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Linking PM10 and PM2.5 Pollution Concentration through
Tree Coverage in Urban Areas

David Sierra-Porta,* Yady Tatiana Solano-Correa, Miguel Tarazona-Alvarado,
and Luis Alberto Nuñez de Villavicencio

Particulate matter, PM10 and PM2.5, represents common air pollutants in
cities and constitute a considerable threat to public health impacting daily
activity of people living in city. In large cities, the main sources of PM10 and
PM2.5 are diesel engine exhaust, brake dust, and particulate matter from
vehicle tires. These particles can be deposited, filtered, and considerably
reduced if there is a vegetative surface in the neighborhoods, thus eliminating
a part of these particles and reducing their harmful footprint. This study
evaluates the effect of tree coverage in urban areas on PM10 and PM2.5

removal considering air quality monitoring stations. Estimation of tree
coverage is made by using high spatial and temporal resolution satellite
images from Planet constellations. An empirical relationship between these
two variables, with an acceptable correlation (R2 = 0.478 and R2 = 0.589 for
PM10 and PM2.5, respectively), is obtained. A higher abundance of green
space is associated with significantly lower PM10 and PM2.5 values.
Preliminary results suggest that the amount of tree coverage do cause some
degree of air quality improvement and can be used to inform national clean air
strategies aimed at reducing pollutant emissions.

1. Introduction

The existence and proliferation of fine particles, PM10 and PM2 .5,
is regularly considered as a potential and actual health hazard.
These particles can originate in open spaces due to many fac-
tors but can be diffused and spread to larger areas through wind
geodesics in the atmosphere and can also invade indoor spaces.
Relative particle sizes are measured in microns, and to measure
the number of particles, it is usually expressed in units of μgm−3.
These particles are especially hazardous to health because they

are so fine that they can easily penetrate the respiratory tract.
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Inhalation of these particles mainly causes
chronic bronchitis and asthma. The health
impact of fine particles is difficult to mea-
sure; however, according tomany studies,[1]

they reduce life expectancy and are respon-
sible for many deaths each year in many
countries.
Each country is responsible for setting

maximum allowable limits and health risk
limits for prolonged exposure to these par-
ticles. However, on December 14, 2012,
the United States Environmental Protec-
tion Agency (EPA) finalized an update to
the National Ambient Air Quality Standard
for PM2 .5 and PM10.

[2] Currently, the EPA
has primary and secondary standards for
PM2 .5 (annual average standards with levels
of 12.0 and 15.0 μg m−3, respectively; 24-h
standards with 98th percentile shapes and
levels of 35 μg m−3) and the 24-h PM10 stan-
dard unchanged at 150 μg m−3.
There are three main sources of pol-

lution for the production of this type of
particulate matter:[3,4,5] i) road traffic (diesel particles) including
brake and tire wear: In many countries in Europe and the United
States, steps have been taken in the renewal of automobile traffic
with electric and hybrid engines, reducing these pollution factors
a little, but Latin America still persists with a very high depen-
dence on this fuel where practically all transportation means use
it; ii) the burning of trees and wood combustion, biomass burn-
ing in general, fires, etc.; and iii) Industry, responsible for a third
of the particles in the air.
In recent decades, there has been much concern about the en-

vironmental and health problem caused by air pollution from
particulate matter PM10 and PM2 .5, and it is a challenge for
country authorities to keep exposure situations to a minimum
as increasing global emissions threaten ecosystems[6,7,8] in our
daily lives. Even with few statistics so far, partial but careful es-
timates have shown that today there is greater risk and expo-
sure. Many of the causes of disease and death worldwide are
the result of poor air quality, and there is evidence of great vul-
nerability to human health,[9,10,11] and it has been demonstrated
that during the COVID-19 pandemic this has been even more
dramatic.[12,13,14] According to results from the World Health Or-
ganization (WHO), there is a close quantitative relationship be-
tween exposure to high concentrations of small particles (PM10
and PM2 .5) and increased daily and long-term mortality or
morbidity.[15,16] Conversely, when concentrations of small and
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fine particles are reduced, the associated mortality also falls, as-
suming other factors remain unchanged. This allows policymak-
ers to make projections regarding the improvement in popula-
tion health that could be expected if particulate air pollution is
reduced. Particulate pollution has health effects even at very low
concentrations. In fact, no threshold below which health harms
have not been observed has been identified. It is estimated that
ambient air pollution, both in cities and rural areas, is respon-
sible for 4.2 million premature deaths worldwide per year; this
mortality is due to exposure to small particles of 2.5 microns or
less in diameter (PM2 .5), which cause cardiovascular and respi-
ratory diseases and cancer.[15]

