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Abstract

Computerized medical evaluation of the corneal endothelium is challenging
because it requires costly equipment and specialized personnel, not to mention
that conventional techniques require manual annotations that are difficult to
acquire. This study aims to obtain reliable segmentations without requiring large
data sets labeled by expert personnel. To address this problem, we use the Bar-
low Twins approach to pre-train the encoder of a UNet model in an unsupervised
manner. Then, with few labeled data, we train the segmentation. Encouraging
results show that it is possible to address the challenge of limited data availability
using self-supervised learning. This model achieved a precision of 86%, obtain-
ing a satisfactory performance. Using many images to learn good representations
and a few labeled images to learn the semantic segmentation task is feasible.
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1 Introduction

The corneal endothelium is a set of hexagonal cells of vital importance for maintaining
the transparency of the cornea. Which progressively deteriorates as age increases. This
loss can be aggravated by surgical trauma or certain diseases such as Fuchs’ corneal
dystrophy [1, 2]

Eye problems are highly prevalent and remain untreated in many cases. Among
these diseases, Fuchs’ corneal endothelial dystrophy affects the corneal endothe-
lium, which is responsible for corneal transparency [3]. According to WHO reports,
greater vigilance is needed to guarantee attention to the ophthalmological needs of
communities to improve prevention, early detection, treatment, and rehabilitation [4].

Among the challenges of studying the cornea is Fuchs’ dystrophy, which is charac-
terized by the accumulation of fluid in the cornea, located in the front part of the eye.
This causes the cornea to swell and become thicker. This condition manifests itself
with blurred vision and eye discomfort. Causing loss of visual acuity. This pathology of
the endothelium is produced in the deepest layer of the cornea, where the cells respon-
sible for maintaining corneal transparency are located. This disease can be caused by
drug use, aging, surgeries and inflammation.

Today, there are different technological tools for assessing the state of the corneal
endothelium through morphometric parameters, such as cell density. The most used
device is the specular microscope. However, several studies have shown that con-
ventional approaches for estimating endothelial morphometric parameters fail in the
presence of endotheliopathies such as Fuchs’ CE distrophy [5–8].

Recent deep learning-based approaches have significantly improved image segmen-
tation of corneal endothelium and estimation of morphometric parameters [9, 10].
However, these methods rely heavily on large, manually annotated data sets [11–
13]. Unsupervised learning methods have emerged to avoid costly manual labeling of
images, some authors such as Caron et al., Zbontar et al., Chen et al., and Punn et
al., [14–16] have used these tools in their research. These methods are based on coding,
clustering, transfer learning, self-monitoring and other strategies.

The problem raised above generates great challenges to be solved. However, han-
dling unlabeled images using unsupervised learning is not straightforward, and models
trained with these techniques typically perform much less efficiently than supervised
ones. But in recent years, unsupervised models have significantly narrowed the gap
with supervised training, particularly with the recent achievements of contrastive and
non-contrastive learning methods. Giving rise to self-supervised learning; which is a
strategy that combines labeled data with unlabeled data during the training of a neu-
ral network. Initially, it learns unlabeled data features, then the weights are frozen
and finally used in a tuning step to learn a specific task [17–20]. These architec-
tures are based on generative approaches [21], predictive tasks [22], contrastive and
non-contrastive learning [23] and bootstrap approaches [24, 25].

In this paper, we develop a self-supervised artificial intelligence model to address
the corneal endothelium segmentation problem. We use a large dataset of unlabeled
images to train the encoder of a UNet network using the Barlow Twins approach to
learn relevant data representations. Then with few labeled data, we train the UNet
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decoding path. In the following sections, we briefly review other related work, the
proposed method, preliminary results, and conclusions.

2 Related work

In recent years, due to the development of deep learning technologies, researchers have
developed a great interest in computer-aided diagnostic systems to support health-
care services in different applications for classification, detection, and segmentation
tasks [26]. This research will focus specifically on the task of segmentation of escular
microscopy images of the corneal endothelium, due to the challenges present in this
type of medical images when there is the presence of diseased cells.

