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Abstract: This research presents an efficient energy management system (EMS) for battery energy
storage systems (BESS) connected to monopolar DC distribution networks which considers a high
penetration of photovoltaic generation. The optimization model that expresses the EMS system with
the BESS and renewable generation can be classified as a nonlinear programming (NLP) model. This
study reformulates the NLP model as a recursive convex approximation (RCA) model. The proposed
RCA model is developed by applying a linear approximation for the voltage magnitudes only at nodes
that include constant power loads. The nodes with BESS and renewables are approximated through
the relaxation of their voltage magnitude. Numerical results obtained in the monopolar version of a
33-bus system, which included three generators and three BESS, demonstrate the effectiveness of
the RCA reformulation when compared to the solution of the exact NLP model via combinatorial
optimization techniques. Additional simulations considering wind power and diesel generators
allow one to verify the effectiveness of the proposed RCA in dealing with the efficient operation of
distributed energy resources in monopolar DC networks via recursive convex programming.

Keywords: recursive convex model; monopolar DC distribution networks; efficient energy
management system; battery energy storage systems; distributed energy resources

1. Introduction

Monopolar DC networks are efficient electrical systems that utilize DC technology
at all voltage levels [1,2]. These grids can be constructed for high voltage levels, i.e.,
transmission lines to interconnect large-scale power systems with different frequencies,
as well as extra-large transmission lines to transfer thousands of megawatts for distances
larger than 1000 km [3,4]. In addition, DC networks can also be constructed for medium-
and low-voltage levels to distribute energy to all end users while improving voltage quality
and reducing the total grid energy losses [5,6]. The main advantage of using DC instead of
AC technology to provide the electrical service at medium- and low-voltage levels is the
fact that there is no reactive power and frequency in these systems [7], which makes these
grids efficient in terms of energy losses, as well as easy to control, because power flows and
voltages are the only variables of interest in these grids [8,9].

One of the greatest challenges in the operation of monopolar DC networks is the effi-
cient integration of distributed energy resources, given that, as in the case of AC networks,
these devices must be effectively coordinated in order to extract their greatest benefit [10].
This research aims to propose an efficient energy management system (EMS) for batteries
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interconnected in monopolar DC networks with a high penetration of renewable energy
resources based on photovoltaic (PV) generation technology. The main goal to obtain the
best generation outputs and energy-storage profiles to minimize the expected grid energy
losses. Note that, even though the daily energy losses can be a secondary optimization
objective in electrical networks with multiple distributed energy resources, the nonlinear
structure of this optimization problem can be used to propose new solution methodologies
that include economic and environmental analyses, in which PV plants and battery energy
storage systems (BESS) can play an essential role in their efficient operation. In the current
literature, there are many studies on the optimal integration and operation of dispersed
generation units in monopolar DC networks [11], some of which are presented below.

The authors of [12] proposed a mixed-integer quadratic convex formulation to locate
dispersed generation sources and select BESS systems in monopolar DC distribution
networks. The nonconvex equations regarding power balance were relaxed by using
the McCormick approximation of the product of two variables. Numerical results in the
21-bus grid demonstrated the effectiveness of the proposed mixed-integer convex model to
locate distributed energy resources in comparison with the exact mixed-integer nonlinear
programming model solved in the GAMS software. However, the authors did not propose
any alternative to minimize the errors introduced by the McCormick approximation in the
final calculation of the objective function. The study by [11] provided a detailed analysis
of the possibility of supplying a part of the electrical energy consumption of residential
users in Bogotá, Colombia based on the benefits granted by Law 1715 of 2014. It studied
two different residential consumers (strata 2 and 3 of the Colombian socioeconomic scale,
with 1 being the lowest level), considering a PV penetration between 10 and 100% of
their self-consumption. Numerical results demonstrated positive profits perceived by the
users during the first year of operating their PV residential systems. In [13], the authors
presented a semidefinite programming model by which to operate distributed energy
resources in monopolar DC networks. The main advantage of semi-definite programming
is that it belongs to the family of the convex optimization techniques, which ensures that
the optimum global for the studied problem is found. Numerical results in the 21-node grid
demonstrated the effectiveness of the proposed convex formulation in comparison with
the solution of the exact NLP model in the GAMS software. However, the main flaw of
semidefinite programming corresponds to the quadratic increment of the model variables,
as it works in the space of the semidefinite matrices. The authors of [14] proposed a convex
approximation methodology to operate wind power and PV generation in medium-voltage
DC distribution grids. Numerical results in two test feeders composed of 10 and 39 buses
confirmed the effectiveness of the proposed convex model in comparison with their solution
via specialized commercial tools. However, the authors focused on the stability analysis
of the system while considering uncertainties in renewable energy resources. They did
not resolve an optimization problem for an operation horizon because their interest was in
observing the stability of the distribution network when it undergoes sudden variations in
renewable generation.