PM10 and PM2 .5 particles can be transported by the air and
deposited on the surface of vegetation, resulting in a partial
removal of these particles and eliminating this fraction of the
atmosphere.[17,18] From the above, the surrounding vegetation in
urban areas can act as a natural filter for this type of particles, and
of course, a higher density of trees and vegetation can contribute
to increase the amount of effective surface area of pollutants de-
position. The problem is not trivial, however, since vegetation can
also redirect and alter the airflow such that some areas may have
higher concentrations of particulate pollutants.
Reductions in particulate matter concentration have been

studied from different perspectives, yielding results of spatial-
temporal dependence considering land areas covered by trees[19]

in the case of inferring indirect relationships for the effect of air
pollution on the occurrence of asthma and other respiratory dis-
eases. This relationship has also been inferred in terms of the
number of trees in populated cities or, for example, as reported by
Xu et al.[20] for a direct measurement of trees’ capacity (in cities)
to remove particulate matter concentrations for PM10, NO2, and
SO2. The amount of surfaces destined to the construction of
buildings and houses has also been considered. Some studies
make this type of relationship possible also by using satellite im-
agery and also web-based applications to determine the capacity
of trees (shrubs and herbaceous vegetation) to absorb some of the
pollution generated by humans in daily life and industrial process
facilities.[21,22,23,24,25] Similarly, for example, a recent study[26] has
demonstrated a reduction of up to 3 kg PM2 .5 evaluating partic-
ulate matter concentrations in areas covered with approximately
80 trees in the Drumcondra tree alley in Dublin at different times
of the day for 5 days representing rush and non-rush hours.
Another example[27] involves modeling PM10 in the West Mid-

lands and Glasgow (UK), concluding that particulate matter con-
centrations could be reduced by up to 10%, thus providing evi-
dence that green spaces drive changes andmodifications in PM10
concentrations, including particle trapping on leaf surfaces.[28]

Some other studies make use of much more complicated
models for spatio-temporal estimation of particle deposition
on vegetation-covered surfaces using tree coverage data, hourly
weather and pollution concentration to quantify the hourly
amount of pollution removal, and the corresponding percentage
of improvement in air quality.[29,30,31,32] In this case, they used
a model known as i-Tree Eco.[33,34,35] The model is complicated
and uses many variables to determine the atmospheric pollutant
deposition rate which varies with wind speed. A fairly detailed
description of how the model works for a particular pollutant
can be found in Hirabayashi et al.[36]. As seen recently in a report
of Lin et al.,[32] the model could have high uncertainties that

could be at best 12.3% for leaf area, 13.4% for carbon storage,
11.1% for carbon sequestration, 40.7% for isoprene emissions,
and 25.0% for monoterpene emissions. The model also seems to
work under U.S. climate conditions; however, its application in
other places, such as Europe, is really uncertain and even more
so in Latin America dominated by particular dynamics different
from the rest of the world. This makes the model inapplicable
to the Americas, thus not being possible to use it for decision
making. An additional limitation has to do with the availability of
labeled data for tree species in cities and also a stringent need to
have many air quality monitoring stations in a small study area.
In addition, the consolidation of meteorological data is necessary
for the calibration and final implementation of the model. Such
sort of data is not usually available for Latin American coun-
tries, making it difficult or impossible to apply them in current
studies.
In America, particularly in Colombia, there is a limitation of

data from monitoring stations that have completeness of mea-
surements of particulate matter concentrations, not to mention
meteorological data at the same site of the air quality monitoring
stations and/or in neighboring areas. Each region has ensured
the consolidation and completeness ofmonitoring stations in the
main cities; however, the goal remains complicated. Additionally,
the mechanisms for estimating the amount of trees and vegeta-
tion are also limitations mainly due to the lack of resources nec-
essary for accurate and efficient remote sensing in the territory.
Different from developing countries, no forest inventories exist
at national or regional levels with enough spatial resolution to
perform detailed analysis. Access to financial resources to invest
in technology and the acquisition and use of this technology is
still a pending problem inmost Latin American countries. Freely
available data from NASA and ESA constellation exist but do not
comply with the spatial resolution required for mapping tree cov-
erage at city scales. All the above, together with the lack of enough
computational resources, makes it necessary to present simple
models that allow estimating the amount of particulate matter
reduction with respect to tree coverage in cities. Such informa-
tion could help in decisionmaking and establishingmechanisms
and goals for the reorganization and adaptation of green spaces,
at least in the main and most populated cities.
Accordingly, this research aims at taking as reference several

monitoring stations of PM10 concentrations (located in Bogotá,
Colombia) in order to obtain an empirical relationship for the de-
pendence of particulate matter concentrations and tree coverage.
The model is meant to be simple, yet precise and exploits freely
available tools combinedwith high spatial resolution data to guar-
antee tree coveragemapping. Based on observations of a 4-month
period of PM10 and PM2 .5 concentration data and using satellite
imagery to measure the tree coverage on the surface around 20
monitoring stations in a major city in Colombia, we attempt to
provide a relationship for PM10 concentration that allows extrap-
olating a reduction ratio of particulate matter depending on tree
coverage.