Nowadays, many researches use models focused on supervised learning. Although
it is a valuable technique in the segmentation of medical images of the corneal
endothelium, it presents notable disadvantages compared to self-supervised and semi-
supervised approaches. One of the main limitations of supervised learning is the large
number of annotated images that the model requires for it to generalize. Not to men-
tion that the acquisition of medical images is complex, they require expert personnel
in the area and the labeled databases are limited. In contrast, self-supervised and
semi-supervised approaches have the ability to memorize information from unlabeled
data and learn a specific task with little annotation, thus addressing some of these
limitations. Due to the above, these architectures become promising alternatives in
image segmentation of the corneal endothelium.

In this context, Vigueras et al. [27] presented a fully automated method for esti-
mating corneal endothelial parameters from specular microscopy images containing
guttae. The proposed model was based on a DenseUNet neural network with non-
local feedback attention to perform the semantic segmentation task. In general, the
estimates agreed well with the reference values. The parameters were significantly
better than those provided by commercial software, demonstrating the ability of this
AI architecture to accurately estimate endothelial parameters even in the presence of
edotheliopathies, like guttae in Fuchs’ dystrophy.

Sierra et al. [3] proposed a UNet-based segmentation approach that requires min-
imal post-processing and achieves reliable CE morphometric assessment and guttae
identification in all grades of Fuchs’ dystrophy. They cast the segmentation problem
as a regression task, using distance maps rather than a pixel-level classification task,
as is typically done with the UNet architecture. These fully supervised approaches
achieve decent performance but still require large annotated datasets.

There have been recent efforts in unsupervised or self-supervised methods have
been developed to address the problem of the required annotation volume for data
sets. In the area of biomedical image segmentation, self-supervised learning strategies
can be grouped according to their approach as generative models [28], predictive tasks
[22], contrastive learning [29], bootstrapping [24] and regularization [25].

Amodio et al. [30] presented the first fully unsupervised deep learning framework
for medical image segmentation, which facilitated the use of the vast majority of
image data that is not labeled or annotated. This unsupervised approach is based on
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a training objective with contrastive learning and self-coding aspects. Previous con-
trastive learning approaches for medical image segmentation have focused on training
at the image level. This approach is proposed at the patch level within the image
(pixel-centric). This model achieves improved results in several critical medical imag-
ing tasks, as verified by expert annotations on segmenting geographic atrophy regions
from multi-subject retinal images.

Felfeliyan et al. [31] proposed an alternative self-supervised deep learning training
strategy on unlabeled magnetic resonance imaging. In this research, they randomly
applied different distortions to unlabeled image areas and then predicted the type of
distortion and information loss. To do this, they used an improved version of the Mask-
RCNN architecture to locate the location of the distortion and retrieve the pixels from
the original image. This self-monitored pre-training improved the Dice Index score by
20% compared to training from scratch. The proposed self-supervised learning was
simple, effective, and suitable for different ranges of medical image analysis tasks,
including abnormality detection, segmentation and classification according to their
complexity.

Therefore, the objective of this project is to investigate how unlabeled data can
be used to pre-train a network and learn important data representations, then per-
form fine tuning for the segmentation task with few annotated corneal endothelial
miscroscopy images. Unsupervised, semi-supervised, and self-supervised learning are
becoming effective substitutes for transfer learning from large data sets.

3 Methods

3.1 Dataset description

We utilized a dataset comprising 1300 in vivo images of corneal endothelial cells
obtained from individuals with both healthy and pathological corneas. These images
were captured at a resolution of 224x448 pixels. Among these images, we selected 230
patches measuring 96x96 pixels, which were annotated by domain experts. Addition-
ally, we included 1719 patches of the same dimensions that lacked annotations. The
acquisition of these images was performed using a Topcon SP3000P specular micro-
scope equipped with Cell Count software. It’s worth noting that the image collection
process involved capturing images from either both eyes or just one eye, depending
on the case. The study received approval from the ethics committee at Universidad
Tecnologica de Bolıvar, Colombia. Furthermore, due to the retrospective nature of
the study, the requirement for informed consent was waived, in accordance with the
principles outlined in the Declaration of Helsinki.

3.2 UNet model

It is a convolutional neural network architecture that was designed for medical image
segmentation. This model was originally developed Ronnenberger et al., in 2015 [32].
This architecture consists of two tracks. The first is that of contraction, also called
encoder. It is used to capture the context of an image. The second way is symmet-
ric expansion, called decoder. It also allows precise localization through transposed
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convolution. The mathematical model of the U-Net architecture is described by the
following mathematical expressions:

w(x) = wc(x) + w0 · exp
(
− (d1(x)) + d2(x))

2

2σ2

)
, (1)

E =
∑
x ϵ Ω

w(x) · log(Pl(x)(x)), (2)

where Pl(x) is the output of the softmax function, d1(x) and d2(x) indicate distances to
the nearest boundary points, wc represents the weight maps, w0 and σ are constants.

