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Abstract: The modest objective is to check the integrated effect of energy storage systems (ESSs) and
distributed generations (DGs) and compare the optimization of the size and location of ESS and DG to
explore its challenges for smart grids (SGs) modernization. The research enlisted different algorithms
for cost-effectiveness, security, voltage control, and less power losses. From this perspective, optimiza-
tion of the distribution network’s energy storage and capacity are being performed using a variety
of methods, including the particle swarm, ant-lion optimization, genetic, and flower pollination
algorithms. The experimental outcomes demonstrate the effectiveness of these techniques in lowering
distribution network operating costs and controlling system load fluctuations. The efficiency and
dependability of the distribution network (DN) are both maximized by these strategies.

Keywords: distributed generation; energy storage system; evolution; renewable energy sources;
modernization; smart grids; soft computing

1. Introduction

Contemporary deregulation in the power industry was established primarily due to
the need for long-term modernization of the energy sector. Today’s power system (PS)
relies on transmission and distribution networks, among other things, to keep the supply
and demand for electricity in equilibrium, despite variations in energy-producing resources
and consumer consumption [1]. Due to the balancing efforts, these networks experience
predictable periods of low and high demand, resulting in either a shortage or surplus of
electrical energy generation. The term “power quality” refers to how much the magnitude
(and angle) of the voltage of the electrical energy delivered to consumers strays from the
rated tolerance limits set by their distribution system operators (DSOs) or transmission
system operators (TSOs). This is an indicator of the demand–supply imbalance.
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ESSs have been used to manage power quality in these networks for some time
periods [2]. The increasing energy density innovation in ESS is intriguing because it
promises more analytical leeway [3] in their placement within the PS’s supply network,
where their operational benefits may be maximized. To improve the efficiency of a DN,
ESS deployment is crucial. The goal of this research is to provide a high-level summary
of the optimal location and size that will maximize the performance of the network [4].
The complete scope of battery energy storage system (BESS) is its capability to increase
voltage support in a grid with high rates of DG [5]. As an added bonus, the proposed
method can also improve the voltage profile and correct power factors for an eco-friendlier
DN [6]. Because of the widespread adoption of decentralized renewable energy sources
(RES), many studies have demonstrated BESS’s effectiveness in optimal dispatching [7].

Research on the effects of BESS integration on the dynamic frequency response to
voltage fluctuations in load conditions has shown that a more integrated PS, in which
power is dispatched or imported based on the unique load requirements of these systems,
significantly improves this response [8]. To best compensate for voltage phase and mag-
nitude, BESS is the best suitable option [9]. Terminal voltage drops were also found to be
smaller as DG penetration increased, suggesting that the system was more stable in the
former situation [10]. This finding held true across all three load/generation circumstances,
with or without energy storage devices present. The storage devices could improve the
system’s stability and support the DGs during times of high demand [11]. Electrical con-
version devices link these ESS to the power grid. The transient and steady-state stability
of the overall system are both impacted by the addition of a DG/energy storage device to
the grid [12].

Moreover, the current grids are confronted with challenges including security and
privacy worries, dependability issues, a plethora of RES, and an ever-increasing need for
electricity. The most efficient solution to these problems is building the SG. In SGs, a wide
variety of sensors, IoT devices, and terminals are used to monitor and control things such as
current leaks, temperatures, vibrations, humidity levels, video, and more. SG based on the
Internet of Things help to sustain them. This idea of the Internet of Things (IoT) [13] has only
recently become a reality, with the introduction of fifth-generation mobile connectivity (5G),
which makes it possible to link together everything from hardware and software to people
and even entire cities via the Internet. Numerous smart applications have been proposed,
all with the potential to improve people’s lives [14]. Using communications technology and
advanced metering infrastructure (AMI), SG monitors the power grid, adjusts as necessary,
and responds to fluctuations in demand [15]. Six essential characteristics are shared by all
IoT-based SGs. They are: objects, communication protocols, data analytics based on fog,
edge, and cloud computing technologies, smart sensors, low cost, and information privacy
and security [16].