2. Experimental Section

Bogota (4° 42’ 40’’ N, 74° 4’ 20’’ W), capital of the Repub-
lic of Colombia and the Department of Cundinamarca, as
well as being the political, administrative, economic, industrial,
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Figure 1. Geographical distribution of monitoring stations. On the map panel, monitoring stations in Bogotá, the distance between the two farthest
stations is 25.88 km. The total area of the stations included in this study covers about 400 km2. Visualization is performed using Folium 0.12.1 in Python
3.7. Google Earth. Copyright 2022 Maxar Technologies, CNES/Airbus.

artistic, cultural, sports and, of course, tourist epicenter of
the country, is also the fourth most populous city in South
America[37] (see also www.worldatlas.com/articles/biggest-cities-
in-south-america.html). It is a diverse and multicultural city in
whichmodern constructions are combinedwith those of the colo-
nial past. In addition, it is important to note that thanks to its
hills and parks, it is a green city dominated by large extensions of
vegetation in some parts of its geography, mainly those that are
farther away from the city center. Toward the center of the city,
constructions and buildings dominate the landscape. It covers a
total area of 1587 km2 and an average altitude of 2640 m above
sea level. Bogotá has an estimated population of 7 412 566 inhab-
itants in the capital area while it could reach up to 10 700 000 in
the metropolitan area, including the neighboring municipalities
on the suburbs of the city. The average temperature is 14.5 °C (58
°F), varying from 6 to 19 °C (43 to 66 °F) on sunny days to 10 to
18 °C (50 to 64 °F) on rainy days. Dry and rainy seasons alternate
throughout the year. The traffic infrastructure cannot handle the
masses, and the old buses sometimes let entire streets go down
in thick smoke.

2.1. Material Particulate Concentrations Data

PM10 and PM2 .5 concentration data have been acquired from 18
stations located in Bogotá. The monitoring stations of the Bogota
Air Quality Monitoring Network (Red de Monitoreo de Calidad
del Aire de Bogotá, RMCAB) have been operating since 1997 and
consist of monitors, analyzers, and automatic sensors that collect
hourly data on the state of air quality in Bogota. This information
is stored and sent via Internet to the central server of the Secre-
tariat of Environment, where it is pre-filled and published in real
time on the entity’s web page. The network’s monitors and ana-
lyzers operate under specific measurement methods established
in Title 40 of the Code of Federal Regulations, which are approved

by the U.S. EPA. For each pollutant, a specific reference method
is defined, according to the equivalent technique for the opera-
tion of each monitor.[38]

Daily air quality data (PM10 and PM2 .5 concentrations) were
acquired throughout 2020 and 2021. Meteorological data, includ-
ing precipitation, wind direction, and wind speed, were acquired
from the Institute of Hydrology, Meteorology and Environmen-
tal Studies (Instituto de Hidrología, Meteorología y Estudios Am-
bientales, IDEAM) meteorological partner stations. These data
were used to calculate the monthly mean, maximum, minimum,
median, and standard deviations of PM10 and PM2 .5 concentra-
tions. Figure 1 and Table 1 show the main geographical informa-
tion and distribution of the monitoring stations available in this
study.
The selected data correspond to daily averages in the time in-

terval between October 2020 andMarch 2021. Figure 2 shows the
distribution of daily PM10 measurements for each of the stations.
Based on the observation in Figure 2, we see that the concentra-
tions are not normally distributed; they rather closely follow a
Maxwell–Boltzmann type distribution. Due to this observation,
for the purposes of calculating the averages in this period, we de-
termined the cumulative distribution of concentrations and no-
ticed that it can be well fitted with a distribution such that:

P (X = x) =
√

2
𝜋

x2exp
(
−x2∕2a2

)
a3

(1)

and cumulative probability density function:

P (X < x) = erf

(
x√
2a

)
−
√

2
𝜋

x2exp
(
−x2∕2a2

)
a

(2)

where erf is the error function (also called the Gauss error func-
tion), and in this case, a is the only free parameter, and we call it
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Table 1. Information about distribution of monitoring stations in Bogotá;
the distance between the two farthest stations is 25.88 km.

