR data, and it
is the most common format for exchanging point cloud. At the end of the OpenSfM
process, the sparse and dense point cloud is generated in PLY format with geo-referenced
coordinates. OpenDroneMap converts these files in a geo-referenced point cloud in LAS
format, which can be used in other GIS software for visualization or ground analysis.
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The 3D textured mesh is a surface representation of the terrain that consists of
vertices, edges, faces and the texture from the input images that is projected on it. ODM
create a triangulated mesh using the Poisson algorithm. It consists in using all the points
of the dense point cloud and its respective normal vectors from the PLY file to interpolate
a surface model generating a welded manifold mesh on the form of a PLY file. Finally,
the texture from the input images is projected on the mesh generating a 3D textured
mesh in OBJ format.

An orthophoto is an orthorectified aerial image, i.e., there are no geometrical dis-
tortions, and the scale is uniform throughout the image. The GeoTIFF format allows
embedding the georeferencing information within an orthophoto in TIF format gener-
ated with all images used in the reconstruction process. The resulting orthophoto allows
us to measure distance accurately and can be used as background image for maps in
applications using GIS software.

4.2 Digital Terrain Model and Digital Surface Model
Generation

The Digital Surface Model (DSM) represents the surface of the earth and all objects
on it. The DSM includes the top of buildings, tree canopy, powerlines, and other features.
Unlike the DSM, a Digital Terrain Model (DTM) represents the bare ground surface
without any objects like plants or buildings, as seen in Figure 4.12(a).

With the point cloud in LAS format obtained with ODM in the reconstruction pipeline,
we have ground and non-ground points of the scene so that our output point cloud from
SfM pipeline represents a DSM of the scene, therefore generating a DSM in GeoTIFF
format is an easy task with ODM. However generating a DTM using the LAS point cloud
is not so easy, to do this we must first filter the point cloud to remove the non-ground
points that represent objects like plants or buildings. For example, as seen in Fig. 4.12(b),
the red dots represent the ground points, and the green dots the non-ground points.
With the filtering process, we remove the green points, and therefore we have some holes
left (red line). The filtering was carried out with the PDAL open source library (PDAL
contributors, 2018), using the Extended Local Minimum method (Chen et al., 2012) to
identify low noise points, and the Simple Morphological Filter (SMRF) approach (Pingel
et al., 2013) implementing the nearest neighbor void filling to segment ground and
non-ground points. Then with the segmented point cloud, using PDAL we generate the
DTM in GeoTIFF format, and from this process, we obtain a TIF image with holes due
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Figure 4.12: (a) Difference between DTM and DSM: DSM includes all objects on the ground
and DTM does not. (b) The filtering consists of removing the non-ground points
(green) and maintaining the ground points (red).

to segmentation, for this reason, we use ODM for filling the gaps in the image based on
nearest-neighbor interpolation, producing a TIF image without gaps.
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5Experiments and results

We carried out three experiments in two different terrains or testing sites with the
characteristics reported in the Table 5.1. In the three experiments, the imagery was
acquired using a DJI Phantom 3 Professional drone. The first land, shown in Fig. 4.2, is
the same used in Chapter 4 to illustrate the proposed method. The second one (Fig. 5.1)
is a neighborhood located in the municipality of Turbaco, Colombia.

Testing site Number of images GCPs
Experiment 1 First 140 None
Experiment 2 First 256 7
Experiment 3 Second 287 9

Table 5.1: Different configurations of the three experiments performed.

Figure 5.1: Testing site: neighborhood located in the municipality of Turbaco, Colombia.

5.1 Experiment 1

In this experiment, we use the first terrain and the same dataset of 140 images of
Chapter 4, moreover no control points were used, so for the georeferencing of the
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Figure 5.2: Digital elevation model.

Figure 5.3: Contour lines of land reconstructed.
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reconstruction the GPS information of the images was used. With the LAS file and the
orthophotography produced with OpenDroneMap, we performed elevation analysis and
generated land contour lines.

From the LAS file information, we generated a terrain digital elevation model (DEM)
shown in Fig. 5.2. In this model, we can see the different height levels from the lowest
(blue) to the highest (red). We have in total nine elevation levels each with a different
color. In the figure, we can also see that the lower zone is a relatively flat because most
of the area has only the color blue. In the part where there is a steep slope, we see that
there are different height levels shown in different colors. This, in fact, shows that the
area is not flat. In the upper zone the orange and red regions, we see that there is a flat
zone in orange which is a narrow dirt road (which we can see in Fig. 4.11(a) of the
orthophoto or Fig. 4.11(b) of the textured mesh). In red, we detect trees that represent
the highest elements in the reconstructed area of interest.

