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Abstract  Three extremophile bacterial strains 
(BBCOL-009, BBCOL-014 and BBCOL-015), capa-
ble of degrading high concentrations of perchlorate 
at a range of pH (6.5 to 10.0), were isolated from 
Colombian Caribbean Coast sediments. Morpho-
logical features included Gram negative strain bacilli 
with sizes averaged of 1.75 × 0.95, 2.32 × 0.65 and 
3.08 × 0.70  μm, respectively. The reported strains 
tolerate a wide range of pH (6.5 to 10.0); concentra-
tions of NaCl (3.5 to 7.5% w/v) and KClO4

− (250 to 
10000 mg/L), reduction of KClO4

− from 10 to 25%. 
LB broth with NaCl (3.5–30% w/v) and KClO4ˉ 
(250-10000  mg/L) were used in independent tri-
als to evaluate susceptibility to salinity and perchlo-
rate, respectively. Isolates increased their biomass at 
7.5 % (w/v) NaCl with optimal development at 3.5 % 
NaCl. Subsequently, ClO4ˉ reduction was assessed 

using LB medium with 3.5% NaCl and 10000 mg/L 
ClO4ˉ. BBCOL-009, BBCOL-014 and BBCOL-015 
achieved 10%, 17%, and 25% reduction of ClO4ˉ, 
respectively. The 16 S rRNA gene sequence grouped 
them as Bacillus flexus T6186-2, Bacillus maris-
flavi TF-11 (T), and Bacillus vietnamensis 15 − 1 
(T) respectively, with < 97.5% homology. In addi-
tion, antimicrobial resistance to ertapenem, van-
comycine, amoxicillin clavulanate, penicillin, and 
erythromycin was present in all the isolates, indi-
cating their high adaptability to stressful environ-
ments. The isolated strains from marine sediments in 
Cartagena Bay, Colombia are suitable candidates to 
reduce perchlorate contamination in different envi-
ronments. Although the primary focus of the study 
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of perchlorate-reducing and resistant bacteria is in 
the ecological and agricultural realms, from an astro-
biological perspective, perchlorate-resistant bacteria 
serve as models for astrobiological investigations.

Keywords  Bioremediation · Halophytes · Marine 
sediment · RNA 16S

Introduction

The advancement of technology and industry has pro-
duced complex and toxic waste, leading to increased 
disposal into water, soil, and air, posing health and 
environmental risks (Gavrilescu et  al. 2015). Con-
ventional methods to tackle contamination are inef-
fective, expensive, and may exacerbate the issue. 
Hence, there’s a rising interest in biological reme-
diation methods for their cost-effectiveness, high effi-
cacy, and environmentally friendly (Liu et  al. 2015; 
Azubuike et al. 2016).

Bioremediation utilizes microorganisms such as 
bacteria, archaea, fungi, and plants to absorb, trans-
form, and degrade pollutants in soils, sediments, 
water, and air (Fenical 1993; Zolkefli et  al. 2020; 
Belal et  al. 2020). By immobilizing or altering the 
chemical structure of pollutants, bioremediation can 
lead to their partial degradation, mineralization, or 
transformation. Given the widespread contamina-
tion from human activities, pollutants are pervasive 
in various habitats, including extreme environments 
(Azubuike et al. 2016).

Microorganisms known as extremophiles have 
evolved specialized traits enabling them to thrive in 
harsh conditions, making them promising for bio-
technological applications (Le Borgne et  al. 2008). 
Marine microbial consortiums excel in diverse envi-
ronmental variables like salinity, pH, and tempera-
ture. Bacteria from marine environments express 
genes for survival in saline conditions and have 
shown resilience in saturated matrices (Dalmaso 
et  al. 2015). They also produce unique metabolites, 
enhancing their potential for bioremediation efforts 
amidst toxic pollutants (Bertel-Sevilla et  al. 2020; 
Lee et al. 2021).

Some autochthonous extremophile strains gener-
ate biohydrogen as a substrate to treat organic waste 
to survive and use the macromolecules present in 
polluted marine environments as a carbon source 

(Oguntoyinbo 2007; Lee et  al. 2009). In fact, halo-
phytes strains are examples of extremophile micro-
organisms found in marine environments, with a 
remarkable ability to withstand harsh conditions and 
decontaminate the environment. Marine sediments 
are characterized by being the habitat of many native 
species and having the bioactivity of degrading xeno-
biotic substrates (Acevedo-Barrios et al. 2019, 2022), 
due to their resistance and efficient increase of bio-
mass under extreme conditions, e.g., high salt con-
centrations (Cang et al. 2004; Van Ginkel et al. 2008; 
Srinivasan and Viraraghavan 2009). Hence, halophyte 
bacterial bioremediation will contribute to new alter-
natives for cleaning stressed environments.

The recent identification of perchlorate’s wide-
spread occurrence in the environment, including its 
detection on Mars, the Earth’s moon, and in mete-
orites, as well as its involvement in regulating sulfi-
dogenesis in oil reservoirs, has reignited interest in 
this unique ion and its microbiological implications 
(Carlström et al. 2016; Acevedo-Barrios and Olivero-
Verbel 2021). Perchlorate, even at minute concentra-
tions, poses significant health risks due to its toxic 
effects on the human thyroid gland (Shih et al. 2024). 
While current removal techniques like ion exchange 
and biological reduction show promise, their efficacy 
may be limited when applied individually (Shang 
et  al. 2018; Xie et  al. 2018; Fang and Naidu 2023). 
Integration of physico-chemical and biological pro-
cesses appears essential for achieving comprehensive 
perchlorate decontamination (Shang et al. 2018; Xie 
et al. 2018). Extremophile-based bioremediation, par-
ticularly in marine environments, holds promise for 
perchlorate removal, as evidenced by studies isolat-
ing microorganisms capable of reducing perchlorate 
in diverse marine sediments (Acevedo-Barrios et  al. 
2023; Dong et al. 2022). For instance, in a study con-
ducted by Acevedo-Barrios et al. (2019), marine sedi-
ment samples from different locations in the Colom-
bian Caribbean were found to harbor various species 
of bacteria, such as members of the Bacillus genus, 
with a high potential for perchlorate reduction.