In light of the reviewed state of the art, the main contributions of this research are
as follows:

i. The reformulation of the NLP model that describes the EMS system for PV generation
units and BESS in monopolar DC networks as a quadratic convex approximation by
using the McCormick approximation of the product of two variables.

ii. The application of an iterative solution of the proposed convex model to minimize/e-
liminate the error induced by the McCormick approximation by using a recursive
solution approach.

Note that the scope of this research does not include the possible uncertainties in PV
generation and demand, which are considered to be well-known inputs for the NLP model
that represents the EMS system. Nevertheless, more research is required regarding the
stochastic nature of the demand profile and generation input as a function of the weather
conditions and the type of the day under analysis (working day or weekend). In addition,
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the main difference of the current proposal with respect to the convex approximation
proposed by the authors of [12] is that, in this research, the McCormick approximation is
recursively evaluated to minimize the error induced by the approximation of the product of
two variables while using a linear equivalent approximation, which was not implemented
by the mixed-integer quadratic approximation employed in [12] for the efficient integration
of dispersed generation sources and BESS systems in monopolar DC networks.

The rest of this paper is organized as follows. Section 2 presents the exact nonlinear
programming (NLP) model to represent the optimal dispatch of PV generation units and
BESS in monopolar distribution systems with the purpose of minimizing daily energy
losses. Section 3 describes the proposed McCormick approximation to transform the
product of two variables into an affine plane that allows one to turn the exact NLP model
into a convex approximated one. In addition, a recursive procedure is implemented to
minimize/eliminate the estimation errors introduced by the linear approximation. Section 4
presents the general characterization of the test feeder, which corresponds to the DC version
of the IEEE 33-node grid adapted for operating with information regarding PV generation
and demand consumption in the city of Medellín (Colombia). Section 5 describes all the
numerical validations, including four different simulation scenarios and some comparative
analyses with combinatorial optimization methods. Finally, Section 6 presents the main
conclusions from this research and possible future developments.

2. Exact NLP Formulation

The problem regarding the optimal operation of BESS in monopolar DC distribution
networks with a high presence of renewable generation systems can be represented as
an NLP formulation, in which the objective function corresponds to the minimization of
the expected costs of the daily energy losses, and the main constraints (i.e., the nonlinear
constraints) include the power balance equation at each node of the grid. The complete
mathematical formulation of the studied problem is presented from (1) to (10):

Obj. func.:

min Ecosts = ∑
t∈H

CoEt

(
∑
i∈B

vi,t

(
∑
j∈B

Gijvj,t

))
∆t (1)

Const.:

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = vi,t ∑

j∈B
Gijvj,t, {∀i ∈ B, ∀t ∈ H} (2)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t,
{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
(3)

SoCb
i,t0

= SoCb,ini
i , {∀b ∈ E , ∀i ∈ B} (4)

SoCb
i,t f

= SoCb,fin
i , {∀b ∈ E , ∀i ∈ B} (5)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ B, ∀t ∈ H} (6)

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {∀i ∈ B, ∀t ∈ H} (7)

pb,min
i ≤ pb

i,t ≤ pb,max
i ,

{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
(8)

vmin
i ≤ vi,t ≤ vmax

i , {∀i ∈ B, ∀t ∈ H} (9)

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i ,

{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
. (10)