Code Latitude (N) Longitude (W) Altitude (m.a.s.l) Kind

GYR 4.783756 −74.041683 2580 Background

USQ 4.710350 −74.030417 2570 Background

SUB 4.761247 −74.093461 2571 Background

BOL 4.735867 −74.125883 2574 Background

LFR 4.735867 −74.082483 2552 Traffic

FTB 4.678183 −74.143819 2621 Traffic

PTE 4.631767 −74.117483 2590 Traffic

KEN 4.625050 −74.161333 2580 Background

CSE 4.595617 −74.148583 2563 Traffic

TUN 4.576225 −74.130956 2589 Background

JAZ 4.608500 −74.114944 2559 Residential

USM 4.532056 −74.117139 2593 Residential

BOS 4.605611 −74.204056 2546 Background

CBV 4.577806 −74.069444 2661 Residential

CDAR 4.658467 −74.083967 2552 Traffic

MAM 4.625486 −74.066981 2621 Traffic

SCR 4.572553 −74.083814 2688 Background

MOV 4.642431 −74.083967 2583 Traffic

Altitude is expressed in meters above sea level (m.a.s.l). The total area of the stations
included in this study covers about 400 km2. The last column specifies the type of
measurement station (background, traffic, and residential).

scale parameter and it is related to the mean and standard devia-
tion so that:

𝜇 = 2a

√
2
𝜋
, 𝜎 =

√
a2 (3𝜋 − 8)

𝜋
(3)

From Equation (3), averages and their corresponding uncer-
tainties are calculated for particulate matter concentrations over
the period under study. In addition to determining the mean
particulate matter concentrations, we considered estimating the
number of days that the dailymeasurement exceeded themean at

each station. According to the results, we observed that for PM10,
48% of the days the measured concentration exceeded the mean
with a standard deviation of 2%. Similarly, for PM2 .5, the results
are 47% ± 3% in which the concentration exceeded the mean.
The minimum and maximum concentrations for the monitor-
ing stations are in the range of (PM10

min, PM10
max) = (9 ± 4, 69

± 19) μg m−3 and (PM2.5
min, PM2 .5

max) = (4 ± 2, 34 ± 6) μg m−3,
respectively

2.2. Satellite Imagery: Spatial Distribution and Tree Coverage
Mapping

For this study, tree coverage in the vicinity (500 m box) of the
environmental monitoring stations was measured through high
spatial resolution satellite images acquired by Planet Scope con-
stellations. Planet Scope (or Dove) is a constellation of 200 nano-
satellites owned by the imaging company Planet Labs (www.
planet.com), launched in 2017 that provides multispectral data
on a daily basis and with a spatial resolution of 3 m. The ini-
tial satellites acquired data with four multispectral bands: red,
green, blue, and near-infrared, but newest (2022) constellations
acquire data with up to eight bands. Each multispectral image
covers an area of 24 × 8 km requiring to applying homoge-
nization steps between images acquired by different satellites
on the constellation. Even though Planet data is of commercial
purposes, many of its products are free for research purposes
(https://www.planet.com), thus being possible to use them for
the type of analysis presented in this research (in developing
countries).
Due to Bogotá’s location, cloud coverage is usually persisting

all across the year. This makes finding cloud-free images over
a given area for any time of the year a critical task. Thanks to
the daily temporality of Planet Scope data, it was possible to find
free cloud images covering each of the stations´ location in the
period January–February 2021. This period goes in line with the
acquisition period for the analyzed stations. As seen in Figure 1,
the distribution of the stations makes it necessary to use more
than one image to apply an algorithm for tree’s detection. This is
translated in the requirement to homogenize different images,

Figure 2. Absolute and cumulative distribution for measured PM10 concentrations from analyzed data from Bogotá stations. The distribution of mea-
surements is well fitted to a Maxwell–Boltzmann distribution with free parameter a.
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and this is done by applying a relative radiometric normalization
based on histogram matching across different images.[39]

Once images have been homogenized, the first step is detect-
ing vegetation and separating it from any other type of land cover.
Vegetation detection here is the process of finding pixels and re-
gions of green color, or rather a range of green colors in the im-
age. In order to carry out this step, the normalized difference
vegetation index (NDVI) is used. Vegetation indices are combi-
nations of spectral bands recorded by remote sensing satellites,
whose function is to enhance vegetation according to its spec-
tral response and to attenuate the details of other elements such
as soil, illumination, and water, among others. They are images
calculated from algebraic operations between different spectral
bands. The result of these operations allows obtaining a new im-
age where certain pixels related to parameters of vegetation cover
are graphically highlighted.
The NDVI is a vegetation index used to estimate the quantity,

quality, and development of vegetation based on the measure-
ment of the intensity of radiation from certain bands of the elec-
tromagnetic spectrum that vegetation emits or reflects.[40] For the
calculation of vegetation indices, the information found in the
red and near-infrared bands of the electromagnetic spectrum is
necessary. NDVI is calculated using the following equation:

NDVI = NIR − RED
NIR + RED

(4)

From Equation (4), it is possible to understand that NDVI
varies in the range [–1,1], with vegetation being all NDVI
values >0.
Once vegetation has been separated from other land covers,

images are checked in order to evaluate the results and cor-
rect possible issues remaining due to large presence of small
lakes/ponds in the area with high vegetation content on the
surface. Such lakes/ponds get confused with vegetation. Thus,
another spectral index, the normalized difference water index
(NDWI), is used in order to separate water from vegetation.[41]

Similar to the NDVI, NDWI is calculated using the following
equation:

NDWI = GREEN − NIR
GREEN + NIR

(5)

From Equation (5), it is possible to understand that NDWI
varies also in the range [–1,1], with water content being all NDWI
values >0.
Once vegetation and water bodies with surface vegetation have

been separated, the last step is to separate trees from any other
type of vegetation. To this aim, the green band is used by exploit-
ing the higher radiometric response from trees (with reference to
other types of vegetation), which is higher due to vegetation den-
sity. The threshold is automatically selected by using the Otsu’s
thresholding method,[42] and it is different from one station (im-
age) to another due to difference in tree’s coverage in the areas.
Finally, tree coverage is quantified according to the number of
pixels detected as such and according to the spatial resolution of
Planet Scope data (3 m × 3 m). In order to measure the precision
of results in tree detection, we used the Intersection over Union
method,[43] where precision is provided as a percentage.

Table 2. Estimated values for number of pixels in image (1 × 1 km2) and
tree coverage in square meters for each of the stations using multispectral
band and processing analysis.

Name Code Number of pixels Coverage [m2] Kind

Guaymaral GYR 7811 70 299 Background

Usaquén USQ 22 435 201 915 Background

Suba SUB 10 429 93 861 Background

Bolivia BOL 2535 22 815 Background

Las Ferias LFR 12 751 114 759 Traffic

Fontibón FTB 804 7236 Traffic

Puente Aranda PTE 1936 17 424 Traffic

Kennedy KEN 1310 11 790 Background

Carvajal CSE 843 7587 Traffic

Tunal TUN 2100 18 900 Background

El Jazmín JAZ 2033 18 297 Residential

Usme USM 6576 59 184 Residential

Bosa BOS 3935 35 415 Background

Centro de alto rendimiento CDAR 11 700 105 300 Traffic

MinAmbiente MAM 11 936 36 828 Traffic

San Cristobal SCR 2577 23 193 Background

Movil 7ma MOV 4092 36 828 Traffic

3. Results

In order to apply the proposed models for quantifying particu-
late matter concentrations and their correlation to the presence
of trees, tree coverage detection was first carried out by means of
the proposed method in Section 2.2. The detailed results can be
found inTable 2, where thewide variability of tree coverage across
the different stations location can be noticed. In order to validate
the results, tree coverage information was created by photo inter-
pretation for two stations (CDAR and LFR). These stations were
selected because of showing extreme cases of analysis, the first
onewith high tree coverage and presence of a lake/pondwith veg-
etation on the surface, whereas the second station presents low
tree coverage and mainly buildings in the surrounding areas.
The obtained accuracies were of 95% and 97%, respectively,

and detailed results can be found in Figure 3, where the panels
(a) and (c) in Figure 3 show the RGB images for CDAR and LFR
stations, whereas panels (b) and (d) in Figure 3 show the same
image with all the detected trees highlighted in yellow color for
comparison. The remaining error, which is low, is attributed to
the spatial resolution of the images used, since some trees are
smaller and can get confused with other sorts of information. Yet,
and as expected, the results are reliable from both a quantitative
and qualitative perspective.
From the data collected (and presented above), we calculated

the exceedance of pollution days defined as the number of days
in which the 24-h average of particulate matter is above a critical
range of total suspended particulate matter. The results clearly
show that at stations where there is an abundance of trees around
the monitoring stations, the number of pollution days is signifi-
cantly lower than at sites with insufficient vegetation cover. This
can be seen in Figure 4.
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Figure 3. Example of original capture (a,c) and detection result (b,d) with yellow representing detected trees by proposed method for CDAR monitoring
station panels (a) and (b) with 95% accuracy. In panels (c) and (d), the same as above but for LFR monitoring station with 97% accuracy. In all cases,
the box has 500 m size around the monitoring station.

Figure 4. Average number of exceedance days of particulate matter from stations related with tree cover (upper panels) and average particulate matter
(bottom panels.).