Bacillus spp. are Gram-positive bacteria widely 
recognized for their adaptability and resilience. 
They encompass over 222 species and exhibit 
characteristic features such as the production of 
spores, which enable them to endure adverse con-
ditions (Garrity 2001; Miranda et al. 2008; Layton 
et  al. 2011). These bacteria are commonly found 
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in diverse environments, including deserts, marine 
ecosystems, and other harsh habitats, owing to their 
high biochemical activity and metabolic efficiency 
(Miranda et al. 2008; Elisashvili et al. 2019). Bacil-
lus spp. have been isolated from various sources 
such as rice paddy soils (Beneduzi et al. 2008; Sri-
ariyanun et al. 2016), pesticide-contaminated soils 
(Marín and Jaramillo 2015), perchlorate-contam-
inated soils (Acevedo-Barrios et  al. 2016, 2019, 
2022; Acevedo-Barrios and Olivero-Verbel 2021), 
hydrocarbons and their derivatives, liquid effluents 
from industries (Oyetibo et al. 2017; Masika et al. 
2020), hypersaline mats, alkaline environments, 
i.e. food, sea water, or waste-water (Guadie et  al. 
2017; Durval et  al. 2019; Mohapatra et  al. 2019), 
and the intestinal tracks of insects and mammals 
(Hong et  al. 2009). Furthermore, some Bacillus 
species have been shown to be capable of degrad-
ing some pollutants, including polycyclic aro-
matic hydrocarbons, long-chain alkanes (C10 to 
C32), and perchlorate (Feitkenhauer et  al. 2003; 
Acevedo-Barrios et al. 2019). This versatility sug-
gests that Bacillus spp. could serve as a basis for 
biotechnological methods aimed at mitigating envi-
ronmental pollution.

The Bay of Cartagena, Colombia, is a tropical 
estuary in the Caribbean with an important bio-
diversity, but also historically affected by various 
sources of contamination (Romero-Murillo et  al. 
2023). This makes it an interesting area for the 
prospection of microorganisms for biotechnologi-
cal applications. Our hypothesis lies in the reduc-
tion of perchlorate capacity in varied environmen-
tal conditions, of Bacillus genus strains isolated 
from the Colombian Caribbean.

Therefore, the objectives were to isolate and 
characterize halotolerant bacteria and evaluate 
their susceptibility and ability to reduce perchlo-
rate in several pH and salinity conditions. This 
is the first study carried out in Bahía Cartagena, 
Colombian Caribbean; and it is part of our efforts 
to contribute to the knowledge of Colombian biodi-
versity with biotechnological potential. These bac-
teria of the genus Bacillus present suitable proper-
ties for possible biotechnological applications and 
constitute the basis for expanding our knowledge of 
salt-tolerant bacteria that can reduce perchlorate.

Materials and methods

Study area and sample collection

Bacterial strains of Bacillus spp. BBCOL-009, 
BBCOL-014 and BBCOL-015 were isolated 
from sediments of Cartagena Bay (10°25 × 30″N, 
75°32 × 25″W), Northern Colombia (Fig. 1). Surface 
marine sediments were collected 100  m away from 
the seashore using a Van Veen grab sampler. Once 
gathered, the material was placed in sterile bags and 
transported on ice to the microbiology laboratory of 
the University of Cartagena, for processing.

Strains isolation and culture conditions

The isolation, purification, and conservation of the 
bacteria were carried out following the recommen-
dations of Shimkets and Raffie (1990). Flucona-
zole (0.25  mg/ml) was used to treat pellet samples 
for three hours prior to inoculation into isolation 
media. Subsequently, the samples were incubated 
on NaST21CX agar. Incubating for 15–30 days at 
30  °C. Media preparation was performed following 
the recommendations of Gaspari et  al. (2005). Sub-
sequently, individual colonies were taken and spread 
on Luria–Bertani (LB) agar medium for purification 
and preservation. Isolated colonies were plated on LB 
agar until pure cultures were obtained. Three bacte-
rial strains were selected according to variations in 
the colonies. Later, the colonies were preserved and 
stored in glycerol (10% w/v) stock at − 80  °C until 
analysis.

Molecular identification

DNA extraction and PCR amplification of 16 S rDNA

For the DNA extraction, bacterial isolates were 
grown on LB medium at 30  °C overnight. The cul-
tures underwent centrifugation at 10000 × g for 
2  min, and the resulting supernatant was discarded. 
Genomic DNA extraction was carried out utilizing 
the QIAamp® DNA Mini Kit (Qiagen, CA, USA) 
according to the manufacturer’s instructions. To 
amplify the 16  S rRNA gene, the primer pairs PF 
(5′-AGA​GTT​TGA​TCC​TGG​CTC​AG-3′) and 1492R 
(5′-ACC​TTG​TTA​CGA​CTT-3′) were used (Wu et  al. 
2005; Iizuka et  al. 2006). The polymerase chain 
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reaction (PCR) was conducted using a Veriti 96-Well 
Thermal Cycler (Applied Biosystems, Foster City, 
Ca) thermocycler. The PCR mixtures consisted of 1X 
AmpliTaq Gold® 360 Master Mix (Applied Biosys-
tems), 0.4 µm of each primer and ~ 100 ng of tem-
plate in a total reaction volume of 25 µL. The PCR 
reaction was performed with a hot start of 95 °C for 
10  min, followed by 25 cycles of denaturation at 
94 °C for 1 min, primer annealing at 43 °C for 1 min 
and primer extension at 72 °C for 1.5 min, followed 
by a final extension at 72 °C for 5.5 min. Amplified 
PCR products of the 16 S ribosomal gene were sep-
arated on 1.2% (w/v) agarose gels stained with eth-
idium bromide (10 mg/ml) and analyzed using a gel 
documentation system (IngGenius 3 System - Syn-
gene) (Acevedo-Barrios et  al. 2019; Bertel-Sevilla 
et al. 2020).