A comparative survey has been conducted to highlight the hard and soft computing
algorithms’ good features and address the drawbacks, concluding all possible future scopes.
Therefore, this article reviews different DN modernized planning conditions for DG and
ESS optimal installation and the soft computing techniques which are handled on it. This
article is sorted out as follows. Section 2 describes the planning aspects of DG whereas
Section 3 analyzes ESS planning. Section 4 explores the modernized perspective on SG and
showcases the comparative results of the conducted investigations. Section 5 concludes the
results of the conducted survey and Section 6 visualizes the future scope.

2. Planning Evolution on Distributed Generation

In order to fulfil their own needs, several consumers of electricity have erected small-
scale, standalone DG units over the previous five years. Interest in its applications has
increased, thereby it has advanced and become more realistic as a local power source,
where the generating zone is located close to the load or consumer as depicted in Figure 1.
DG, which can be as small as a few watts (W) or as large as ten megawatts (MW), has
several advantages over conventional power generation methods. As people become more
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aware of the advantages of adopting RES, the number of installations and operations of
DG has increased. With constraints on building new bulk power plants and transmis-
sion/distribution lines, the conditions are ripe for using this decentralized generation
coupled with regional DNs.

DG refers to the practice of generating electricity on a small scale, at or near the point of
consumption. Power electronic equipment, such as a power electronic converter, is typically
used to connect it to the mains supply. Photovoltaic (PV) cells, wind turbines, fuel cells,
and micro turbines are only some of the RES currently powering distributed generating
systems. These green technologies make better use of RES, which are widespread in the
natural world, produce no pollution, and can be used indefinitely [17].

Because of rising demands for the dependability of PS, the DG entity has become
increasingly popular. Concerns about the environment, business regulations, and energy
policy are all major contributors to this expansion. This widespread interest and adoption
of distributed generating units is due in large part to these considerations. In regard
to the operation and integration of DG into PS networks, power operators, designers,
policymakers, engineers, and customers have been worried about power quality, reliability,
stability, and protections [18].
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Figure 1. Scenario of domestic utility in PS.

There are two main types of advantages to dispersed generation: economic and
operational. DG is cost-effective, since it helps keep the lights on during peak demand
times when power consumption is highest. The adaptability of both its capacity and the
location of its installations further lessens the risk involved in making such an investment.
When situated close to the customer load, DG reduces operational costs by preventing the
need for an upgraded or new transmission and DN. DG guarantees supply dependability
and stability and minimizes power losses from an operational perspective. This technology
is essential in reducing greenhouse-gas (GHG) emissions because it relies on renewable
energy as its major fuel source and produces almost no gases during operation compared
to fossil fuel power generation. By switching to RES, communities can lessen their reliance
on fossil fuel imports and stabilize energy costs amid global price spikes [19].
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3. Planning Evolution on Energy Storage System

ESS is essential for bridging the time and geographical gaps between production and
consumption when using intermittent RES such as solar and wind. Whether on the utility
grid or in smaller, distributed networks, fluctuating generation sources generally necessitate
conversion and conditioning utilizing power electronics to provide a normal alternating
current (AC) demand [20]. Because of the unpredictability and fluctuation of RES, electricity
storage is a crucial component of flexible smart electric networks. Bulk storage, which
may release multiple megawatts over several minutes to hours, and distributed storage,
which can release tens of kilowatts to several megawatts in milliseconds to minutes, are the
two primary types of electricity storage. Distributed storage makes use of a wide variety of
technologies, including but not limited to lead acid batteries, lithium-ion batteries, some
types of flow batteries, thermal storage, flywheels, super capacitors, and hydrogen storage.
BESS are taken into consideration here. Several aspects of charger used for electric vehicles
(EVs) has been displayed in Figure 2.
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The widespread implementation of distributed storage is still in its early stages. The
technologies exist, and some of them are reliable; nevertheless, their current prices prevent
their extensive commercial deployment in bigger electricity networks. However, prices are
dropping, renewable energy providers are incorporating storage solutions at the residential
and commercial levels, and distributed storage has the potential to play a major role in
the electric grid of the future. Currently, pilot programs and scientific investigations are
primarily focused on lithium-ion batteries. The main obstacles to widespread deployment
are the high price and short lifespan; however, both are gradually improving. Off-grid
PS and grid backup systems rely heavily on lead acid batteries, since they are the most
reliable, cost-effective, and have been on the market the longest. Microgrids, small and
medium-sized electrical networks, rely heavily on battery-based storage solutions for
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energy management [21]. A limited current charge mode allows for continuous power,
constant load, or constant current to charge and discharge a BESS. Constant power is chosen
as the charging and discharging method for the battery in the design of the EMS suggested
in this research work.