This NLP model has the following interpretation. The objective function in (1) corre-
sponds to the expected energy loss costs caused by all the resistive effects of the distribution
lines that compose the monopolar DC network. The equality constraint (2) is the applica-
tion of Tellegen’s second theorem to each node of the grid. This constraint corresponds
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to the power equilibrium at each node of the network (a combination of Kirchhoff’s first
and second laws) [15,16]. Equality constraint (3) corresponds to the relationship between
the state of charge in a battery and its power consumption/generation, which is mod-
eled linearly, as proposed by the authors of [17] through a charge/discharge coefficient.
Equality constraints (4) and (5) refer to the initial and final states of charge assigned to the
batteries by the distribution company at the beginning and end of the operation horizon.
Box-type constraints (6)–(8) are associated with the minimum and maximum operation
bounds regarding power injection in the slack node, dispersed generators, and batteries,
respectively. Inequality constraint (9) is related to the voltage regulation bounds assigned
by the regulating bodies in order to ensure that the energy service received by the end
users is adequate in terms of quality and waveform. Finally, box-type constraint (10) is
associated with the energy-storage capabilities of the BESS systems, which are defined as a
function of the state-of-charge indicator.

The main characteristics of the geometrical structure of the NLP model (1)–(10), which
represents the EMS for operating BESS and renewable energy resources in distribution
systems, are the following:

i. The objective function in (1) corresponds to a nonlinear function belonging to the
family of convex functions, given the properties of the conductance matrix G, which
is a semidefinite matrix [7]. Note that this matrix fulfills the semidefinite condition if
and only if all the nodes are connected at least in radial form, i.e., if the distribution
system has no isolated nodes or areas [7].

ii. The set of constraints (3)–(10) corresponds to affine and box-type constraints that
pertain to the family of convex constraints.

iii. The power balance constraint in (2) is a set of nonlinear equations that are nonconvex
given the product between voltage variables. This nonlinearity turns the optimization
model (1)–(10) into a nonconvex optimization problem.

Remark 1. To address the nonconvex structure of the problem pertaining the optimal of PV
generation and BESS in monopolar DC networks, this work proposes a recursive approximation
model that employs the McCormick approximation of the product of two positive variables, as
presented in the next section.

3. Proposed Convex Approximation

As mentioned in the previous section, the set of constraints (2) is the only set of non-
convex constraints in the NLP model (1)–(10), which implies that, if it is convexified, the en-
tirety of the NLP model will become a convex optimization problem, whose advantages are
well-known, i.e., the possibility of finding the global optimum via interior-point methods.

3.1. McCormick Approximation

In order to obtain a convex approximation for the set of power balances, the approxi-
mation regarding the product of two variables, i.e., f (x, y) = xy around the operation point
(x0, y0) by using McCormick envelopes is used [18]:

f (x, y) = xy↔ f (x, y) ≈ y0x + x0y− x0y0, (11)

which clearly turns the product of two variables (i.e., a nonconvex constraint) into an affine
expression, which is indeed a convex constraint [12].

Now, considering that v0
i,t = x0, v0

j,t = y0 and the variables x and y are defined as vi,t

and vj,t, Equation (2) takes the following convex approximation:

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = ∑

j∈B
Gij

(
v0

j,tvi,t + v0
i,tvj,t − v0

i,tv
0
j,t

)
, {∀i ∈ B, ∀t ∈ H} (12)
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with v0
i,t and v0

j,t being the linearizing points used in the McCormick approximation, which
correspond to the initial voltage values associated with nodes i and i at each period of time.

Remark 2. The convex approximation of the power balance equation defined in (12) allows trans-
forming the NLP model (1)–(10) into a convex optimization model. However, the inclusion of the
linearizing point

(
v0

i,t, v0
j,t

)
introduces an estimation error between the exact solution of the NLP

model and the proposed convex approximation, although this error can be reduced/eliminated by
using a recursive solution methodology [19].

3.2. Recursive Optimization Model

To minimize the error induced by the McCormick approximation into the solution
of the NLP model that represents the problem concerning the efficient operation of PV
sources and BESS systems in monopolar DC networks, a recursive solution methodol-
ogy is introduced as proposed by Ocampo et al., in the case of the optimal power flow
problem [19].