16 S rDNA sequencing and phylogenetic analysis

PCR products were purified with the QIAquick 
PCR purification kit (Qiagen, CA, USA), follow-
ing the standard protocol provided by the manufac-
turer. Subsequently, automated DNA sequencing 
was performed by the National Center for Genomic 
Sequencing-CNSG (Medellin-Colombia) using PF 
and 1492R primers. The sequence reads obtained 
were edited and assembled using the CAP3 software 
(Huang and Madan 1999). The sequence was sub-
mitted to GenBank to search for similar sequences 
with the EzTaxon-e server (http://​www.​ezbio​cloud.​
net/​eztax​on; Kim et al. (2012). Sequence alignments 
were conducted using the CLUSTAL_W algorithm of 
MEGA 6 (Tamura et al. 2013), and phylogenetic anal-
ysis of all the related 16 S rRNA gene sequences was 

Fig. 1   Map of Colombia’s Cartagena Bay indicates the sampling site’s location

http://www.ezbiocloud.net/eztaxon
http://www.ezbiocloud.net/eztaxon
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performed using MEGA 6. Distances were calculated 
by means of Kimura correction in a pair-wise deletion 
manner (Kimura 1980). Phylogenetic analyses were 
inferred using the Neighbour-joining (NJ) (Saitou and 
Nei 1987), maximum-likelihood (ML) (Felsenstein 
1981), minimum-evolution (ME) and maximum-
parsimony (MP) (Fitch 1971) methods in MEGA 
version 6.0 (Tamura et  al. 2013). The tree topol-
ogy was assessed by bootstrap analyses (Felsenstein 
1985) based on 1000 resamplings. The sequence of 
Lysinibacillus tabacifolii K3514T with the GenBank 
accession number JQ754706 was selected as the out-
group to root the phylogenetic tree. The GenBank/
EMBL/DDBJ accession numbers for the 16 S rRNA 
gene sequences of strains BBCOL-009, BBCOL-014 
and BBCOL-015 are KU878946, KU878947 and 
KU878948, respectively.

Morphology

In order to isolate and describe the morphology of 
strains, incubation in a VY/2 medium was made, with 
a pH range of 7 ± 0.2 (agar 1.5%, yeast extract 0.1%, 
Casitone 0.3%, CaCl2·2H2O 0.1%,). Growth and 
morphology were observed with an optical micro-
scope (Olympus BX41). Strains were scraped onto 
glass slides and stained for identification. The ana-
lyzed characteristics of the isolates included colony 
morphology, staining, spores if any and cell shape. 
Gram staining was used for microscopic descrip-
tion, according to Koneman et  al. (2006) and Breed 
et al.(1957). To identify the isolated strains, scanning 
electron microscopy (SEM) was used (Alonso et  al. 
2009). Growth in LB at several pH (4.0 to 12.0 at 0.5 
pH unit intervals) was determined in LB using buffer 
systems (Zhang et al. 2009).

Biochemical characterization

Biochemical features were identified using the BBL 
Crystal™ Kit according to manufacturer instructions 
(Ashour et al. 2011). Catalase and oxidase activities 
were detected by bubble production, using hydro-
gen peroxide solution at 3% (v/v) and the oxida-
tion of Kovac reagent, respectively. Red metile and 
Voges–Proskauer tests were performed by the con-
ventional battery test according to Winn et al. (2008) 
and Boone et al. (2005).

Evaluation of antimicrobial resistance

The Kirby- Bauer disc diffusion method was devel-
oped to test the antibiotic sensitivity of the studied 
strains (Biemer 1973; Murray et  al. 1982), using as 
inhibition substances: ertapenem (E), vancomycine 
(VA), amoxicillin clavulanate (AMC), penicillin (P), 
erythromycin (EO) (BBLTM Sensi-DiscTMSuscepti-
bility Test Discs – BD). Briefly, swabs of sterile cot-
ton-tipped were used to transfer the strain to Mueller-
Hinton agar plates to produce pure bacterial colonies. 
Antibiotic discs were put on the plate after the inocu-
lum was dried and subsequently incubated 24–48 h, 
at 30°. The inhibition of bacterial growth was meas-
ured to the nearest millimeter, and their diameters as 
a measure of the susceptibility of the isolated strain, 
according to Reller et al. (2009).

Sodium chloride susceptibility assay

To test hypersaline bacterial growth, the strains were 
inoculated into LB broth in the presence of NaCl 
(3.5%, 5.0%, 7.5%, 15% and 30% w/v) by triplicates. 
The experiments used cell suspension with optical 
density (OD) = 0.6. The turbidity was recorded after 
24  h incubation at 37  °C  (Acevedo-Barrios et  al. 
2016, 2019, 2022, 2023).

Perchlorate susceptibility assay

In order to identify perchlorate susceptibility, each 
isolated strain was inoculated in 10  µL of LB broth 
with concentrations of 250, 500, 750, 1000, 2500, 
5000 and 10000  mg/L of perchlorate by triplicates. 
After 24  h and 37  °C incubation, ClO4ˉ  concentra-
tions, cell viability and purity of strains were con-
firmed (Acevedo-Barrios et  al.  2016, 2019, 2022, 
2023).

Evaluation of perchlorate reduction by isolates

The experiments used a concentration of 10000 mg/L 
ClO4ˉ in LB medium with 3.5% NaCl, following the 
inoculation and incubation procedures of susceptibil-
ity tests. The final concentration of ClO4ˉ was meas-
ured with a selective perchlorate electrode (Thermo 
Fisher)  (Acevedo-Barrios et  al. 2016, 2019, 2022, 
2023).
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Results and discussion

Molecular Identification

Regarding the molecular identification of BBCOL-
009, BBCOL-014 and BBCOL-015, there were 
sequenced of 1352, 1360 and 1361 nt of 16 S rDNA, 
respectively, representing an average of 90% of the 
Escherichia coli 16  S rRNA sequence. The phy-
logenetic analysis of the 16  S rRNA gene sequence 
revealed that the isolated bacteria belonged to the 
genus Bacillus spp. within the class Bacilli. The con-
sensus tree illustrating this placement is depicted 
in Fig.  2. Additionally, the sequence similarities 
observed with closely related organisms align with 
the results obtained from the EzTaxon-e server anal-
ysis. Almost complete 16  S rRNA gene sequences 

of three isolated strains were deposited in GenBank 
(accession numbers: KU878946- KU878948).