4. Modernized Planning Evolution on Smart Grid

With the introduction of the SG idea, a large quantity of sensors, power electronics,
DG, and communications equipment will be added to the network. Therefore, as the
system becomes more sophisticated and complicated, it is vital to integrate information and
data operations across the system. Intelligent communication and state-of-the-art control
systems are necessary for the successful implementation of the SG, a revolutionary new
model for electricity DNs.

Smart grid features and infrastructure [21]:

• self-healing.
• uses the user’s input and gives them agency.
• tolerant of security breaches.
• provides a means to improve power quality.
• allows for a range of acceptable power sources.
• unconditionally backs the energy industry.
• allows for more efficient use of resources and lower costs associated with keeping the

system running.

The smart grid concept makes use of the following technologies:

• Technologically superior techniques of command designed to supply, monitor, and
evaluate information from all critical network nodes. For instance, it can respond
appropriately to perturbation and provide options for human operators to choose
from. Substation automation (IEC 61850), energy pricing management, and demand
response management are just some of the applications that could benefit from the use
of advanced control approaches.

• Real-time energy consumption, peak season pricing, and power quality are only some
of the signals that may be transmitted between users, operators, and generators via
digital sensors, metered, and measured utilizing two-way communications.

• PS that are robust, fully controllable, adaptable, and reliable can be generated by
modern grid utilities, which also improve performance. Current electrical grids will
be transformed into SG through the implementation of these technologies [22].

The long-term economic and sufficient design of PS relies heavily on generation
expansion planning (GEP), which focuses on making the calls to build new power plants to
reliably supply the expected load over a specific planning horizon. The distinction between
static and dynamic GEP models facilitates comprehension. A single-period GEP problem,
such as a static GEP model, has a lower computing complexity than a multiperiod planning
problem, such as dynamic GEP [23].

Dynamic GEP is used to determine the size, type, and timing of the required number
of additional generating units to be added to the PS. It is possible to establish the optimal
GEP configuration in a vertically integrated PS with a centralized planner by minimizing
discounted total costs. Investment, operational, and maintenance expenses all fall under
this category. On the other hand, maximization of profit serves as the driving force in a
market-based energy system. In a centralized planning approach, the optimal expansion
plan can be obtained with the help of the results from the centralized least-cost GEP problem,
which can also be used to direct market participants and regulators in the selection of plant
types for construction and facilitate more effective participation in the capacity market [24].
Reliability, capacity mix, and proper load supply are just some of the PS and generation
unit physical constraints that typically limit the amount of money and time that can be
devoted to this challenge.
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It should be emphasized that throughout this study, when the authors refer to relia-
bility, they are referring to adequacy, one of the two subcategories of dependability that
make up reliability. An entirely trustworthy PS is economically difficult to build. Various
solutions have been offered to address the GEP issue. Heuristic approaches, such as ant
colony optimization (ACO) [25], and analytical ones, such as the hierarchy approach [26],
the decision tree [27], and mixed integer programming [28], have been offered as solutions
for GEP models.

To further refine, there exists a subtype of GEP known as reliability-constrained GEP.
Both approaches that simply specify the loss of load probability (LOLP) limit without
providing the game theory formulation [29] and those that provide a clear formulation
for LOLP computation [30] are considered among the others. To address the extremely
nonlinear nature of the GEP issue, a new and better evolutionary programming (EP)
method has been developed [30]. More refined version of genetic algorithm (GA) [31] is
proposed, and its results are compared to those obtained using other methods, such as
dynamic programming and GA. Thus, SG could be served with several purposes as shown
in Figure 3.
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A centralized power generation system has several units for generating ample elec-
tricity integrated into an interconnected network to operate successfully. These networks
can ensure the transmission and distribution of the generated power to other consumers,
including private, commercial, and industrial consumers. However, these generators are
linked in a decentralized system called DG topology that directly connects to the DN.
In a few decades, the development of a decentralized system was modernized because
fossil fuel production faced difficulties, for various reasons such as high capital costs, high
grade of installation costs and transport losses, depletion rate of conventional sources and
growing SG environmental challenges. Thus, the DN with a high penetration rate of RES
generators has become more popular. They are interpreted differently depending on the
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country and the utility company. Some identify DG as “permitted for bus connection” due
to its negligible impact on the electrical system, others locally as “network connected at a
distribution voltage level”, while others explicitly state technical criteria such as “from a
few kW to 50 MW”. Furthermore, US utilities have proposed a new criterion covering DG
technologies and types through its applications. Literature studies have been listed based
on objective nature as shown in Table 1.