In the case of PM10, almost all stations exceeded concentra-
tions of >30 μgm−3 on more than 40% of the days, while in the
case of PM2 .5, half of the stations exceeded concentrations of
>18 μg m−3 on more than 30% of the days.
From the different analysis, it was found that the tree coverage

amount in the vicinity of monitoring stations has resulted in a
filtering effect on the concentrations of particulate matter; that
is, when the trees’ coverage increases, the average concentration
of particulate matter decreases. Indeed, it becomes evident that
this effect is also present when considering the number of days
in which concentrations exceeded certain critical measurement
thresholds. For example, in the case of PM10, it is found that
when concentrations exceeded thresholds of 10, 20, 30, 40,
and 50 mg, a 90% decrease in tree cover (reduction between
stations with lower and higher tree population) can increase the
number of days exceeding these thresholds by 27%, 76%, 97%,
100%, and 100%, with averages of 95%, 79%, 55%, 31%, and
15%, respectively. Recall that the EPA standard for 24-h PM10 is
150 mg. Likewise, for PM2 .5, the same reduction suggests that
for 6, 12, 18, 24, and 30 mg, the reductions are in the order of
39%, 67%, 89%, 98%, and 100%, with averages of 92%, 70%,

40%, 17%, and 6%, respectively. Recall that the EPA standard
for 24-h PM2 .5 is 35 mg. In general, we can say that the city’s air
quality is good, with a very small percentage of stations exceed-
ing the international permitted thresholds (see bottom panel in
Figure 4).
No correlation is observed between the number of days that

stations reported measurements above mean with tree coverage
in the vicinity of the monitoring stations. In this case, we ob-
tained correlation coefficients of r=−0.10 and r=−0.33 for PM10
and PM2 .5, respectively. Furthermore, there is evidence of a sta-
tistically significant effect of tree coverage dominance on maxi-
mum and minimum PM concentrations from analyzed data for
these stations.We found that the correlation coefficients for these
cases are r = −0.44 (PM10

min), r = −0.64 (PM10
max) and r = −0.57

(PM2 .5
min), r = −0.50 (PM2 .5

max).
As an important result, there was a clear signal that the abun-

dance of green spaces affected mean PM10 concentrations (r =
−0.63, p-value = 0.0061), as well as a significant effect on mean
PM2 .5 concentration (r = −0.62, p-value = 0.0078), considering
Pearson’s correlation coefficient. In other words, a higher abun-
dance of green space is associated with significantly lower PM10
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Figure 5. Dependence of mean particulate matter concentrations as a function of tree cover in the vicinity of eachmonitoring station. Residual is defined
in the usual way as difference between data and fit values (ydata − yfit).

Table 3.Goodness of fit in linear estimation of mean values in PM concen-
trations versus tree cover in the neighborhood of stations.

Parameter/
Contaminant

PM10 PM2 .5

a ± 𝜎a 0.194 ± 6.816 × 10−5 9.994 ± 7.488 × 10−6

b ± 𝜎b 2913.281 ± 9.978 × 10−1 392.928 ± 3.129 × 10−5

c ± 𝜎c −0.268 ± 7.986 × 10−6 −0.613 ± 4.801 × 10−6

Determination
coefficient of fit (R2)

0.478 0.589

R2-adjusted 0.445 0.555

Data/fit, MIN 0.6 0.7

Data/fit, MAX 1.4 1.4

Root mean squared
error

9.349 3.655

and PM2 .5 concentrations. Figure 5 shows the dependence of the
mean concentrations for all the monitoring stations studied as
a function of tree coverage obtained by satellite images centered
on each station.
We attempted to reproduce a simple empirical model for the

dependence of tree cover, measured in square meters, and the
averages of PM10 and PM2 .5 concentrations. In this case, we have
used a minimization model of a cost function defined as 𝜒2 ∼

Σ(ydata − ymodel)
2. For this, we have proposed the model such that

ymodel
(PM10,PM2.5) = a (1+ bxc) as the best fit performed. The results

are shown in Table 3.
All nonlinear regression models are statistically significant (p

< 0.01 for a 95% confidence interval) with moderate high fitting
precision. The R2-value of each regression model varies from
0.478 to 0.589, and the adjusted R2-value of cross validation re-
sults is a little lower, varying from 0.445 to 0.555 for both con-
taminants.