EzTaxon-e server search analysis revealed that 
the strain BBCOL-009 is closely related to B. flexus 
T6186-2 (99.9%, 16 S rRNA gene sequence similar-
ity), B. paraflexus RC2(T) (99.2%), B. megaterium 
NBRC 15308 = ATCC 14581(T) (99.1%) and other 
Bacilli (< 96.6%) respectively. The sequence simi-
larities between strain BBCOL-009 and B. flexus, as 
determined by various clustering algorithms (99% 
in NJ tree, 99% in ME tree, and 99% in ML tree), 
in addition to the results from the EzTaxon-e server 
analysis, consistently indicated that B. flexus is the 
closest relative to strain BBCOL-009.

Strain BBCOL-014 shared highest sequence simi-
larity with B. marisflavi TF-11(T), B. oryzaecorticis 
R1(T) and B. vietnamensis 15 − 1(T) with 100, 98.7 

Fig. 2   Neighbour-joining 
tree showing the phyloge-
netic positions of strains 
BBCOL-009, BBCOL-014 
and BBCOL-015 with other 
closely related members 
based on 16 S rRNA gene 
sequences available from 
the EMBL database (acces-
sion numbers are given in 
parentheses). The topol-
ogy of the entire tree was 
conserved in all trees using 
different algorithms. The 
bootstrap values, expressed 
as percentages at the 
branching points, indicate 
the confidence level of the 
tree branches and were 
calculated based on 1000 
replications. Bar 0.01 
nucleotide substitutions per 
nucleotide position
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and 98.4% respectively, and nucleotide differences of 
0, 14 and 21 nucleotides respectively. In the phyloge-
netic tree based on the neighbor-joining algorithm, 
strain BBCOL-014 joined the cluster comprising B. 
marisflavi with a bootstrap confidence value of 99% 
(Fig. 2), with which it shares the highest 16 S rRNA 
gene sequence similarity. The affiliation of strain 
BBCOL-014 and its closest Neighbour was also sup-
ported by the maximum-parsimony and maximum-
likelihood algorithms with above 99% bootstrap 
values. Comparative 16  S rRNA gene sequencing 
revealed that strain BBCOL-015 was phylogenetically 
related to B. vietnamensis 15 − 1 (T) (98.4% sequence 
similarity), B. oryzaecorticis R1 (T) (98%), Bacillus 
aquimaris TF-12 (T) (98%), and B. marisflavi TF-11 
(T) (97.5%). Strain BBCOL-015 demonstrated rela-
tively low levels of 16 S rRNA gene sequence simi-
larity compared to other species within the genus 
Bacillus. It formed a clade with B. vietnamensis, sup-
ported by a bootstrap value of 90% (Fig. 2).

The results revealed that Bacillus spp. was the 
predominant group among the halotolerant bacte-
rial communities in the sediment samples obtained 
from Cartagena Bay. This finding aligns with previ-
ous studies that have identified moderately halophilic 
bacteria belonging to the genus Bacillus in marine 
environments and related habitats. Examples include 
B. marisflavi and B. aquimaris isolated from seawa-
ter (Yoon et  al. 2003), Bacillus seohaeanensis from 
a solar saltern (Lee et al. 2006), and B. vietnamensis 
from Vietnamese fish sauce (Noguchi et al. 2004).

Microscopic and biochemical characterization

The morphologic characteristics of the colonies were 
similar (Fig. 3), presenting a bacterial size average for 
1.75 × 0.95  μm, 2.32 × 0.65  μm and 3.08 × 0.70  μm 
of BBCOL-009, BBCOL-014 and BBCOL-015 

respectively. These dimensions are similar to the 
bacterial Bacillus spp. strains described by Priest 
et  al. (1988), Noguchi et  al. (2004), and Istock and 
Graumann (2008). In contrast, Yoon et  al. (2003) 
described a 1500 μm Bacillus spp. length. This dis-
parity could be explained by differences in measure-
ment techniques, with scanning electron microscopy 
(SEM) being one of the most reliable (Reimer 2000).

Strains grew optimally at 37 °C ± 2, pH 7.5 ± 1 and 
in the absence of NaCl concentrations. All strains had 
a positive catalase and a negative oxidase activity, 
except for BBCOL-015, which had a positive oxidase. 
The three strains metabolized arabinose, sucrose, 
melibiose, rhamnose, and galactose, while the utiliza-
tion of mannose, adonitol and inositol was negative. 
The metabolism of mannitol was positive, except for 
BBCOL-014. All of the strains had absence of reac-
tions with inositol, sorbitol, indole, ONPG, ornithine, 
H2S production, Voges Proskauer’s, and methyl red. 
Each strain reduced nitrates. The biochemical char-
acteristics of the strains were 97% compatible with 
Bacillus spp., sustained by the molecular results. The 
biochemical responses of the three strains are shown 
in Table 1.