Using the LAS file and the orthophotography obtained with ODM we generate terrain
contour lines (Fig. 5.3) placing the DEM on top of the orthophoto. In this figure we can
see that there are many contour lines close to each other in the part of the terrain with
the steepest slope with respect to other zones, it is mainly because this area is not flat
and the height change faster. Contrarily, since the road is slightly flat, the contour lines
on it are more separated from each other.

One advantage of having our point cloud georeferenced is that, for example, measure-
ments such as contour lines will also be georeference as depicted in Fig. 5.4. However,
as we discussed in the previous chapter, the GPS information of images is not accurate
and because of this the georeferencing of the reconstruction is not as accurate.

Figure 5.4: Georeferenced contour lines of land reconstructed seen from Google Earth.
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5.2 Experiment 2

A validation of the reconstruction was done in this experiment. We also use the first
testing site but with an imagery dataset of 256 which covers a larger area than the
dataset of Experiment 1, as well as a network of seven ground control points distributed
as show Fig. 5.5 and with GPS coordinates measured with a differential GPS (dGPS).

Figure 5.5: GCP network used in the validation process.

The validation process was performed using the nearest points to each real GCPs
coordinates. More specifically the points in a radius of 2 m, obtaining seven sets of points,
one per each GCP. With each set, we estimated the Z value of GCPs by interpolation
using the Kriging algorithm. The interpolation consists of using the real X-Y coordinate
of the target to get the Z value estimated and so to compare it with the real Z value
measured with the dGPS. The absolute error and the percentage error were measured
and, in the Table 5.2 they have been reported. From the table we can see that the GCP
3 has the highest absolute error with 0.1953m or 19.53 cm. Moreover, the targets 4 and
6 present the lowest absolute error with 0.0047 m or 47 mm and 0.0021 m or 21 mm,
respectively.

36 Chapter 5 Experiments and results



Target Real value of Z (m) Estimated value of Z (m) Absolute error (m) Percentage error (%)
GCP 1 33.924 34.007 0.0831 0.245
GCP 2 34.227 34.044 0.1827 0.534
GCP 3 33.719 33.914 0.1953 0.579
GCP 4 34.331 34.336 0.0047 0.014
GCP 5 36.117 36.007 0.1095 0.303
GCP 6 34.676 34.674 0.0021 0.006
GCP 7 45.94 45.884 0.0562 0.122

Table 5.2: Kriging interpolation error.

5.3 Experiment 3

The dataset of points obtained with the SfM-MVS approach has allowed the studies
of different problems such as monitoring glacier movement, quantifying soil loss and
gully erosion, surveying fluvial morphology, among others (Smith et al., 2016). For
Experiment 3, we develope a rainfall-runoff model for the construction of a watershed
delineation in a flood area. A rainfall-runoff model aims to simulate the flow of water
induced by an observed or a hypothetical rainfall of a rainfall catchment area, that is,
this model calculates the conversion of rainfall into runoff.

In this case, we use the second testing site because this is a flood area due to rainfall.
From this zone of approximately 144 566 m2, we acquired 287 images and use nine GCPs
distributed on the ground for the geo-referencing process, measured with a dGPS. From
the reconstruction pipeline, we obtained a geo-referenced point cloud in LAS format

Figure 5.6: (a) output LAS point cloud from the SfM pipeline. (b) Ground segmentation results
in LAS format.
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which shown in Fig. 5.6(a). Based on this point cloud and using the segmentation
strategy discussed at the end of Chapter 4 we removed the non-ground points of the
reconstruction and keep the ground points as seen in Fig. 5.6(b), where we only keep
the earth points.

In Fig. 5.7(a) we show the digital surface model generated with the unsegmented
point cloud of Fig. 5.6(a) with ODM. Using the segmented point cloud with PDAL of
Fig. 5.6(b), we generated a GeoTIFF image (Fig. 5.7(b)) which has many gaps due to
filtering. By interpolating, we obtain the DTM with the gaps filled using nearest-neighbor
interpolation, implemented with a function provided by ODM. Fig. 5.7(c). In Fig. 5.7(d)
we show a 1D profile of the DSM and the DTM, which have been extracted from the red
an blue line over the Fig. 5.7(a) and Fig. 5.7(c), respectively. In this plot, it is clear that
the DSM includes the buildings the terrain, and after filtering and gap-filling, the DTM
maintains the bare terrain surface with little influence from outlier points.
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Figure 5.7: (a) DSM from unsegmented point cloud. (b) GeoTIFF image with gaps due to
filtering of the segmented point cloud. (c) DTM: gaps filled based on nearest-
neighbor interpolation. (d) 1D profile of DSM and DTM.
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5.3.1 Watershed delineation