The main idea of the recursive solution methodology is solving the convex developed
optimization model in a sequential way, i.e., by updating the linearizing point via an
iterative counter m. The addition of the iterative procedure allows it to have a recursive
convex approximation with the mathematical structure defined in (13):

Obj. func.:

min Ecosts = ∑
t∈H

CoEt

(
∑
i∈B

vm+1
i,t

(
∑
j∈B

Gijvm+1
j,t

))
∆t

Const.:

pi,t + pdg
i,t + ∑

b∈E
pb

i,t − pd
i,t = ∑

j∈B
Gij

(
vm

j,tv
m+1
i,t + vm

i,tv
m+1
j,t

−vm
i,tv

m
j,t

)
, {∀i ∈ B, ∀t ∈ H}

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t,
{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
SoCb

i,t0
= SoCb,ini

i , {∀b ∈ E , ∀i ∈ B} (13)

SoCb
i,t f

= SoCb,fin
i , {∀b ∈ E , ∀i ∈ B}

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ B, ∀t ∈ H}

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {∀i ∈ B, ∀t ∈ H}

pb,min
i ≤ pb

i,t ≤ pb,max
i ,

{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
vmin

i ≤ vm+1
i,t ≤ vmax

i , {∀i ∈ B, ∀t ∈ H}

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i ,

{
∀b ∈ E , ∀i ∈ B
∀t ∈ H

}
,

where vm
i,t and vm+1

i,t are the voltage values in two consecutive iterations.

Remark 3. Note that the recursive convex optimization model (13) is iteratively solved by using a
convex optimization tool until the desired convergence is obtained, which is defined as the difference
in voltage magnitudes between two consecutive iterations that fulfills the expected convergence error.
The convergence criterion is presented below:

max
i∈B, t∈T

∣∣∣vm+1
i,t − vm

i,t

∣∣∣ ≤ ε, (14)

where ε is the maximum convergence error, which is defined as 1× 10−10.
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To illustrate the application of the proposed recursive convex approximation applied
to the EMS for BESS and PV sources in monopolar DC distribution systems, a flowchart is
presented in Figure 1.

Start: Recursive
convex model

Load and gen-
eration inputs

Monopolar DC
network data

Make m = 0

Define vm
i,t = Vnom

Obtain the nodal
admittance matrix G

Program the opti-
mization model (13)

Solve the opti-
mization model

using a convex tool

Report voltages
and powers

Evaluation
ends?

End: Result analysis

Solution report

Increase the m value,
i.e., m = m + 1

no

yes

Figure 1. Recursive solution approach for the optimization model (13).

The recursive properties in Figure 1 associated with the iterative solution of the
approximated convex model (13) are as follows. (i) The solution algorithm initializes all
the voltage values in all the buses of the network as equal to the substation’s nominal
voltage vm

i,t = Vnom for each period. Then, the new voltage profiles vm+1
i,t are obtained

with these parameters by solving the model (13) via the SDPT3 solver with the CVX tool
in the MATLAB programming environment. (ii) The convergence criterion is evaluated,
and the final solution for the voltage profiles is reported when the convergence error is
met; otherwise, vm

i,t = vm+1
i,t , and the convex model (13) is again solved until the desired

convergence is met.
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4. Test Feeder Characterization

This section presents the main aspects of the test feeder under analysis.

4.1. PV Generation Modeling and Demand Curve

To determine the power production of a PV generation source, Equations (15) and (16)
are widely employed in the current literature [20]. These equations model the hourly effect
of environmental temperature and solar radiation on total power production. We have

ppv
i,t = Ppv

i fpv

(
GT

t

GT,STC
i

)[
1 + αp

(
Tc

i,t − Tc,STC
i

)]
, (15)

where Ppv
i is the nominal capacity of the PV DG located at bus i, fpv denotes an efficiency

factor that takes into account the external variation related to the panel’s material and
mismatching, among other aspects, GT