4. Discussions

From the analysis done in this study and the results presented
in Figure 5, it is evident that the mean PM10 and PM2 .5 concen-
trations vary significantly according to the proportion of tree cov-
erage in the area near and surrounding the monitoring stations.
However, despite this observation andwhen considering the coef-
ficient of variability of the stations (= 𝜎PM/⟨PM⟩), the average co-
efficient is 37.19 ± 4.76 μg m−3 for PM10 and 40.97 ± 8.28 μg m−3

for PM2 .5. This suggests that the dispersion of concentrations is
really large. This is because half of the stations considered are
traffic stations (or very close to massive traffic sources[44,45,46,47]).
So, those areas are affected by local sources of air pollution. How-
ever, this is not discriminatory in establishing a relationship with
the number of trees in the area.
The discrimination of these separate concentrations in time in-

tervals corresponding to peaks of automobile traffic activity has
not been considered for this study. Nevertheless, it is evident that
PM10 concentrations at least double when tree coverage is ten
times lower and triple in the case of PM2 .5. This is in full corre-
spondence and agreement with previous work.[26,48]

In terms of the established models, we can observe that a 50%
decrease in tree coverage in square meters of trees implies (us-
ing the regression model) that there is an increase in pollutant
concentration of about 20% and 15%, respectively, for PM10 and
PM2 .5, while an increase in tree coverage implies a decrease in
pollutant concentration of about 10% and 6%, respectively, for
PM10 and PM2 .5. It is clear that the effect of trees is beneficial.
However, the effect of their decrease in square meters is more
drastic than the effect of further increasing the cover to be ac-
counted for by the model.
In terms of quantitative modeling for the exploration of the re-

lationship between land use (considering the number of trees in
urban areas of cities) and air quality, we found that the biggest
challenge is precisely the scarcity of good data with control
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monitoring stations of air quality in the cities. Therefore, to im-
prove the robustness of the regression models limited by the
scarcity of locations, we have collected a sequence of data that
are available in one of the main cities in Colombia for the time
interval in the years 2020 and 2021 with about 32 records from air
quality monitoring stations. This allows for a greater association
between locations and the time trend of air quality. Another diffi-
culty is the limitation of accessibility to the data of other indepen-
dent variables in each site. Additionally, the greatest limitation is
the effective and precise identification of tree coverage in urban
areas in Latin American countries. The geographic identification
records of trees by the competent authorities are very scarce and
are not properly updated; there are no databases of trees planted
in urban and rural areas, at least in terms of usability, despite be-
ing a responsibility of local authorities to maintain control and
inventory of these.
To overcome this last difficulty, satellite records can be used

that could help predict said variable. However, this is another lim-
itation. Despite having satellites and geographically labeled data,
said data are generally not free, with restricted access, and inmost
cases, also due to the above, methodologies with very poor reso-
lution data are used. In order to investigate this effect, we have
obtained satellite data for the detection of tree coverage in urban
areas in Colombia using high spatial resolution data (3 m) and
automatic strategies with radiometric indices segmentation. Re-
sults were tested with photointerpretation information, showing
detection accuracies above 95%.
Although other variables involved in the process of reducing

air pollutants are necessary, here we have obtained amodel based
on data that describes at amoderately high level the ability of trees
to reduce air pollution, at least for PM10 and PM2 .5. In order to
obtain amore robustmodel, in addition to predicting the amount
of tree coverage, some other variables such as the number of mo-
tor vehicles registered in each of the locations could be consid-
ered. The appropriate variable for emission or traffic volume is
vehicle kilometers traveled (VKT) in each cell, which has been
widely used in developed countries.[49] It may also be important
to incorporate the number of companies at the sites to establish
patterns of pollution sources when apportioning total releases to
each location. Different size gradients for areas surrounding the
stations could be also considered. All of the above can affect the
results of the quantitative modeling of the impact of land use on
air quality. This is a future work that will be carried out with an
adequate experimental design.
Regarding the modeling methodology, in this study, the air

quality and the geographical environment are ordered with ap-
proximately the same period. This is convenient and can be done
in most of the tropics where the conditions of humidity, temper-
ature, air temperature, pressure, precipitation, and other atmo-
spheric variables do not vary significantly throughout the year,
and only two well-differentiated seasons exist. However, chang-
ing the geographic environments could take some time to result
in air quality changes. Although mean quarterly air quality con-
centrations are used, which are the aggregated impacts of geo-
graphic settings, the lagged effect of geographic settings on air
quality may affect the association between them, which can be
studied in further research. The nonlinear regression model that
we have used to account for the quantitative relationship between
land use impacts on air quality in our study is slightly different

from others used in studies where linear regressions are used to
model.[50,20] The independent variable, tree coverage, is accepted
in the statistically significant model (p < 0.01 for a confidence
interval of 95%).
However, some variables have not been taken into account,