As previously stated the test site is a flood area, this is because it is a relatively flat
zone with a slight slope and this makes the terrain have a limited capacity to drain
water from precipitations. With the DTM of land, we make the hydrographic watershed
delineation (Fig. 5.8) taking into account a hypothetical rainfall in the area. A watershed
is an area of terrain where rainfall collects and drains off into a common outlet, as
a result of water from rain runoff that runs downslope towards the shared outlet. In
Fig. 5.8 in red color is the largest catchment area with approximately 123 684 m2 and
the other ones represent an area of approximately 20 881 m2.

Figure 5.8: Watershed delimitation of the test site.
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6Conclusions

In this work, we have shown a methodology for 3D terrain reconstruction based entirely
on open source software.

1. The combination of open source software with unmanned aerial vehicles is a
powerful and inexpensive tool for geomatic applications.

2. Imagery acquired from UAVs and 3D photogrammetry techniques offer cost-
effective advantages over other remote sensing methods such as LIDAR or RADAR.

3. The method is a low-cost terrestrial photogrammetry and computer vision ap-
proach to obtaining high-resolution spatial data suitable for modelling meso- and
micro-scale landforms.

4. In the bundle adjustment procedure discussed in Chapters 3 and 4 using only
matched points from images is not possible to reconstruct the scene on an absolute
scale. Moreover, GPS information from images is not highly accurate and for this
reason only this information not give us an accurate georeferentiation.

5. As the raw SfM output is fixed into a relative coordinate system, particular time
and attention should be taken in the establishment of a GCP network to facilitate
transformation to an absolute coordinate system and the extraction of metric data.

6. The georeferenced point clouds, the digital elevation models and the orthopho-
tographs resulting from the proposed processing pipeline can be used in different
geomatics software to make different terrain analyzes as, for example, the contour
lines analysis shown in Experiment 1.

7. GPS information of the images is not accurate because the time between image
capture with the drone is not enough to make an exact measurement, and because
of this the georeferencing of the reconstruction in Experiment 1 is not as accurate,
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i.e., the more accurate be the GPS information of images, the more accurate the
georeferencing will be.

8. The reconstruction performance assessed in Experiment 2 give us a good accuracy
but it would be well compare it with a close source software.

9. The topographic attributes obtained from the DEM data allowed us to determine
the watershed delineation useful for predicting the behavior of systems and for
studying hydrological processes. In particular for developing a rainfall-runoff
model to study flood areas.

10. Encouraging experimental results, in Experiment 3, on a test land show that the
produced DEM meets the metrological requirements for developing a surface-
runoff model. However, we need to reconstruct a larger area of the zone to make
a better analysis of watershed due to the boundaries of the red catchment area
in Fig. 5.8 is truncated, i.e., we do not have the whole red catchment area with
acquired image dataset.
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7Appendix

7.1 Communication of results

Publications for participation in different conferences are attached below.
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El modelo digital de elevación (Digital Elevation Model o DEM, en inglés) es una herramienta 

geomática útil para el análisis de distintas propiedades de terrenos. Existen diferentes metodologías 

para la generación de DEMs que incluyen LIDAR, RADAR o el uso de teodolitos [1]. Sin embargo, 

en ocasiones estas técnicas no ofrecen suficiente resolución espacial para obtener aspectos de la 

microtopografía de un terreno, por ejemplo para poder medir de manera precisa las intrincadas re-

des de drenajes por ser características demasiado pequeñas. Por otra parte, también son difíciles de 

medir en campo debido a limitaciones de acceso. Una alternativa a estos métodos es el uso de 

Vehículos Aéreos No Tripulados (UAVs del inglés Unmanned Aerial Vehicles) equipados con cá-

maras de alta resolución y siguiendo un flujo de trabajo fotogramétrico, se pueden obtener resulta-

dos 3D como modelos digitales de superficie [2]. No obstante, la operación de un UAV para la es-

timación de un modelo digital del terreno requiere de ciertos parámetros de vuelo, características de 

las imágenes capturadas, entre otros. Por ejemplo, las imágenes deben tomarse casi en paralelo y 

con una superposición de alrededor del 60%, y los puntos de control con coordenadas conocidas 

deben ser observables en las imágenes [3]. 
 