h and GT,STC
i correspond to the solar radiation of

the PV systems in hour h and under standard test conditions (STC), αp denotes the power
coefficient related to the temperature, and Tc

i,h and Tc,STC
i represent the surface temperature

of the PV system installed at bus i in period h and under STC, respectively.
Note that Equation (15) allows one to determine the total power generation output for

a PV source connected at bus i in the period of time t.
For calculating Tc

i,h regarding each hour of operation, Equation (16) is employed,

Tc
i,h = Ta

h + GT
h

(
Tc,NOCT

i − Ta,NOCT
i

GT,NOCT
i

)(
1−

ηc
i

τα

)
, (16)

where Ta
h represents the environmental temperature in hour h, Tc,NOCT

i GT,NOCT
i , and

Ta,NOCT
i correspond to the surface temperature, the solar radiance, and the environmental

temperature of the PV system at bus i under nominal operating conditions, respectively, ηc
i

denotes the efficiency, τ represents the solar transmittance, and α corresponds to the solar
absorption of the PV systems at bus i.

Figure 2a depicts the power generation of an average day for a distribution network
located in the metropolitan area of Medellín. To obtain these PV power generation data,
a PV polycrystalline silicon panel was taken into account. This type of panel is very
common around the world [21,22], and, in this case, it was especially adapted for Colom-
bia. The PV parameters reported for these PV panels are the following: Ppv

i (1 W), fpv

(95%), GT,STC
i (1000 W/m2), αp (0.00451/◦C), d Tc,STC

i (25 ◦C), Tc,NOCT
i (46 ◦C), GT,NOCT

i
(800 W/m2, Ta,NOCT

i (20 ◦C), ηc
i , and τ α (0.9). Furthermore, in this work, the average

solar radiation and environmental temperature values were considered as reported in [23].
These values, in addition to the power generation behavior of this PV system in Medellín,
are outlined in Table 1: the hour under analysis, the average daily solar radiation GT , the
environmental temperature Ta, and the power generation Cpv in p.u., which was obtained
via Equation (15).

Figure 2b depicts the average daily power demand for an electrical distribution grid
located in the metropolitan area of Medellín [20].
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Figure 2. Average daily power generation and demand for the Medellín parametrized network.

Finally, Table 1 reports the main parameters of the PV characterization, which can
be used in future works for comparative purposes in studies on the optimal operation of
renewables and batteries in electrical distribution grids.

Table 1. Parametric information on PV generation: solar radiation (W/m2), environmental tempera-
ture (°C), and PV power generation in (pu).

Hour GT Ta Cpv

1 0 16.14132 0
2 0 15.90636 0
3 0 15.68132 0
4 0 15.46022 0
5 0 15.27545 0
6 0 15.10329 0
7 46.02425 15.15718 0.04541
8 190.83559 16.15636 0.18424
9 362.83753 17.43868 0.34100

10 526.64647 18.87312 0.48161
11 640.99058 20.27438 0.57375
12 709.05312 21.36342 0.62572
13 701.86370 21.98721 0.61809
14 626.82690 22.12107 0.55716
15 499.86074 21.83071 0.45236
16 346.26581 21.20351 0.32052
17 186.66671 20.38668 0.17693
18 52.334030 19.35951 0.05066
19 0.509860 18.32258 0.00050
20 0 17.72414 0
21 0 17.29586 0
22 0 16.96148 0
23 0 16.67395 0
24 0 16.40545 0
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4.2. IEEE 33-Bus Grid

In this research, to validate the proposed convex modeling used to operate BESS
and PV sources in monopolar distribution grids, the IEEE 33-bus grid configuration was
considered. It was adapted for a monopolar DC operation with a voltage value of 12.66 kV
at the terminals of the substation. The electrical configuration of this test feeder is depicted
in Figure 3.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 3. Electrical configuration of the IEEE 33-bus grid for monopolar DC studies.

For this test system, three PV generation sources were installed at nodes 12, 15, and
31, all of which have an installed capacity of about 2400 kW. Note that these dispersed
generation sources were previously located in these nodes by the distribution company after
implementing a planning optimization approach; in addition to a comparative simulation
scenario, the location of these PV plants has been taken from [24].