Antimicrobial resistance test

The responses of the three strains to the antimicrobial 
test substances are shown in Table 2. All the evalu-
ated strains presented resistance to Erythromycin. 
This finding suggests the presence of the erm gene 
(erythromycin ribosome methylation), which grants 
the strain the ability to produce methylase, which 
modifies their 23  S sRNA, as well as mef (provides 
resistance to 14 and 15 carbon macrolides by expul-
sion pump) (Davies and Davies 2010). However, 
this resistance has been reported mainly in gram-
positive cocci (Yang et  al. 2024; Weisblum 1995), 

Fig. 3   Bacterial isolated 
from marine sediments. 
Morphology by SEM. 
a BBCOL-009, b BBCOL-
014, c and BBCOL-015
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Table 1   Comparison of morphological and biochemical characteristics of isolated strains BBCOL-009–BBCOL-014, and BBCOL-
015 with B. flexus DSM1320, B. marisflavi TF-11, and B. vietnamensis sp. nov

Characteristic BBCOL-009 BBCOL-014 BBCOL-015 DSM1320* TF-11ǂ B. vietna-
mensis sp. 
nov °

Color of colony Yellow Yellow yellow NR Pale Yellow NR
Morphology Rod shaped Rod shaped Rod shaped Rod Shaped Slightly irregular Rod Shaped
Length (µm) 1.75 μm 2.32 μm 3.08 μm NR 1000–2000 μm 2.0–3.0 μm
Thickness (µm) 0.95 μm 0.65 μm 0.70 μm NR NR 0.5–1.0 μm
Motility − − − − + +
Gram straining + + + + +/V +
Endospore + + + + + +
Spore position Central Central Subterminal Central Central/Subtermial Central
Oxidase − − + − − +
Catalase + + + + + +
Arabinose + + + NR + −
Mannose − − − + + −
Sucrose + + + + + NR
Melibiose + + + + + NR
Rhamnose + + + + + NR
Mannitol + − + + + +
Adonitol − − − NR − NR
Galactose + + W NR W −
Inositol − − − NR NR NR
p-n-p-phosphate − − + NR NR −
p-n-p a-ß-glucoside V − − NR + −
p-n-p-ß-galactoside + + + NR + −
Prolinenitroanilide − − − NR + NR
p-n-p bis-phosphate − − − NR NR NR
p-n-p-xyiloside + + + NR + −
p-n-p-a-arabinoside + + + NR + −
p-n-p-phosphorylcholine − − − NR NR NR
p-n-p-ß-glucuronide − − − NR NR NR
p-n-p-N-acetylglucosamide − − − NR NR NR
γ-L-glutamyl p-nitroanilide − − − NR NR NR
Aesculin + + + NR + +
p-nitro-DL-phenylalanine − − − − NR NR
Urea − − − − NR −
Glycine − − − NR NR NR
Citrate V − W + NR NR
Malonicacid + + + NR NR NR
Triphenyltetrazoliumchloride + + + NR NR NR
Lactose + + + + + NR
Bacteriolytic Capacity + + + NR + +
Cellulolytic Capacity − − − − NR NR
Nitrate Reduction + + + NR NR +
Indole − − + − NR +
ONPG − − − NR NR NR
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nonetheless, genes are acquired through the transfer-
ence of transposons, probably by genetically modi-
fied microorganisms in the environment, previously 
exposed to antibiotics.

In addition, the strains revealed resistance to 
amoxicillin clavunate, vancomycine, penicillin, and 
ertapenem (Table 1). This behavior has been reported 
by Zhang et al. (2014), indicating the high capacity to 
activate metabolic pathways that enable the bacteria 
to survive in hostile conditions.

The fact that our strains were capable of resisting 
the aforementioned molecules indicates the prop-
erty of this microorganisms to degrade pharmaceu-
ticals and personal care products (PPCPs), consid-
ered as concerning emerging pollutants, negatively 
affecting aquatic ecosystems since there are no clear 
analyses that regulate or quantify the concentra-
tions allowed in these environments, as well as their 
impact on the microbiota, flora, and fauna, is not 
clearly established (Liu and Wong 2013), therefore, 
they can be considered as potential bio-inputs in the 
area of biotechnology and bacterial bioremediation of 

emerging pollutants (e.g. other drugs like analgesics, 
β-blockers, preservatives, UV Filters, among others), 
due to structural homology. Although further stud-
ies must be done to prove the potential degradation 
capacity of the studied strains, the results shown in 
this study show the first step to consider choosing the 
bacterial strains, as an input for biotechnology.

 Evaluation of tolerance to perchlorate, NaCl, and pH 
variations

This study showed the capacity of the isolated strains 
BBCOL-009, BBCOL-014 and BBCOL-015 to grow 
at concentrations of 7.5% w/v and above of NaCl 
(Table 3), confirming them as moderate halotolerant 
species (Albuquerque et al. 2008; Zhang et al. 2009; 
Lei et  al. 2014; Bahamdain et  al. 2015). In addition 
to NaCl, these strains were capable to grow and tol-
erate KClO4

− from 250 to 10000  mg/L. The NaCl 
and KClO4

− tolerance and degrading capacity of the 
strains were demonstrated to be related to biofilm 
formation, which was present in the studied cultures. 

Table 1   (continued)

Characteristic BBCOL-009 BBCOL-014 BBCOL-015 DSM1320* TF-11ǂ B. vietna-
mensis sp. 
nov °

Ornitine Utilization − − − NR NR NR
H2S Production − − − NR NR NR
Voges Proskauer’s − − − − NR NR
Methyl red − − − − NR NR
Sorbitol − − − NR NR NR
Hemolysis α α α NR NR NR

+, Positive reaction; − negative reaction; W, weakly positive reaction; V, variable reaction; NR, not reported; H, Halfway. * B. flexus 
DSM1320 (Priest et al. 1988) ǂ B. marisflavi TF-11 (Yoon et al. 2003). °B. vietnamensis sp. nov (Noguchi et al. 2004)

Table 2   Antibiotic sensitivity of isolated strains BBCOL-009−BBCOL-014, and BBCOL-015

R, resistant; S, Sensible. * B. flexus DSM1320 (Priest et al. 1988). ǂ B. marisflavi TF-11 (Yoon et al. 2003). °B. vietnamensis sp. nov 
(Noguchi et al. 2004)

Inhibition substances BBCOL-009 BBCOL-014 BBCOL-015 DSM1320* TF-11ǂ B. vietna-
mensis sp. 
nov °

Amoxicillin clavulanate (R) 1.4 cm(S) 1.1 cm (S) NR NR NR
Vancomycine (R) 1.1 cm(S) 1.3 cm (S) NR NR NR
Penicillin (R) 1.0 cm(S) 1.0 cm (S) NR NR NR
Ertapenem (R) (R) (R) NR NR NR
Erythromycin (R) 1.9 cm(S) 1.5 cm (S) NR NR NR
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This biofilm is a physical barrier composed of extra-
cellular polymeric substances and biomass, indicat-
ing the strains’ ability to isolate themselves from the 
media after being stressed by high salt concentrations 
via a concentration gradient (Souid et al. 2021).