such as the determination of the area covered by constructions
and buildings, nor the uncovered area. Although these factors
affecting air quality were not considered in our study, nor were
traffic, traffic volume, or the number of businesses in the areas,
whichmay increase the uncertainty of the final regression tests of
the models, these factors may be considered in a more in-depth
study to be conducted soon.
In Bogotá, 1.2 million public trees are planted on roads, parks,

riverbanks, and sidewalks. The tallest trees are pines and euca-
lyptus (Pinacease, Cupressacease). Consequently, of the giants
planted, these are the most common. Regardless of their size or
species, they are not enough to mitigate the city’s environmen-
tal footprint. The eight families of trees that have been planted
the most in the capital, and which are the most common, taking
into account their growth capacity, ability to clean the air, and
resistance to pollution, among others, are: Fabacease (29.3%),
Adoxaceae (19.3%), Pittosporacease (12.1%), Oleacease (9.2%),
Cupressacease (8.1%), Myrtacease (7.7%), Rosacease (7.4%), and
Bignoniacease (6.9%). The city government maintains a policy of
maintenance andmonitoring of the tree fauna to keep it always in
progressive growth. Regardless of the size that plants can reach,
the characteristics of the environment cause their growth to be
higher or lower than average.
Trees are unquestionably the fundamental elements of Urban

Ecosystems, which contain a diversity of interacting elements,
each with specific requirements, for which cities must provide
their spaces, where animals, plants, and infrastructure can coex-
ist forming pleasant places for their inhabitants, even more so
when we are facing a changing city in terms of mobility and in-
frastructure. The World Health Organization[51] states that there
should be 9 m2 of green areas per inhabitant in cities; we are cur-
rently facing a great challenge tomaintain and increase the green
areas of cities in the face of the changing landscape of modern-
ization that is required to be at the forefront of the needs of the
population that resides in them.[52,53]

Trees in cities, whether they are isolated or in areas such as
wetlands, parks, riverbanks, or streams, are the first approach
to nature for many citizens; they regulate the temperature with
the shade they provide and by releasing water vapor through
their leaves, they can lower the air temperature by roughly 2 to
8 °C.[54,55] Likewise, their shade reduces the evaporation of wa-
ter from the lawn, and as they transpire, atmospheric humid-
ity increases, requiring less irrigation, and finally, they become
a natural filter for the absorption of some of particles on the
leaf surface, significantly reducing the concentrations of these
pollutants.[56,57,58]

Additionally, we have taken into consideration for the evalua-
tion of tree coverage square boxes of satellite images of 1 km side.
The trees studied in the tropics and in the cities have an average
canopy diameter of 12 m2. Moreover, some studies[59,60] estimate
that in Colombia are about 44951 trees km−2. This implies to have
an average pollutant rate of PM10 of 40 μg m−3 and of 15 μg m−3

for PM2 .5; the required density, according to our results, would
be around 13% and 29%, respectively. With these estimates, this
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implies that maintaining this pollutant rate would require about
5715 and 13 084 trees km-2 for PM10 and PM2 .5, respectively.

5. Conclusions and Final Comments

In this study, we have evaluated the potential and unquestion-
able effect that trees have on the cleanliness of urban air in cities
and in particular evaluating their effect on the decrease of PM10
and PM2 .5 concentrations. The objective was focused on finding
an empirical dependence of the mean pollution concentrations
and the tree coverage in the vicinity of monitoring stations. We
obtained a simple nonlinear model, as a first approximation with
acceptable Pearson’s coefficients for PM10 (R

2 = 0.478) and PM2 .5
(R2 = 0.589). Thus, the potential of urban trees in removing traf-
fic and background air pollution through deposition and improv-
ing air quality is investigated using 18 monitoring stations of the
Bogotá-Colombia Air Quality Monitoring Network system. The
results indicated that there are no significant differences, regard-
less of whether the stations are background or traffic stations, in
the reduction of PM10 and PM2 .5 averages. Concentrations are
significantly lower in places with a higher amount (density) of
trees, and vice versa, higher concentrations occur in areas with a
lower amount of trees (which implies a higher amount of infras-
tructure and buildings). Although this study provides an initial
exploration of trees and air quality in Bogotá, it is necessary to
address this same study now by stratifying the measurements by
the hours of heaviest automobile traffic in the city and evaluate
differences inmean concentrations at various time intervals. The
results of this study confirm that a greater abundance of trees
in the city could help mitigate the effects of high elevations of
particulate matter concentrations, but more importantly, inform
governments and decisionmakers about the importance of a sus-
tained policy of tree planting and improvement of green spaces
in the city as an important management to help achieve emission
reduction goals in the future. Finally, the original data for the re-
sults in this manuscript are available at web direction,[61] so they
are free to replicate and reproduce our results.
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