The electrical parameters regarding distribution lines, peak demand values, and
maximum current allowed per distribution branch are listed in Table 2.

Table 2. Electrical parameters of the IEEE 33-bus network.

Branch Node i Node j R (Ω) Pj (kW) Imax (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 17114 200 85
8 8 9 10300 60 70
9 9 10 10400 60 55
10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 14.680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 12890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 15042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 10590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

Three batteries were considered, which were located along the IEEE 33-bus grid. The
first battery was installed at node 6 with a rated capacity of 2000 kWh and charge/discharge
times of 5 h. The second battery can store about 1500 kWh with charge/discharge times
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of 4 h at node 14. The third battery was located at node 31, with a rated capacity of
1000 kWh and charge/discharge times of 4 h. As mentioned earlier, the distribution
company previously defined the location of these batteries, and this research only focuses
on proposing an efficient operation strategy for these BESS while considering their current
locations [24]. Nevertheless, more research is required on planning monopolar DC networks
regarding the optimal location and size of the distributed energy resources that can be
connected to them to improve their technical, economic, and/or environmental indices.

To illustrate the aggregate penetration level of PV generation in the monopolar DC
distribution grid under analysis, Figure 4 presents the aggregate demand value at terminals
of the substation, as well as the total expected generation availability in the PV sources.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5

6

Iterations

G
en

er
at

io
n/

D
em

an
d

(M
W

) Demand Generation

Figure 4. Behavior of the aggregated daily demand and generation profiles.

In Figure 4, it is evidenced that, from hours 10 to 15, the expected generation avail-
ability in the PV plants exceeds the aggregate demand behavior, which allows storing this
energy in the BESS for use in periods with high demand and low generation availability.

5. Computational Validation

This section presents all the computation validations of the proposed convex model
for operating BESS and PV sources in monopolar DC networks, as well as some numerical
comparisons with combinatorial optimization methods.

5.1. Software and Simulation Scenarios

For the computational validation, the MATLAB software (version 2021b) was used on
a PC with an AMD Ryzen 7 3700 2.3 GHz processor and 16.0 GB RAM running a 64-bit
version of Microsoft Windows 10 Single Language. The solution of the recursive convex
approximation (13) was obtained via the convex disciplined tool environment (CVX) of
MATLAB, using the SEDUMI and SDPT3 solvers. Note that, in these simulation scenarios,
the value of the energy losses was evaluated, i.e., Eloss = Ecosts/CoEt, in order to make
comparisons with some literature reports that use energy losses instead of their costs as a
performance indicator.

Different scenarios were considered for operating BESS and PV generation units in
monopolar DC networks, as shown below:

i. S1: The operation of the monopolar DC network, considering that the PV sources and
the BESS are not connected to the grid.

ii. S2: The operation of the monopolar DC network, only considering the optimal dis-
patch of the BESS.

iii. S3: The operation of the monopolar DC network, only considering that the PV genera-
tion units are dispatched.

iv. S4: The operation of the monopolar DC network, considering that the PV generation
units and the BESS are simultaneously dispatched.
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5.2. Evaluation of the Proposed Simulation Scenarios

Table 3 presents the comparative analysis of all the proposed simulation scenarios.

Table 3. Numerical results with the proposed recursive convex formulation in all the
simulated scenarios.

Scenario Eloss (kWh/day) Reduction (%) Avg. Time (s)