Regarding pH as a condition for growth and devel-
opment of the studied strains, the isolated strains 
showed a high capacity to resist alkaline concentra-
tions (8 to 12 ± 0.5). This behavior suggests that 
Bacillus spp. are facultative alkalophilic microorgan-
isms. Several studies conducted by Sanchez-Gonzalez 
et al. (2011), agree that Bacillus spp. are capable of 
growing and developing under alkaline conditions 
(Sanchez-Gonzalez et  al. 2011). Due to their alka-
line-resistance attribute, it is important to detect and 
conserve these alkalophilic microorganisms (Man-
dal et  al. 2013; Roy and Mukherjee 2013) for their 
potential production of alkaline active enzymes for 
the treatment of alkaline sewage derivatives from the 
laundry detergent industry (Roy and Mukherjee 2013; 
Coelho et  al. 2016; Lucena-Padrós and Ruiz-Barba 
2016).

Evaluation of perchlorate reduction by isolates

In this study, the bacterial strains BBCOL-009, 
BBCOL-014 and BBCOL-015 reduced perchlo-
rate concentrations by 10, 17 and 25%, respectively 
(Fig. 4). Table 4 illustrates the variety of perchlorate-
reducing species.

The bacterial strains BBCOL-009, BBCOL-014, 
and BBCOL-015 reduced perchlorate close the val-
ues of perchlorate reduction reported for Bacillus iso-
lated from marine sediments of the Colombian Car-
ibbean and Antarctica (Acevedo-Barrios et  al. 2019, 
2022) (Table 4). The Betaproteobacteria class is the 
most commonly detected perchlorate-reducing bac-
teria. nonetheless, BBCOL-009, BBCOL-014 and 
BBCOL-015, of this study, offer a promising resource 
for the bioremediation of perchlorate-polluted envi-
ronments and matrix.

A variety of perchlorate-reducing bacterial species 
can reduce this contaminant; however, the percentage 
of reduction varies according to genus and the period 
of exposure to the pollutant. The rates of perchlorate 
reduction determined in this study were comparable 
to those reported by Acevedo-Barrios et  al. (2019), 
Acevedo-Barrios et al. (2022), Acevedo-Barrios et al. 
(2023).

Most perchlorate-reducing bacteria are anaerobic 
and facultative, and molecular oxygen is produced as 
an intermediate for microbial perchlorate reduction in 
a process that exudes nitrate (Acevedo-Barrios et al. 
2022) and use this contaminant as an electron accep-
tor in their metabolic reactions. Microbial reduc-
tion of ClO4

− occurs via the biochemical reaction is 
ClO4

− → ClO3
− → ClO2

− → Cl− +O2). Enzymes, 
such as perchlorate reductase and superoxide chlorite, 
carry out the reduction or elimination of perchlorate 
(Acevedo-Barrios et  al. 2019, 2022; Acevedo-Bar-
rios and Olivero-Verbel 2021; Acevedo-Barrios et al. 

Table 3   Growth and 
development of BBCOL-
009, BBCOL-014 and 
BBCOL-015 in presence 
of NaCl and KClO4

− and 
survival within pH changes

* Growth at optimal 
temperature (37 °C ± 0.5). 
*Growth at optimal pH 
(7.0 ± 0.5). ! Biofilm 
formation. S, Sensible 
R, Resistant. + Bacterial 
growth

Conditions Concentrations BBCOL-009 BBCOL-014 BBCOL-015

NaCl (% w/v) 3.5% *✝ R R R
5.0% *✝ R R R
7.5% *✝ R R R
15%*✝ S S S
30% *✝ S S S

KClO4
- (mg/L) 250 *✝ R R R

500 *✝ R R R
750 *✝ R R R
1000 *✝ R R R
2500 *! R R R!
5000 *! R R R!
10000 *! R R R!

pH 7.0 ± 0.5*! + + +
6.5 to 10.0* + + +
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Fig. 4   Percentage of 
KClO4

− reduction of the 
bacteria BBCOL-009, 
BBCOL-014 and BBCOL-
015 from saline environ-
ments in the sediments in 
Cartagena Bay. Effect of the 
24 h contact time, optical 
density at OD 600, and 
optimal pH (7.0)

Table 4   Genus and species of perchlorate-reducing bacteria

FC Facultative conditions, NR Not reported

Bacterial genus and species Percentage of 
reduction (%)

Environmental 
conditions

isolation site Reference

Nesiotobacter sp 25 FC, 37 °C Saline soils from Caribbean 
coast, Colombia

Acevedo-Barrios et al. 2019; 
Acevedo-Barrios and 
Olivero-Verbel 2021)

Bacillus vallimostis 23
Salinivibrio costicola 25
Vibrio sp. 14
Bacillus sp. 12
Staphylococcus spp. 10
Psychrobacter cryohalolentis 30.3 FC, 4 °C Soil, Deception Island, Ant-

arctica
(Acevedo-Barrios et al. 2022)

Psychrobacter urativorans 32.6
Psychrobacter nivimaris 22 Soil, Half Moon Island, Ant-

arcticaSporosarcina aquimarina 21.8
Pseudomonas lactis 21.6
Idiomarina loihiensis 40 Soil, Horseshoe Island, Ant-

arcticaBacillus sp. 19
Rhodococcus sp. 45 Anaerobic Sludge from municipal Waste-

water treatment plant, South 
Korea

(Lee et al. 2015)

Dechloromonas sp. NR FC groundwater and soil, Army 
ammunition plant, USA

(Shrout et al. 2005)

Desulfomicrobium sp.; Thauera 
sp. consortia

100 Anaerobic Wastewater plant, China (Wan et al. 2016)

Azospira sp. 100 FC wastewater treatment plant in 
Suwon, Korea.