La tecnología fundamental que posibilita la obtención de la información 3D es la estereo-

fotogrametría. Esta consiste en estimar las coordenadas tridimensionales de los puntos de un objeto 

empleando mediciones realizadas en dos o más imágenes fotográficas 2D tomadas de diferentes 

posiciones. Se identifican puntos comunes en cada imagen. Se construye una línea de visión (o ra-

yo) desde la ubicación de la cámara hasta el punto del objeto. Es la intersección de estos rayos 

(triangulación) la que determina la localización tridimensional del punto. Realizando este proceso 

para un número significativo de puntos en la escena se consigue obtener una nube de puntos en el 

espacio tridimensional representativos del objeto o superficie. 

 

La estimación correcta de las correspondencias entre las distintas imágenes, así como la triangula-

ción son susceptibles a errores y deben hacerse de manera robusta. Recientemente, se han propuesto 

metodologías para atender el problema de estimación robusta de estructura a partir de múltiples 

vistas, Structure from Motion (SfM) y Multi-View Stereo (MVS) [4]. Este problema se formula co-

mo un problema de optimización en dónde se desea encontrar las rotaciones R, las traslaciones t y 

las coordenadas 3D de los puntos del objeto de tal manera que se minimicen los errores de repro-

yección. Esto es en esencia un problema no lineal en el que se deben poder lidiar con corresponden-

cias erróneas. 

 

Existen algunas aplicaciones comerciales como Agisoft [5] o Pix4D [6] que permiten obtener nubes 

densas 3D de puntos, sin embargo al ser aplicaciones de código cerrado no favorecen la reproduci-

bilidad de la investigación y no permiten ser modificados. En este trabajo proponemos una herra-

mienta de procesamiento o pipeline de SfM para aplicaciones geomáticas basado software y libre-



 

 

rías de código abierto. El pipeline principalmente está basado en la librería OpenSfM [7] y el soft-

ware MeshLab [8] para el posprocesado de la nube de puntos. La librería OpenSfM a su vez está 

construida sobre OpenCV [9], OpenGV [10], Ceres Solver [11], entre otras aplicaciones de código 

abierto utilizadas en la comunidad de visión artificial. 

 

En la presentación se hará un live-demo del pipeline de procesamiento a partir un dataset de imáge-

nes y la obtención de la nube 3D de puntos.  

 

 

 
Figura 1. Nube de puntos resultante del proceso de reconstrucción con OpenSfM. 

 

 
Figura 2. Superficie obtenida a partir del procesamiento de la nube de puntos en MeshLab. 

 

 



 

 

Para las pruebas realizadas se escogió, como área de reconstrucción, un terreno desnivelado de 

aproximadamente 62.8 m2, el cual posee pequeñas variaciones en su relieve. Esta prueba fue reali-

zada con la cámara de un Smartphone sin calibrar. También se han usado objetivos con patrones 

conocidos, de tablero de ajedrez, con el fin de tener puntos de control para hacer un ajuste de la 

nube de puntos. Para visualizar el resultado obtenido hemos usado la herramienta MeshLab. En la 

figura 1 se observa la nube de puntos obtenida. Con la misma herramienta de MeshLab hemos pro-

cesado la nube de puntos para producir una superficie del área reconstruida, la cual se muestra en la 

figura 2. 
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Abstract. In recent years, the generation of accurate topographic re-
constructions has found applications ranging from geomorphic sciences
to remote sensing and urban planning, among others. The production of
high resolution, high-quality digital elevation models (DEMs) requires a
significant investment in personnel time, hardware, and software. Pho-
togrammetry offers clear advantages over other methods of collecting ge-
omatic information. Airborne cameras can cover large areas more quickly
than ground survey techniques, and the generated Photogrammetry-
based DEMs often have higher resolution than models produced with
other remote sensing methods such as LIDAR (Laser Imaging Detection
and Ranging) or RADAR (radar detection and ranging).

In this work, we introduce a Structure from Motion (SfM) pipeline using
Unmanned Aerial Vehicles (UAVs) for generating DEMs for perform-
ing topographic reconstructions and assessing the microtopography of a
terrain. SfM is a computer vision technique that consists in estimating
the 3D coordinates of many points in a scene using two or more 2D
images acquired from different positions. By identifying common points
in the images both the camera position (motion) and the 3D locations
of the points (structure) are obtained. The output from an SfM stage
is a sparse point cloud in a local XYZ coordinate system. We edit the
obtained point in MeshLab to remove unwanted points, such as those
from vehicles, roofs, and vegetation. We scale the XYZ point clouds us-
ing Ground Control Points (GCP) and GPS information. This process
enables georeferenced metric measurements. For the experimental verifi-
cation, we reconstructed a terrain suitable for subsequent analysis using
GIS software. Encouraging results show that our approach is highly cost-
effective, providing a means for generating high-quality, low-cost DEMs.