Table 1. Overall analysis of the survey.

Article Proposed Work Algorithm Objectives OBJ Type

[32] Optimal Configuration
Planning for ESS Graph theory Investment and

operating costs reduction
Single

Objective (SO)

[33] Optimal Allocation of DS Particle swarm optimizer Unit Commitment
Problem SO

[34] Optimal Location and
Placing the Optimal PV Crow Search Optimizer Minimizing the PL and

Voltage Deviations SO

[35]
Day-Ahead (DA)

Scheduling and RT
Balancing

GA Annualized Investment
Cost is Minimized SO

[36] Economical and Reliable
Load Utility ALO Reduced Losses and

Better Voltage Quality SO

[37] Optimal Sizing of ESS Iterative algorithm
Minimize the Total

Installed
Storage Capacity

SO

[38] Optimal Placement and
Sizing of Multiple APFs Gray Wolf optimizer Minimum Size of Active

Power Filter (APF) SO

[39] To Improve the Reliability
of RDN

Genetic–Dragonfly
Algorithm

Reduced Losses and
better Voltage Quality SO

[40]
Optimal Location,

Selecting and Operation
Approach

GA Minimization of Energy
Loss in the DN SO

4.1. Economical Planning of Distributed Energy Resources

Furthermore, the DG can be integrated with microgrids and SG. Including DG in
microgrids must fulfil key requirements, as they should synchronize with other DG sources
in terms of voltage, phase angle, and frequency. Any disparities in any of these parameters
lead the system to instability, which might cause power and revenue loss. Moreover, in
island mode, the microgrid provides power to its connected area even if the main power
supply is cut off from power generation sources due to faults or unwanted situations.
However, the power from the microgrid is limited and might not support the full peak
load of consumers. In such cases, DG’s optimal location and size are most important to
supply uninterrupted power to the end consumers. However, the island mode allows the
power to flow in both directions. If the utility operator is doing maintenance work on the
distribution lines, the protective relays on both sides of the line must be operated. This
makes the operation of the network more complex.

Similarly, in SG, the power that is generated through multiple resources is routed so
that uninterrupted power is provided to the utility. In that case, determining the optimal
location of DG plays a significant role in reliable and stable operation on SG. The location
determination becomes more complex due to mesh and interconnected networks, and if
different parameters are not included, then it leads the system to instability. Electrical
energy could be stored in various energy structures, such as mechanical, electrochemical,
substance, electromagnetic, and heat. Several properties of the ESS need to be considered
for different applications, considering the capital cost, power and energy efficiency, power
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and energy density, tilt speed, effectiveness and response time, self-release misfortunes,
and the process lifetime based on inverters phenomena, as shown in Figure 4. This segment
briefly describes the standards, and potential capabilities of some ESSs customarily used to
support combined wind control [41]. Similar to the most famous RES, it has made rapid
progress and developments. Furthermore, artificial intelligence (AI)-based ESS are being
examined regarding RES.
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The PV system can run on the grid, independently, or in a hybrid configuration. In
“on-grid mode” operation, the PV system directly supplies the power to the network and
then, it is distributed. While in “off-grid” operation, the PV system solely supplies power
to the house where it is installed, and the power demand from the PS is not included;
however, in hybrid operation on a PS, the PV supplies power to homes and the power
distributor in off-peak periods. The power obtained from the PV system is in the direct
current (DC) form. Hence, the inverter topologies are highly required to effectively convert
DC to AC so that the end operator can use it. Some of the techniques include centralized,
string and multi-string type inverters.