(Nam et al. 2016)

Magnetospirillum sp. NR FC Lake sediments, India (Jacob et al. 2018)
Haloterrigena sp. NR FC Atacama Desert, Chile (Flores et al. 2020)
Pseudomonas stutzeri 94 Aerobic Soils from industrial area, India (Shete et al. 2008)
Arthrobacter sp. 92
Wolinella succinogenes, Dechlo-

romonas agitata consortia
31−100 FC Saline lake sediment, China (Dong et al. 2022)
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2023). A reductase can reduce perchlorate to chlorate, 
and subsequently, to chlorite, whereas superoxide 
chlorite changes chlorite to chloride and molecular 
oxygen (Acevedo-Barrios et  al. 2019). Biological 
reduction of perchlorate using bacteria completely 
degrades perchlorate ions into Cl- and O2 (Acevedo-
Barrios and Olivero-Verbel 2021).

Application potential in perchlorate remediation and 
astrobiology

This study showed for the first time the high capac-
ity of Colombian Caribbean Coast bacterial isolates 
to survive in extreme environments as well as their 
capacity to reduce perchlorate. These strains are 
potentially inputs for biotechnological, industrial, 
and medical processes, including the biodegrada-
tion of several xenobiotics. Lundberg et  al. (2013), 
demonstrated the use of Bacillus spp. as an enzyme 
producer. In addition, the use of Bacillus spp. was 
reported to be a biofuel producer and biodegradator of 
biodiesel and other pollutants (Lundberg et al. 2013; 
Mukhtar et  al. 2019; Acevedo-Barrios et  al. 2019; 
Bertel-Sevilla et al. 2020). Moreover, Mukhtar et al. 
(2019) related the presence of halotolerant bacterial 
strains with lipases and hemicellulose degradation 
capacity, indicating the importance of these microor-
ganisms in soil fertilization and plant metabolism.

In the context of sustainability, the utilization of 
bacterial-mediated processes to address perchlorate 
contamination is gaining interest. These bacteria have 
evolved mechanisms to degrade perchlorate, offer-
ing a biological potential for remediation, however, 
it is imperative to understand their applicability and 
limitations as well as the diversity of available tech-
nologies, ranging from in situ ex situ approaches and 
natural attenuation to controlled bioreactors at differ-
ent scales (Fang and Naidu 2023). Table 5 provides a 
list of perchlorate bioremediation technologies.

The performance of strains BBCOL-009, 
BBCOL-014, and BBCOL-015 in perchlorate 
reduction across a wide pH range and saline con-
ditions highlights their suitability for various reme-
diation techniques. These bacteria exhibit resistance 
to saline conditions and adaptability to different pH 
levels (Ma et  al. 2023; Adams et  al. 2015). Their 
adaptability to broad pH ranges makes them valu-
able inputs for bioreactors and in  situ processes, 

mitigating potential challenges associated with less 
adaptable strains (Ma et al. 2023).

Physicochemical properties, especially pH, pro-
foundly impact bacterial growth, metabolism, and 
survival. Understanding the complex relationship 
between pH and bacterial performance is crucial in 
microbiology, environmental sciences, and clinical 
research (Saravanan et al. 2023). Bacteria capable of 
resisting extreme pH levels play vital roles in acidic 
or alkaline ecological niches, thus expanding knowl-
edge about such environments (Harrison et al. 2013).

Operational and pilot-scale variables must be 
tested, as each technology, aimed at specific environ-
mental matrices, presents inherent advantages and 
challenges. For example, electron donors are crucial 
in the perchlorate reduction process. Acetate is the 
most common, but the role of hydrogen, ethanol, or 
lactate, as well as the initial perchlorate concentration 
and electron donor ratio, has been investigated (Losi 
et al. 2002; Xie et al. 2018; Kim et al. 2020; Nozawa-
Inoue et al. 2005; Gal et al. 2008; Shete et al. 2008; 
Nam et al. 2016).

Environmental risks, including antibiotic resist-
ance, must be evaluated during technological scala-
bility. While initial antibiotic resistance suggests sus-
tained efficiency in perchlorate reduction, prolonged 
exposure may lead to antimicrobial resistance gene 
expression and microbiota alterations (Zheng et  al. 
2019).

The study of such extremophilic microorganisms is 
not limited to bioremediation; it also offers valuable 
insights for astrobiology, especially in Mars explora-
tion, where Bacillus spp. could assist in perchlorate 
reduction, potentially addressing challenges in food 
production during manned missions (Oze et al. 2021; 
Schuerger et al. 2003; Nicholson et al. 2012).

Future studies exploring the astrobiological 
potential of Cartagena sectors, characterized by 
sandstone formations, hold promise, considering the 
presence of similar formations and perchlorates on 
Mars (Yen et al. 2017; Schieber et al. 2020; Farley 
et  al. 2016; Martin et  al. 2020). This study marks 
a fundamental step towards understanding extremo-
philic microorganisms in the region and their astro-
biological and bioremediation potential.

These bacteria could be advantageous adaptive, 
with a broad temperature tolerance and a pH range 
(Ma et  al. 2023; Adams et  al. 2015). Our strains 
showed strong adaptiveness to a wide range of pH, 
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which demonstrated them to be a highly adaptative 
input for using in bioreactors and in situ processes, 
due to potential of hydrogen could be a tedious task 
in less adaptative strains, decreasing efficiency. This 
behavior has been reported in other bacterial strains 
such as Exiguobacterales, Bacillales, Lactobacilla-
les and Bacillales (Ma et al. 2023), showing, simi-
larly to ours, biofilm formation.