Keywords: Geomatics · Structure from Motion · Open source software.
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1 Introduction

The digital elevation model (DEM) is a three-dimensional visual representation
of a terrestrial zone topography and is a commonly used geomatics tool for dif-
ferent land analysis properties such as slopes, height, curvature, among others.
There are different technologies for the generation of DEMs, which include LI-
DAR (Laser Imaging Detection and Ranging), RADAR (Radio Detection and
Ranging) or the conventional theodolites [1]. However, these techniques often
do not offer enough spatial resolution to recover the terrain microtopography.
On the one hand, it is frequently difficult to accurately measure the intricate
drain networks with conventional techniques because they are within the mea-
surement resolution. On the other, they are also difficult to measure in the field
due to access limitations. As an alternative to these methods, Unmanned Aerial
Vehicles (UAVs) equipped with high-resolution cameras have recently attracted
the attention of researchers [2]. The UAVs acquire many images of an area of
interest and using stereo-photogrammetry techniques generate a terrain point
cloud. This point cloud represents an accurate terrestrial zone DEM [3]. How-
ever, UAV operation for precise digital terrain model estimation requires certain
flight parameters, captured images characteristics, among other aspects [4].

Stereo-photogrammetry techniques consist in estimating 3D coordinates of
several points in a scene using two or more 2D images taken from different
positions. Within these images common points are identified, that is, the same
physical object point as seen in different images. Then a line-of-sight or ray
is constructed from the camera location to the detected object point. Finally,
the intersection between these rays is calculated, being this process known as
triangulation, which yields the three-dimensional location of the physical point.
By doing the above for a significant number of points in the scene, it is possible
to obtain a point cloud in the three-dimensional space which is representative of
the object or the surface.

To obtain a point cloud or to recover structure, correct correspondences be-
tween different images should be obtained, but often incorrect matches appear.
The triangulation fails for incorrect matches. Therefore, it is often carried out
in a robust approach. Recently, photogrammetric methodologies have been pro-
posed to address the robust estimation problem of structure from multi-views,
such as Structure from Motion (SfM) [5] and Multi-View Stereo (MVS) [6]. On
the one hand, SfM is a methodology that, using a single camera that moves
in space, allows us to recover both the position and orientation of the camera
(motion) and the 3D location of the points seen in different views (structure).
On the other, MVS allows us to densify the point cloud obtained with SfM.

Nowadays there are several commercial software like Agisoft [7] or Pix4D [8]
that allow obtaining dense 3D points clouds. However, being closed code ap-
plications they do not favor research reproducibility, and the code cannot be
modified. In this paper, we propose a processing tool or reconstruction pipeline
for software-based geomatics applications and open source libraries. The pipeline
is mainly based on the OpenSfM [9] and OpenDroneMap [10] libraries.



An SfM Pipeline for Topographic Reconstructions using UAVs 3

Fig. 1: The testing site.

2 Method

In this work, we propose a processing pipeline for generating a Digital Elevation
Model as depicted in Fig. 2. Our implemented strategy consists of four stages
(one of them is optional) based mainly on the OpenSfM and OpenDroneMap li-
braries. To illustrate our approach for DEM generation, we have chosen a specific
land located in the south zone from the Campus Tecnológico of the Universidad
Tecnológica de Boĺıvar (Cartagena de Indias, Colombia) as shown in Fig. 1. We
have acquired 140 images with a DJI Phantom 3 Professional drone.

The camera calibration stage is an optional step in the proposed methodology.
For this reason, we show this block in a dotted line in Fig. 2. We carried out
the camera calibration with the OpenCV library [11] for estimating the intrinsic
camera parameters for the drone camera.

The first stage consists in setting the flight path for the drone to carry out the
image acquisition. We used the Altizure application [12] to set a flight strategy.
The second stage is about performing the 3D reconstruction process. This stage
is based mainly on the SfM photogrammetric technique implemented with the
OpenSfM library that produces a scene point cloud. If it is required, we can edit
the obtained point cloud in MeshLab [13] an open source system for processing
and editing 3D triangular meshes and point clouds.

The final stage is the point cloud post-processing obtained with OpenSfM
which is done with the OpenDroneMap library. In this part, we convert the
point cloud to LAS format; we generate a 3D surface with texture and with the
captured images we generate an orthophoto mosaic.
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Fig. 2: Reconstruction process for DEM generation: Camera calibration with
OpenCV (optional step). First stage consists of image acquisition with a drone
and Altizure app. The second stage is based on the OpenSfM library for the
3D reconstruction. The final stage is based on the OpenDroneMap library for
post-processing the point cloud.