S1 2186.2799 — 10.5630
S2 2100.4280 3.9268 23.8403
S3 1224.8548 43.9754 21.8805
S4 952.2670 56.4435 30.7007

From these results, the following remarks can be made. (i) When the batteries are
dispatched without considering the injection of power by dispersed sources, the energy loss
reduction is about 3.9268%, which is a small value. However, this implies that these batteries
store energy for the slack source when the demand curve is low, and they return this energy
when the demand is high in order to help the slack source to compensate the total grid
energy losses. (ii) When the PV sources are dispatched in S3, an important reduction in the
total grid energy losses can be noted (about 43.9754%, i.e., 961.4251 kWh/day). This is an
expected result, as the PV sources are dispatched under the optimal power flow concept, i.e.,
the definition of the power outputs in all the generation systems with the aim to minimize
the total grid power losses of each period [25]. (iii) When the PV generation sources and
the BESS have been simultaneously dispatched in S4, there is a positive effect of using
batteries for storing the energy surplus of PV generation, to later inject this energy in the
grid when the demand is high and the renewable generation is null. When comparing S3
and S4, an additional reduction in the energy losses can be noted (about 12.4681%, i.e.,
272.5878 kWh/day). (iv) Regarding processing times, as expected, S4 spends significant
processing time resources (about 30.7007 s), as it combines the highest number of variables
in the studied problem by defining the PV generation output in each of the generation
sources and the batteries’ power injection with its corresponding state-of-charge variables.
Nevertheless, this time is minimal when it comes to defining the expected day-ahead
operation of the monopolar DC grid (i.e., 24 h), which implies that multiple simulations
can be done prior to the utility company’s definition of the final operation plan.

Now, to illustrate the effect of the recursive approximation on the minimization of
the error induced by the McCormick approximation in the power balance constraints, as
presented in Figure 1, the logarithmic value of the error in (14) is presented in Figure 5.
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Figure 5. Evolution of the error in the proposed recursive approximation method in all the simu-
lated scenarios.

The behavior of the convergence error in Figure 5 allows one to note that (i) in S1 the
convergence is quadratic, which is expected behavior, as this simulation scenario solves
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the classical power flow problem by using the McCormick approximation, a Taylor-based
numerical method from the family of the Newton–Raphson approaches [26]; (ii) in S2, a
linear convergence behavior is observed, which can be attributed to the fact that the optimal
dispatch of the BESS without dispersed generation has small effects on the final objective
function value, i.e., small variations in the grid voltage profiles, which allows the proposed
recursive convex approximation to deal with the solution in a linear way; and (iii) in S3
and S4, the behaviors of the convergence error do not evidence a clear tendency, which is
due to their variations. In some interactions, it increases with respect to the value of the
previous iteration, but these oscillations in the convergence error can be attributed to the
higher degrees of freedom when the PV sources and batteries are dispatched, given that
the number of variables increase considerably with respect to S1 and S2. However, more
research is required regarding the convergence properties of recursive optimization models.
To confirm that all the numerical results reached in each one of the proposed simulation
scenarios, the NLP model of the problem under study was implemented with the GAMS
software with its BONMIN solver (see [17]), and these evaluations confirm the effectiveness
of the proposed RCA model by reaching the same results reported in Table 3.

5.3. Comparative Analysis with EMS for PV Sources

To validate the effectiveness of the recursive convex formulation to dispatch PV
generators and batteries, this section presents the comparative results of S3 against mul-
tiple combinatorial optimizers reported in [20]. These combinatorial optimizers are the
multiverse optimization (MVO) approach, the particle swarm optimizer (PSO), the crow
search algorithm (CSA), and the salp swarm algorithm (SSA). This comparative analysis
is reported in Table 4. Note that the metric associated with the average processing time
corresponds to the mean time obtained after 100 consecutive evaluations of all the solution
methodologies, including the proposed iterative convex approximation method.

Table 4. Comparison of the proposed recursive convex approximation with combinatorial optimiza-
tion methods.

Method Eloss (kWh/day) Reduction (%) Avg. Time (s)

SSA 1225.3323 43.9536 20.8476
MVO 1231.2531 43.6827 2.4479
PSO 1268.5973 41.9746 5.9597
CSA 1270.1562 41.9033 36.3663

Proposed 1224.8548 43.9946 21.8805

The results in Table 4 show the following.

i. The best combinatorial optimization methodology to define the optimal dispatch of
the PV generation sources in the DC monopolar network is the SSA approach, which
allowed for a reduction of about 43.9536% concerning the benchmark case.

ii. The remaining metaheuristic optimizers are stuck in local optima, with the CSA and
PSO approaches being the worst (with reductions of 41.9033% and 41.9746% regarding
to the benchmark case). The MVO approach found a near-optimal solution compared
to the SSA approach, with a difference of about 5.9208 kWh/day.

iii. Even though the SSA approach is the best combinatorial optimization method, it
is also stuck in a local optimum when compared to the proposed recursive convex
approximation, as the best possible solution regarding the energy losses value at the
end of the day is 1224.8548 kWh/day, which implies that the SSA approach has a
small difference in favor of the proposed approach (about 0.4775 kWh/day).