On the other hand, wind power is another sort of energy-productive fuel. Being a
wellspring of the biological system, it acquired huge incentives from only 3.5 GW in 1994
to about 320 GW worldwide hardening, close to the furthest limit of 2013. Typically, there
would be sustainable power from the shoreside and marine force for a very long time at
an average yearly pace of 6% in 2011 and 2035. As per the International Energy Agency
(IEA) report, wind energy levels could be accomplished from the current 2.6% to 18%
by 2050. The law-production bodies could diminish the expense of wind energy from a
non-literal perspective. It is likewise expected that 70% of worldwide air quality control
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cut-off points will be given by China, the European Union, and the United States by 2035.
It is reclaimed by 27% hydro and 23% sun-oriented sources upheld by PV. With a massive
expansion in the limit, the expenses related to creating wind turbines. Hence, energy
expenses could be decreased to 15% [42]. The yearly expense of 1 kWhr unit has been
decreased to 20% of concealed expenses, as demonstrated in specific appraisals. In around
thirty years, wind power has been utilized to drive ships, bore wells to cultivate lands,
and pound grains using windmills. This leads to a high-dimensional mixed integer linear
programming (MILP) model known as the consolidated-unit-commitment and capacity
expansion (C-UC-CE) model.

4.2. Mathematical Modelling for Embodiment of Renewable Sources and Storage Devices

The C-UC-CE model’s objective in the entire venture is to ensure operational costs are
sorted out of the horizon [43]. The model of a bus bar framework, excluding transmission
limitations, extends into future decisions such as the number of units to make each year,
the number of units to submit in a time interval, and the whole unit. These decisions are
re-endorsed by a central facilitator [44]. The initial investment cost is based on inflation rate
of model. Utilities could apply this technique for benchmark analysis and power regulators.
It could empower to depict elective strategies and authentic designs to accomplish future
targets. For instance, a system with warm and sustainable power generators is improved
for reliable operational costs in each time frame with dynamic conditions.

The investment cost in year x (Clnvx) is composed as expressed in Equation (1),

Clnvx = ∑NG
g=1 ∑x

l=1 Cinv
l,g IGl,g (1)

where NG is the quantity of the generator, IGl,g is an extra unit installed in year y
of generator type and Cinv

l,g is the speculation cost annuity of generator type g in year
x [USD/MW].

At that point, the operational expense for every year is communicated in Equation (2),

COx = ∑T
t=1 (∑

NG
g=1 Cvar

x Px,t,g + ∑NG
g=1 Cs

gSx,t,g + CUD.LSx,t) (2)

where NG is the quantity of the generator, COx is the operational expense,
CUD is the unit span cost [USD/MWh],
Cvar

x the variable expense of generator type g in year x,
Px,t,g addresses power provided by generator type g at hour t in year x [MW],
Cs

g indicates the start-up cost of generator type g [USD] and LSx,t is the load shedding
at hour ‘t’ in year ‘x’ [MW] [45].

To ensure the framework’s unwavering quality, the construction of all DG entities
must be incorporated into the total number of frameworks throughout the planning
hour and throughout the critical program. Following these lines, interest rates should
be planned to count these DG plants’ total output without considering the producers of
special regimes [46]. The scientific definition of this imperative is shown in Equation (3),

D(X) = ∑i∈Npump P(X, i)−∑pump∈pump P(X, pump) + Psrp(X), For : X = (t, tri, h) (3)

Here, D(X) is symbolized to project interest in the specified number of hours (h) to
prepare for (t) years/time and trimester tri (MWhr).

Psrp(X) is the output yield of all unique system makers (aside from enormous hy-
dropower plants and wind power plants) fusing co-age in an hour (h) of arranging year
‘t’ and trimester tri (MW h), ‘srp’ is used to indicate a unique regime producer. Npump
is the course of action of all power plants except for siphoning plants, and pump is the
arrangement of all pumping power plants.

In this research, the maintenance outages have not been included in the planning
model during time span of planning. However, scheduled outages have been considered to
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perform reconfiguration. ESS has been breaking the limitation imposed on them and plays
a significant role in power flow balancing and voltage stability. While deploying storage
devices, five crucial factors must be considered: power and energy capacity; charging and
discharging efficiency (η); self-discharge rate; state-of-charge; and state-of-discharge (SOC).
The ESS constraints and parameters are modelled as follows.