2.1 OpenCV Stage: Camera Calibration

Camera calibration is a fundamental prerequisite for metric 3D sparse recon-
struction from images [3]. It is necessary to know the intrinsic and extrinsic
parameters of a camera to estimate the projection matrix P . With this matrix,
we can find the x position in the image plane of a three-dimensional point, as
given by equation (1).

x = PX = K[R | t]X =



ax s x0

0 ay y0
0 0 1
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K
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, (1)

where the extrinsic parameters matrix Mext describe camera orientation and
it consists of a rotation matrix R and a translation vector t, and the intrinsic
parameters matrix K contains the camera internal parameters like the focal
length in x and y direction (ax and ay), skew (s) and optic center (x0 and y0).

In addition, the camera lens radial distortion parameters k1 and k2 are im-
portant values for compensating geometric distorstions in the images caused by
the camera lens, which are not included in the matrix K. The mathematical
model for the lens radial distortion is given by [14]

[
xd

yd

]
= [1 + k1r

2 + k2r
4]

[
xc/zc
yc/zc

]
, r2 =

(
xc

zc

)2

+

(
yc
zc

)2

. (2)



An SfM Pipeline for Topographic Reconstructions using UAVs 5

Fig. 3: Screenshot of Altizure, the mobile application used to implement the flight
strategy for image acquisition.

where (xd, yd) are the distorted image coordinates and (xc, yc, zc) are the nor-
malized camera coordinates.

The camera position and orientation, or the camera extrinsic parameters, are
computed in the SfM pipeline. Therefore, only the intrinsic parameters have to be
known before the reconstruction process. Usually, calibration of aerial cameras
is performed in the [3]. For this work, the camera calibration was carried out
with OpenCV by acquiring images from a flat black and white chessboard. The
intrinsic parameters required by OpenSfM are the focal ratio and the radial
distortion parameters k1 and k2. The focal ratio is the ratio between the focal
length in millimeters and the camera sensor width also in millimeters.

This calibration process is optional because OpenSfM gives us the possibility
to use the values stored in the EXIF information for the images. These param-
eters can be optimized during the reconstruction process.

2.2 Altizure Stage: Image Acquisition

Three-dimensional reconstruction algorithms require images of the object or
scene of interest acquired from different positions. There has to be an over-
lap between the acquired images to be able to reconstruct an area. Any specific
region must be observable in at least three images to be reconstructed [4].

Usually, image-based surveying with an airborne camera requires a flight
mission which is often planned with dedicated software [3]. In this work, we
used Altizure [12], a free mobile application that allows us to design flight paths
specified in a satellite view based on Google Maps [15] as shown in Fig.3. Further,
with this application, we can adjust specific parameters such as flight height,
camera angle and forward and side overlap percent between images.
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Fig. 4: Pipeline reconstruction: each image goes through the stages of feature de-
tection, point matching, camera pose estimation (motion), sparse reconstruction
(structure) and finally, dense reconstruction using multi-view stereo (MVS).

2.3 OpenSfM Stage: Pipeline Reconstruction

The following stage is the 3D reconstruction process which we implemented with
the OpenSfM library. This library is based on the SfM and MVS techniques. In
Figure 4 we show a workflow diagram for the 3D reconstruction process. First, the
algorithm searches for features on the input images. A feature is an image pattern
that stands out from its surrounding area, and it is likely to be identifiable in
other images [16]. The following step is to find point correspondences between
the images. Finally, the SfM technique uses the matched points to compute both
the camera orientation and the 3D structure of the object.

These steps lead to a sparse point cloud, which only includes the best-
matched features from the input images. It is possible to obtain a denser point
cloud using MVS. This additional process increases the number of points result-
ing in a more realistic view of the scene [17]. The obtained reconstruction is then
georeferenced converting the XYZ coordinates of each point to GPS coordinates.
Finally, we used MeshLab for the removal of objects which are not of interest
and for the visualization of the obtained point cloud in PLY format.

Feature detection and matching. The search for characteristics or feature
detection consists in calculating distinctive points of interest in an image which
are readily identifiable in another image of the same scene. The feature detection
process should be repeatable so that the same features are found in different pho-
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(a) Feature detection using HAHOG algo-
rithm.

(b) Matching of detected features in two photographs of the same scene.

Fig. 5: Key points detected with HAHOG algorithm (a) and feature matching
resulting from FLANN algorithm (b).

tographs of the same object. Moreover, the detected features should be unique,
so that they can be told apart from each other [18].