3.3 Barlow Twins

It is a self-supervised learning method that applies redundancy reduction. It’s to
learn representations that are invariant to image distortions. It does not require large
batches, gradient stops, momentum encoders and predictor networks. To overcome
this problem, the Barlow Twins approach was proposed to pre-train the encoder in an
unsupervised way, to then perform fine tuning, taking the weights of the pre-trained
network and using them for the segmentation task with a limited number of samples
annotated [33]. The mathematical model that describes the Barlow Twins method is
as follows:

LBT =
∑
i

(1− Cij)
2 + λ

∑
i

∑
j ̸=i

C2
ij , (3)
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2
, (4)

where
∑

i(1 − Cij)
2 is an invariance term (diagonal or identity term) to drive neu-

rons to produce the same output under different magnifications, and λ
∑

i

∑
j ̸=i C

2
ij is

a redundancy reduction term (off-diagonal term) making each neuron produce a dif-
ferent output. The term λ is used to balance the contribution of the redundancy and
invariance reduction terms.

3.4 Self-supervised learning

Self-supervised learning is a machine learning paradigm that allows unlabeled data to
be processed in order to obtain useful representations that can assist in subsequent
learning tasks.

Due to the major challenges of medical databases, this strategy can help overcome
the limitations of the availability of labeled data, allowing artificial intelligence mod-
els to capture important features and patterns more effectively. This may lead to an
improvement in the accuracy of medical image processing tasks, such as the segmen-
tation task, which in turn may be beneficial for the early detection and diagnosis of
ophthalmological diseases.

For this reason, this research proposes the implementation of an architecture based
on self-supervised learning focused on the task of segmentation in images of the corneal
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endothelium, with the aim of improving the performance of CNN networks when there
are no labels. In figure 1 we can see the block diagram of the implemented model.

Fig. 1 Block diagram of the proposed SSL models.

In figure 1 we can detail the advantages that weakly supervised learning brings,
because you can learn from many unlabeled images and do fine tuning with few
annotated images.

3.5 Data augmentation

The proposed model uses the geometric transformations strategy to mitigate the draw-
back of the absence and imbalance of annotations in the corneal endothelium image
databases and is also part of the Siamese network strategy so that the model is more
resistant to variations in the input data and generalize better. Particularly, this archi-
tecture applies a distortion to the input images randomly before the training stage,
using the horizontal flip, vertical flip and rotations operations. In the following figure
we can see the details.
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Fig. 2 Data augmentation with geometric transformations.

In figure 2 , we can see how the images enter the Siamese network, then geometric
transformations are applied so that both networks are capable of learning intrinsic
characteristics and representations despite the input distortions. Which will help to
better generalize the proposed model.

3.6 Experiment configuration

For the training and testing of the model, the cross-validation technique was used,
where 70% of the images were used for training and 30% for validation. Of the 1300
images supplied with resolution of 224x448, With the Python patchify function, 1719
patches were generated with a resolution of 96x96 without labels and 230 patches
with the same resolution annotated by expert personnel. In order to increase and
strengthen the feature maps of the unsupervised learning stage, without being required
to annotate a very large volume of data, a higher proportion of unlabeled patches
(1719 ≈ 88%) is provided. On the other hand, we worked with the Adam optimizer
with a learning rate initialized at 1× 10−3 for all the experiments, which had a decay
of a factor of 0.1 once the learning stagnated to obtain better results of segmentation.

4 Proposed approach

Despite the good results of CNN-based approaches, they generally exhibit limitations
for modeling an explicit long-range relationship, due to the intrinsic locality of the
convolution operations. Therefore, these architectures generally produce weak perfor-
mance, especially for target structures that show large variations between images in
terms of texture, shape, and size. To overcome this limitation, it is proposed to estab-
lish attention modules, blocks which have skip connections and transfer learning in
the encoder of the proposed architecture. Which would allow us to model global and
specific contexts. In the following figure we can see the architecture of our proposed
model.
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Fig. 3 Architecture of the proposed models for self-supervised learning training of the segmenter.