The process of charging is given in Equation (4)

Str(t) = (1− δ ∆t)Str(t− 1) + Pc∆tη/Cr (4)

The process of discharging is given in Equation (5)

Str(t) = (1− δ ∆t)Str(t− 1) + Pd∆t/Crη (5)

where Str(t), δ, is the charge state rate of storage devices and its corresponding discharge
rate, respectively. Pc, Pd is the charging and discharging power of storage devices while η
is its corresponding efficiency.

Pt(t) = Pc(t)− Pd(t) (6)

Power transferred between the grid and storage devices is denoted by Pt(t) in Equation (6).

4.3. Notable Inferences from Planning Perspective of SG

Consequently, an outspread and natural design is produced to recover all-electric
vehicle (EV) loads. With due consideration, the capacity index is acquainted with deciding
the assurance standard methods for a horrid power stream of uneven development [47]. A
magnificent technique has been coined for ESS with well-defined load forecasting despite
direct load control. The binding process of shifting the peak load to non-peak hours could
provide an optimal energy schedule for consumer stages. The results are observed to be
fine-tuned. As mentioned in the introduction, ESS has many applications that could be
present in DN. However, ESS planning has primarily been considered the most critical ESS
application in DN. Mediation or load balancing is the first and most common application
in almost all operations [48]. Mediation refers to the maintenance of ESS, where electricity
is less expensive during low demand. It aims to balance the load during high demand
when electricity rates increase. This could lead to a sudden drop in the maximum load. As
a result, the cost is reduced, thereby delivering the load throughout the lifetime of service.
The practice of relieving load being performed in SG, which is also known as vacuum
filling in presence and absence of ESS, is given in Table 2.

The energy required to charge the ESS during low load periods [22] comes from
upstream networks (high/medium voltage stations) of conventional DN and other active
DN sources. It consists of small pumping resources dispatched into fuel [49] and renewable
sources for uncontrolled DG [50]. Similarly, the power exchange between the SG network
and ESS is shown in Figure 5.

The survey showed different algorithms and different DN. In addition, it analyzed the
ESS capacity and DG in SG networks, optimal location, size, and limitations. By analyzing
the collected data from this survey, some methods showed low power loss and voltage
stability, while others were not efficiently keen on the investment cost. Many optimal
locations and sizing are used for ESS capacity in DN. However, some improvements are
still needed for ESS capacity and DG in DN.



Energies 2022, 15, 8889 11 of 18

Table 2. Characteristics of load levelling being done in SG.

Total Generated Power (MWhr)

Hour Without ESS With ESS

1 2000 1800
2 2000 1800
3 2000 1920
4 1800 2200
5 1800 2100
6 1650 2000
7 2400 2350
8 2450 2500
9 2400 2550
10 2750 2550
11 2750 2550
12 2750 2550
13 2550 2350
14 2550 2000
15 2550 2350
16 2950 2750
17 2950 2735
18 3000 2700
19 3000 2250
20 2950 2000
21 2550 1950
22 2000 1800
23 2000 1800
24 2000 1800
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Figure 5. Modernized energy exchange over a single day.

Based on the aforementioned mathematical characteristics, different methods have
been proposed in DG planning models with different purposes and functions regarding
the physical model’s efficiency, complexity, and reliability. This section systematically
summarizes categories of computations, including numerical methods and metaheuristic
optimization algorithms through various pieces of research. The status “charging” and
“discharging” of ESS could be known from Figure 6 over a single day.
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4.4. Hard Computing Methods Embedded in SG Modernization

Estimation techniques could not require a reasonable model similar to their insightful
partners, which is extremely helpful, since it is practically challenging to track down precise
arrangements as the issue becomes random. Arrangements are contrasting in the nature of
potential arrangements with the occasions, as demonstrated in Figure 7.
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They are superior to others, since they are helpful for non-arched issues and could be
handily settled by utilizing them. As it is charted, the process flow starts by reading system
data and creating an initialized solution. It then evaluates the objective function and checks
the constraints in a loop until it reaches a solution.

Shell solvers [51] have been utilized as GAMS, GUROBI, and CPLEX. They can
tackle different numerical issues, including MILP and quadratic programming. With
multi-objective programming (MOP), the intersection could be cross-linked by changing
over MOP into an objective arranged action that can procure Pareto’s focus in a back-
handed space [52].