Among the physicochemical properties related 
to bacterial performance of growth, metabolism, 
and survival, the pH is one of the most important. 
The pH of the surrounding medium can influence 
the solubility of essential nutrients, the efficiency of 
metabolic pathways, and the effectiveness of anti-
microbial agents. Understanding the intricate rela-
tionship between pH and bacterial performance is 
essential in various fields, including microbiology, 
environmental science, and clinical research (Sara-
vanan et  al. 2023). The impact of pH on bacterial 
performance is particularly significant in extreme 
environments, and understanding the adaptations of 
bacterial strains that resist extreme pH levels is cru-
cial, especially in the context of astrobiology. Bac-
teria that exhibit tolerance to extreme pH conditions 
play a pivotal role in ecological niches with acidic 
or alkaline features, such as acid mine drainage 
sites, alkaline soda lakes, or geothermal springs. 
These extremophiles have evolved unique mecha-
nisms to thrive in environments outside the typical 
pH range. Studying extremophiles not only expands 
our knowledge of microbial diversity but also has 
implications for astrobiology, where the exploration 
of extraterrestrial environments involves considera-
tions of extreme pH conditions. The ability of cer-
tain bacterial strains to withstand extreme pH lev-
els is relevant to the search for life beyond Earth, 
as extraterrestrial environments may present chal-
lenges akin to those encountered by extremophiles 
on Earth. Therefore, investigations into the pH tol-
erance of bacterial strains hold significance not only 
for understanding microbial ecology on Earth but 
also for anticipating and exploring potential habi-
tats in the broader scope of astro biological research 
(Harrison et al. 2013).

The ability to generate biofilms and adherence to 
surfaces made them suitable, especially for reactor-
based systems or solid-phase treatments. It is a fact 
that in the mass production of Polydroxialkanoate 
(PHA), common in biofilm formation in Bacillus 

genus, BBCOL-009 stands out among the rest of the 
PHA-producers due to its capacity to tolerate extreme 
conditions that could be present within the bioreactor 
(Divyashree et al. 2009). Highlights that biofilms are 
shared spaces in a bacterial population.

However, pilot scale and operational variables 
should be tested as each technology, targeted for 
specific environmental matrices, comes with inher-
ent advantages and challenges. For instance, electron 
donors are crucial in the perchlorate reduction pro-
cess. The most common is acetate, however, the role 
of hydrogen, ethanol, or lactate, organic matter has 
been investigated (Losi et  al. 2002; Xie et  al. 2018; 
Kim et  al. 2020). Also, the efficiency of reduction 
depends on the initial perchlorate concentration and 
the perchlorate electron donor ratio (Nozawa-Inoue 
et  al. 2005; Gal et  al. 2008; Shete et  al. 2008) and 
the negative effect of nitrate has been reported (Nam 
et al. 2016).

Few environmental risks must be considered in the 
scaling of remediation technologies. An important 
aspect is antibiotic resistance, in which the strains 
showed resistance (Table  2). This condition initially 
suggests the capacity of the strains to sustain their 
efficiency in perchlorate reduction in environments 
containing environmental pollutants such as antibi-
otic’s traces, which are considered emerging pollut-
ants. However, prolonged exposure may generate 
the expression of antimicrobial resistance genes and 
alterations in the microbiota. This should be investi-
gated in depth (Zheng et  al. 2019). The remediation 
species should maintain genetic stability, ensuring 
consistent perchlorate reduction and environmental 
safety over time.

All the above indicate that these microorgan-
isms offer an opportunity to delve into other fields 
of study, such as astrobiology. One of the main lines 
of research in this transdisciplinary field (Leal et  al. 
2023) is the study of extremophile microorganisms 
that can serve as a model for understanding possible 
biological adaptations in other bodies of the Solar 
System (DasSarma et al. 2020; Thombre et al. 2020). 
Some studies have shown that organisms of the genus 
Bacillus could be promising in searching for poten-
tial past or present life on Mars, mainly due to the 
presence of resistance structures such as endospores 
(Schuerger et al. 2003; Nicholson et al. 2012).

In addition, the results provide a much more inter-
esting perspective, such as the ability of Bacillus spp. 
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to grow in environments contaminated with perchlo-
rate and allow the reduction of this salt in the sub-
strate. This is a fundamental aspect in astrobiology 
studies on Mars since perchlorate has been detected 
on the surface of the red planet, being one of the main 
problems for food production in future manned mis-
sions (Oze et al. 2021). However, organisms such as 
those reported in the present study could be a poten-
tial solution to this problem.

Although no study was carried out on the geo-
logical origin of the sediments sampled and ana-
lyzed in the present study, a future perspective to 
continue delving into the astrobiological potential 
of some Cartagena sectors is based on fine to very 
fine-grained sandstones’ characterizing their geologi-
cal formations. Slightly feldspathic, with few lithics 
and parallel flat lamination in thin layers (Clavijo 
and Royero 2000). They are presenting the region as 
a potential study site of astrobiological interest, tak-
ing into account that the presence of sandstones has 
been identified in the Gale Crater on Mars (Yen et al. 
2017; Schieber et al. 2020), as well as the presence of 
perchlorates (Farley et al. 2016; Martin et al. 2020). 
Thus, this study is presented as a first step in a chain 
of opportunities to continue delving deeper into the 
study of the extremophile microorganisms in the 
region and their astrobiological and bioremediation 
potential.

Conclusion

This is the novel study conducted in Bahia Cartagena, 
Colombian Caribbean, which reveals that bacteria 
belonging to the genus Bacillus, specifically BBCOL-
009, BBCOL-014, and BBCOL-015, were extracted 
from marine sediment samples obtained from Carta-
gena Bay. It was found that these bacteria exhibit tol-
erance to environmental perchlorate concentrations 
of up to 10000  mg/L. Moreover, they are capable 
of reducing perchlorate concentrations by 10–25%. 
Furthermore, these bacteria demonstrate the ability 
to thrive in a wide range of pH and NaCl concentra-
tions, showcasing their potential for remediating this 
contaminant through various technologies and bio-
technological applications in agriculture and water 
sources remediation. Although the primary focus of 
the study of perchlorate-reducing and resistant bac-
teria is in the ecological and agricultural realms, 

from an astrobiological perspective, perchlorate-
resistant bacteria serve as models for astrobiological 
investigations.
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