The detector used with the OpenSfM library is the HAHOG (the combination
of Hessian Affine feature point detector and HOG descriptor), but apart from
this, we have the AKAZE, SURF, SIFT and ORB detectors available [19]. These
detectors calculate features descriptors that are invariant to scale or rotation.
This property enables matching features, regardless of orientation or scale. In
Figure 5a we show with red marks the detected features in for a given image.

Using these descriptors, we can find correspondences between the images,
that is, to identify the 3D points of the same physical object which appear in more
than one image. This process is implemented with the FLANN algorithm [20]
available in the OpenSfM library. We can see an example of this process in
Figure 5b.

Sparse (SfM) and dense (MVS) reconstruction. The SfM technique uses
the matched points uij for calculating both the camera pose, to compute the
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Fig. 6: Reconstruction outputs from OpenSfM library. (a) Sparse point cloud.
(b) Dense point cloud.

projection matrix Pi, and the 3D position Xj of specific points through tri-
angulation. The triangulation process give an initial estimation of Pi and Xj

which usually is refined using iterative non-linear optimization to minimize the
reprojection error given by

E(P,X) =
n∑

i=1

m∑

j=1

d(uij ,PiXj)
2 , (3)

where d(x, y) denotes the Euclidean distance, n is the number of total images
and m the number of 3D points. This minimization problem is known as bundle
adjustment [21] which yields a sparse point cloud.

This approach is implemented in OpenSfM with the incremental reconstruc-
tion pipeline that consists of performing an initial reconstruction with only two
views and then enlarging this initial point cloud by adding other views until
all have been included. This process yields a point cloud like the one shown in
Figure 6a.

With the sparse 3D reconstruction, we can generate dense point clouds with
the MVS technique. There are many approaches to MVS, but according to Fu-
rukawa and Ponce [22], these can be classified into four categories according to
the representation of the generated scene. These approaches are Voxels, polygo-
nal meshes, multiple depth maps, and patches. In OpenSfM, the MVS approach
is multiple depth maps, creating one for each input image. The obtained depth
maps are merged into a single 3D representation of the scene [23] obtaining a
dense reconstruction as shown in Fig.6(b).

Georeferencing of reconstruction. The obtained point cloud in the SfM and
MVS processes are in an XYZ topocentric coordinates system. This coordinate
system uses the observer’s location as the reference point. This reference point is
set as the average value of the GPS coordinates from all photographs, as long as
all the images have this information. With this reference point, we convert the
point cloud from topocentric XYZ coordinates to the GPS coordinates. From
this transformation, we obtain the georeferenced point cloud, where each point
has an associated GPS position. Using the Google Earth tool, we can locate the
point cloud in the real world, as shown in Fig.7.
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Fig. 7: Sparse point cloud georeferenced seen from Google Earth.

3 OpenDroneMap (ODM) stage: Post-processing

With the sparse and dense reconstruction generated with OpenSfM in PLY for-
mat, we use OpenDroneMap to post-process the point cloud. The post-processing
consists in generating a geo-referenced point cloud in LAS format, a geo-referenced
3D textured mesh (Figure 8a) and an orthophoto mosaic in GeoTiff format (Fig-
ure 8b).

The LAS format is a standard binary format for the storage of LIDAR data,
and it is the most common format for exchanging point cloud. At the end of the
OpenSfM process, the sparse and dense point cloud is generated in PLY format
with geo-referenced coordinates. OpenDroneMap converts these files in a geo-
referenced point cloud in LAS format, which can be used in other GIS software
for visualization or ground analysis.

The 3D textured mesh is a surface representation of the terrain that consists
of vertices, edges, faces and the texture from the input images that is projected
on it. ODM create a triangulated mesh using the Poisson algorithm. It consists
in using all the points of the dense point cloud and its respective normal vectors
from the PLY file to interpolate a surface model generating a welded manifold
mesh on the form of a PLY file. Finally, the texture from the input images is
projected on the mesh generating a 3D textured mesh in OBJ format.

An orthophoto is an orthorectified aerial image, i.e., there are no geometrical
distortions, and the scale is uniform throughout the image. The GeoTIFF for-
mat allows embedding the georeferencing information within an orthophoto in
TIFF format generated with all images used in the reconstruction process. The
resulting orthophoto allows us to measure distance accurately and can be used
as background image for maps in applications using GIS software.
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(a) georeferenced 3D textured mesh

(b) Orthophoto made with 140 images.

Fig. 8: Outputs files from OpenDroneMap.

4 Ground analysis

The study area is an area with little vegetation which has relatively flat regions
and others with a significant slope. The photographs acquired from this study
area were processed as explained in the previous sections. We obtained different
3D models.

With the LAS file and the orthophotography produced with OpenDroneMap,
we can carry out many different terrain analyses. In this work, we did basic
elevation analysis and generated land contour lines.