4.5. Soft Computing Methods Embedded in SG Modernization

The optimal shape and balance of DG and ESS have been investigated using different
meta-heuristic techniques [53], both individually [54] and simultaneously [55]. Optimistic
methods, which primarily work based on random and repetitive processes, are commonly
known as meta-heuristic optimization techniques. The process flow of particle swarm
optimization (PSO) starts with the initial populations of particles. The individual particle
would indicate a possible solution to a problem presented. In the next step, the algorithm
selects a particle and calculates that particle problem’s target function. The limits of the
current particle are verified. If conditions are not met, the current particle is not used,
and the next is tested. This process gets repeated to measure the objective function of all
particles. If the merging situation is satisfactory, the algorithm is terminated, and a final
solution is found. Alternatively, the AI algorithm is repeated until a positive outcome is
attained or the maximum number of iterations is reached. It includes the placement and
sizing of DG and ESS, the objective, and the bus system and loading conditions.

The effects of efficient power energy examinations have been investigated in the
ideal blending of reusable and non-sustainable combined heat and power (CHP) improve-
ments [56]. It includes internal combustion engines and mini turbines. It works based on
an enhanced PSO algorithm, where the financial benefit of the service organization as the
CHP proprietor and administrator is boosted over the activity skyline. A binary clamorous
shark smell algorithm for multiyear development of intensity in adequate power flow
has been modelled and simulated [57]. The ideal extension system for primary networks,
including the straightforward feeders’ fortification, is organized by developing this model.
The size of DG is addressed throughout a specific period. A multi-target way has been
introduced to evaluate the area and compute DG units’ measurements connected with
various burden models [58]. The minor affectability factor regulates the ideal design of
the DGs through intrusive weed optimization (IWO). A procedure for the ideal structure
and count of the DG’s ability to limit mishaps’ influence in the allotment cross-section has
been developed [59]. A metaheuristic upgrade measure known as the whale optimization
algorithm (WOA) is familiar with the enhancements. Two new calculations are introduced
to depict the ideal state of the capacitors in the extended networks in two different manners,
i.e., the ideal area of the capacitor banks of both fixed and variable sizes for certifiable
loss minimization and boosting up of framework speculation costs. An efficient quality of
power (QoP) variable through hyper-spherical formulations has been investigated, and the
peak demand period is well-focused [60].

Load stream issues of both radial distribution networks (RDNs) and mesh distribution
networks (MDNs) have been solved through hybrid PSO algorithms comprising fuzzy
sets [61]. Moreover, different voltage stability indices (VSI) have also been rendered. In
light of the proposed load current, the DG is prepared to lead through the necessity,
and the optimal DG device could be validated in a specific fashion with the aid of the
embedding auxiliary models. The soundness of the computational frame is also regarded
reasonably. A crossover methodology to deal with various DGs’ ideal circumstances has
been introduced [62].

Orderly techniques may not be appropriate for the ideal circumstances of various DGs
all alone. Through this investigation, the hybridization of the logical methodology and the
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heuristic quest for the ideal area of the various DGs all through the framework have been
recommended to limit the degrees of misfortune. The combinatorial methodology with
Nelder–Mead-PSO has been used to reinforce the voltage profile, limiting the energy losses
for hybrid renewable DG units containing PV cells, wind turbines, and fuel cells. Given
the estimation of VSI, the situation of DG is approved under different stacking conditions.
The outcomes are displayed with the IEEE-12 bus, IEEE-69 bus, and practical TN-84 bus
framework, which have higher adequacy in their calculation [63].

The feasible strategy for the concurrent cycle of optimal DG placement and reconfigu-
ration of the DN has been realized by finding upgraded voltage soundness to investigate
its zone worldwide at an excellent combination rate [64]. The smoothing-out counts for
addressing the plans in examined and thought-incited issues, and a couple of centers are
proposed to upgrade the control capacity [65].

The computational tests on three exploration networks are acquainted upon demand
with a gander at the estimation cycle and survey the proposed improvement focuses. The
outcomes show that each calculation has advantages and drawbacks in certain conditions.
An adaptive neuro-fuzzy integrated Salp-swarm optimization technique has been aimed to
avail the minimum principal amount through organizational operations in power flow by
tracking load variations for DG systems and ESS [66].