We aim to improve the predictions of the traditional UNet model. The proposed
model addresses the challenge of limited data availability in two phases, as shown
in figure 3. In phase one, a pre-training of the UNet encoder is performed with the
Barlow Twins method, using the redundancy reduction principle to learn feature rep-
resentations in an unsupervised way (without data annotations). Finally, for phase 2,
fine-tuning is performed by taking the weights of the pre-trained network and then
using them for the semantic segmentation task with a limited number of annotated
samples.

This proposal combines the advantages of the ResNet (Residual Network) which
contains skip connections and subsequent residual blocks to extract semantic features
that reduce the number of model parameters and improve the inference speed. More-
over, the benefits of the vision transformer (attention module) of the decoder, manage
to combine multi-level functions and capture the global context.

We can see in figure 3 that the model receives a set of unlabeled images which
enter a Siamese network. Then, a transformation is applied (rotations, translations,
color changes, among others) and an encoder is introduced to generate the most rep-
resentative feature maps using an empirical cross-correlation function. In the encoder
stage, five filters [16, 32, 64, 128, 256], a global average pooling block, a fully connected
layer block, ReLU activation, and normalization (FC+ReLU+BN) were used. These
representations were frozen and became the encoder of a UNet network. Subsequently,
these feature maps are concatenated with the corresponding decoder block, using the
skip connections for the feature upsampling operation. Finally, a 1×1 convolution is
performed on the output layer to generate a segmentation mask and categorize each
pixel of the input images.
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5 Results and discussion

We have implemented a self-supervised learning model based on a Barlow Twins
approach to train the encoder of a U-Net model in an unsupervised way. This model
was pre-trained with a 32-core Linux server and 94 GB of RAM, where specular
microscopy images of the corneal endothelium with different resolutions were used. We
worked with the TensorFlow framework, the Python programming language, and the
NumPy and Pandas libraries. Below you can see in table 1 the quantitative results of
the segmentation task in images of the corneal endothelium with the proposed model
and the traditional UNet technique.

Table 1 Performance analysis of the UNet model and the
proposed one [Accuracy (Acc), Precision (Pr), Dice Coefficient
(DC) and mean Intersection-over-Union (mIoU)].

DS Model 70% Training - 30% Testing

Acc Pr DC mIoU

1
UNet 0.8083 0.8420 0.8212 0.2797

Ours 0.8619 0.9393 0.9082 0.2939

In table 1 we can see that our proposed model presents better performance in the
four metrics evaluated with respect to the UNet model. This can be corroborated in
the segmentations obtained in figure 4. The mask predicted by our proposed method
is quite similar to the reference mask, except in cases where images present problems
of non-uniform illumination (limitations that will be covered in future approaches)
and poor sharpness. These preliminary results demonstrate the benefit of using the
pre-training strategy to improve the encoding stage, especially in cases where the
availability to collect annotations is limited. In the following figure you can see the
results obtained in the segmentation task in images of the corneal endothelium with
healthy and diseased cells.
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Fig. 4 Segmentation results. The proposed method defines better the intercellular boundary of the
segmentation, despite some problems due to non-uniform illuminated areas.

In figure 4, you can see the qualitative performance of the self-supervised model
compared to the traditional UNet model. Where it is evident that the proposed
model improves its performance by freezing the weights of unsupervised training with
unlabeled images, and then performing fine tuning with few images of the corneal
endothelium with healthy cells and with Fuchs dystrophy. The images used present
great challenges, due to their variations in scale, lighting, shadows, brightness, poor
sharpness, among other aspects that make the training more complex.

6 Conclusion

We have developed a self-supervised learning model for the semantic segmentation
task of images of the corneal endothelium obtained by specular microscopy to address
one of the main challenges of the limited availability of annotated data. The results
showed that the proposed strategy improves the segmentation performance of the UNet
model. This improvement is evidenced due to encoder tuning, using jump connections,
residual blocks, and attention modules. Future work involves further experiments and
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exploring different training strategies and settings in the encoder to generate better
feature maps and ensure more accurate image segmentation. Finally, it is proposed to
use pre-trained encoders with different databases that have learned low, medium and
high level characteristics that help to better generalize the network.
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