From the LAS file information, we generated a terrain digital elevation model
(DEM) shown in Fig.9. In this model, we can see the different height levels from
the lowest (blue) to the highest (red). We have in total nine elevation levels
each with a different color. In the figure, we can also see that the lower zone is
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Fig. 9: Digital elevation model.

a relatively flat because most of the area has only the color blue. In the part
where there is a steep slope, we see that there are different height levels shown
in different colors. This, in fact, shows that the area is not flat. In the upper
zone the orange and red regions, we see that there is a flat zone in orange which
is a narrow dirt road (which we can see in Fig.8b of the orthophoto or Fig.8a of
the textured mesh). In red, we detect trees that represent the highest elements
in the reconstructed area of interest.

Using the LAS file and the orthophotography obtained with ODM we gen-
erate terrain contour lines (Fig.10) placing the DEM on top of the orthophoto.
In this figure we can see that there are many contour lines close to each other
in the part of the terrain with the steepest slope with respect to other zones, it
is mainly because this area is not flat and the height change faster. Contrarily,
since the road is slightly flat, the contour lines on it are more separated from
each other.

5 Conclusions

In this work, we have shown a methodology for 3D terrain reconstruction based
entirely on open source software. The georeferenced point clouds, the digital
elevation models and the orthophotographs resulting from the proposed pro-
cessing pipeline can be used in different geomatics and terrain analysis software
to generate contour lines and, for instance, to perform surface runoff analysis.
Therefore, the combination of open source software with unmanned aerial vehi-
cles is a powerful and inexpensive tool for geomatic applications.

In the bundle adjustment process discussed in section 2.3 given by equa-
tion (3), using only matched points from images is not possible to reconstruct
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Fig. 10: Contour lines of land reconstructed.

the scene in a real scale. This restriction is why it is necessary to give additional
information that can be used as initialization for the optimization process to re-
cover the scale. This information can be an approximated position of the camera
or the world position of specific points known as Ground Control Points (GCP).
In our reconstruction process, we did not use GCPs, only the GPS position of
camera measured by the drone was used as initialization of camera pose. This
measurement is not highly accurate. As future work, we want to use GCPs in
addition to camera GPS position to compare both reconstructions and compare
for an elevation error.
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Abstract. Digital Elevation Models (DEMs) are used to derive information from the
morphology of a land. The topographic attributes obtained from the DEM data allow the
construction of watershed delineation useful for predicting the behavior of systems and for
studying hydrological processes. Imagery acquired from Unmanned Aerial Vehicles (UAVs)
and 3D photogrammetry techniques offer cost-effective advantages over other remote sensing
methods such as LIDAR or RADAR. In particular, a high spatial resolution for measuring the
terrain microtopography. In this work, we propose a Structure from Motion (SfM) pipeline
using UAVs for generating high-resolution, high-quality DEMs for developing a rainfall-runoff
model to study flood areas. SfM is a computer vision technique that simultaneously estimates
the 3D coordinates of a scene and the pose of a camera that moves around it. The result is a
3D point cloud which we process to obtain a georeference model from the GPS information of
the camera and ground control points. The pipeline is based on open source software OpenSfM
and OpenDroneMap. Encouraging experimental results on a test land show that the produced
DEMs meet the metrological requirements for developing a surface-runoff model.

1. Introduction
Advances in survey technology have improved acquisition of Digital Elevation Models (DEMs)
datasets, and in turn, these have improved its quality and its spatial resolution. Aerial
LiDAR (Laser Imaging Detection and Ranging) and Terrestrial Laser Scanning (TLS) has
increased the spatial coverage and density of traditional techniques such as Differential Global
Positioning Systems (dGPS) and Total Stations (TS) [1]. A disadvantage of LiDAR and TLS
is the investment in personal time and their high-cost [2], and while their spatial resolution is
better than traditional techniques, it is still not enough to measure the characteristics of the
microtopography of a terrain [3, 4].

Structure from Motion (SfM) is a low-cost photogrammetry technique which produces high-
resolution DEM datasets without the need for expensive equipment, only by using a camera [5].
The easy accessibility to Unmanned Aerial Vehicles (UAVs) for image acquisition and the
development of SfM has democratized the 3D topography survey [1]. SfM estimates the camera
pose, given by a translation vector and a rotation matrix, and the 3D coordinates of some points
in the scene using a dataset of overlapping images. From this process we obtain a sparse point
cloud, that later using Multi-View Stereo (MVS) [6] we can increase the number of points. In
other words, MVS allows us to densify the point cloud obtained with SfM.
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