A new multi-target dynamic model has been developed with counselling that relies
on the stochastic zone [67]. The uncertain random network (URN) has been suggested to
build the planning through an ideal elective area, dimensions, and working framework
for the following lines: appropriation, substations, static var compensators (SVC), DGs,
and load transformers. The circumstance-based methodology has been used to deter-
mine imperfections in the hierarchical cycle, such as the meaning and fragmentation of
inexhaustible sources.

Since the effects of various alleged components on the structure cannot be overlooked,
the system’s representation is seen through volatile and incoherent diffusion stacks—the
emission rate and calamity decrease when the ideal Pareto area is identified [68].

An advanced method has been introduced for smoothing out the re-modelling and set-
ting up of intensity models by the DG to eliminate one-sided levels and different calamities
and increase the voltage profile [69].

As four different objective plays, the objective is made fuzzy and put into the fuzzy
multi-goal feature. For optimization problems, constraints are modelled as listed in Table 3.

Table 3. Considerations of constraints for optimization modelling.

Article

SG DG ESS

Power
Balance

Equations

Voltage
Limits

Branch
Current
Indices

Location
Indices

Capacity
Ranges

Charge
Rate Limit

[69] Yes Yes - - - -
[70] Yes Yes Yes - - -
[71] Yes - - Yes - -
[72] Yes Yes Yes - Yes -
[73] Yes Yes - - - Yes

A technologically accessible method for private and public use of retail estimates
identified with the establishment of DG has been demonstrated [70]. A heuristic way
has been presented to manage moderation of maximum interest and, at the same time,
to achieve a cheaper initial effort. The sensitivity loss analysis has been incorporated to
optimize DG and ESS by rendering fair voltage ratings [71]. An elite mechanism has been
adopted to simultaneously place both PV panels and BESS on the peak demand through
time-domain strategic steps. The overall optimization is performed to land an acceptable
solution, proving superiority [72]. Despite a significant drop in voltages [73], there is a
nominal power loss reduction after including BESS units in the prevailing DN [74].
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In addition, the complex problems of combining a standard function and a dynamic
load model cannot be effectively solved using unique numerical approaches and methods.
Therefore, to solve multi-objective problems (MOP), meta-heuristic algorithms and general-
purpose methods are used by incorporating dynamic modelling and methodologies.

5. Conclusions

The planning criteria of smart grid modernization determined the optimum integration
of ESS and DG. The criteria are determined from consumers perspective. A critical analysis
and performance for different computing methodologies identify the efficient design of
MOP algorithm for optimizing the entire operation. The optimal formulation is required
for selecting multiple size and location of ESS and DG. The MOP algorithms are valid at
initial state in condition of probabilistic and deterministic loading. The main advantage
of ESS is the efficiency of minimum load variation referred as load flow. ESS also offers
incredible flexibility and control over the entire network. It has major incredible roles in
EV-related research perspectives.

6. Future Scope

Through this significant analysis of survey, directional features for forthcoming work
are suggested as follows.

Modern strategies should be created to manage vulnerabilities in the DG utilizing
presumptions with lower likelihood, such a distribution-safe techniques.

It is recommended to make point-by-point load modelling. For example: static burden,
unique, and occasional burden models to amplify the advantages of DGs in various situations.

The coordination of DG and ESS arrangement, reconfiguration of the DN and the
essential utilization of accessible assets ought to be intended to improve dependability,
adaptability and flexibility. A marker to survey the appropriateness of DG for activities
covering consistent state, posterior unforeseen states and extraordinary climate conditions
has not yet been considered. Advances in electronic gadgets increment the capability of
the assets accessible, which requires cautious efforts given the productive utilization of
new innovations.

Multi-target planning by the DG, considering the vulnerabilities identified with sus-
tainable power sources and the conduct of the operating personnel, is recommended.
Vulnerabilities recognize the advancement of multi-target issues from improving single-
target issues, for which boundaries and requirements can cause conjecture mistakes. It
is suggested to zoom research points on proficient optimization techniques and dynamic
strategy later in the EV era.
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