Regarding processing times, it was observed that the proposed approach requires
about 21.8805 s to find the optimal global solution, while the time spent by the combinatorial
optimizers oscillates between 2.4479 s and 36.3663 s. These simulation times confirm that
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the best optimization method is indeed the proposed convex approximation, as it finds
the global optimum in a time similar to that of the SSA approach, which is the best
combinatorial optimizer.

Remark 4. The main advantage of the proposed recursive convex approximation is that, due to the
convex nature of the solution space (see the mathematical model (13)), each solution via interior-point
methods with a logarithmic barrier always reaches the same numerical solution (global optimum).
In contrast, the combinatorial optimization methods require statistical evaluations in order to ensure
their average behavior [20].

5.4. Complementary Analysis

This subsection presents two complementary analyses to confirm the effectiveness and
robustness of the convex optimization model for designing efficient EMS while including
renewables, conventional sources, and BESS. The first analysis compares the proposed
convex model with three combinatorial optimization methods, and the second one includes
modifying the DC version of the IEEE 33-node grid, including a diesel generator and a
wind power source.

5.4.1. Comparative Results with Combinatorial Optimization Methods

Three combinatorial optimization methods with paralleled processes were imple-
mented in order to demonstrate the effectiveness of the convex approximation method
based on the McCormick approximation: the parallel antlion optimizer (PALO), the parallel
vortex search algorithm (PVSA), and the parallel particle swarm optimizer (PPSO). In
addition, this analysis considered that the PV generation units were reallocated at nodes 13,
25, and 30, with nominal power rates of 1125, 1320, and 999 kW, respectively. The main
characteristic of this comparative analysis is that all the PV plants were dispatched by using
maximum power point tracking (MPPT), i.e., they perfectly follow the expected generation
curve in Figure 2.

Table 5 shows the comparative analysis between the combinatorial optimizers and the
proposed convex recursive formulation.

Table 5. Comparison of the proposed recursive convex approximation with combinatorial optimiza-
tion methods considering MPPT in PV plants

Method Eloss (kWh/day) Reduction (%) Avg. Time (s)

Ben. case 1357.8724 — —
PPSO 1255.2538 7.5573 58.6334
PVSA 1254.0538 7.6457 87.0673
PALO 1251.9038 7.8040 110.2476

Proposed 1203.5710 11.3635 45.6878

The results in Table 5 allow one to state the following.

i. All the combinatorial optimization methods with paralleled processes are stuck in
local optima solutions. The PALO approach is the best option, with an expected
reduction of 7.8040%, followed by the PVSA approach, with an expected reduction of
7.6457%. In the case of the PPSO approach, the difference with respect to the PALO
approach is only 0.2467%, i.e., 3.50 kWh per day of operation. These results confirm
that, in general, the three combinatorial optimizers have a good performance and
a small number of differences. However, no one of them ensures that the global
optimum is found.

ii. The proposed recursive convex approximation finds a reduction concerning the bench-
mark case of about 11.3635%, which is at least 3.5595% better than the PALO approach,
which implies that the proposed approach allows for the reaching of an additional daily
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reduction of 48.3328 kWh/day in comparison with the PALO approach (the best com-
binatorial optimizer). In addition, the most important characteristic of the proposed
convex approximation is that its solution is the global optimum. This was corroborated
by the global nonlinear programming solvers available in the GAMS software.

iii. The proposed optimization approach reaches the optimal solution, with a processing
time of about 45.6878 s, whereas the best combinatorial optimizer (i.e., the PALO ap-
proach) requires approximately 110.2476 s to solve the studied problem. However, due
to the random nature of the PALO approach, it is not possible to ensure that the same
solution is reached in every execution, which implies that, although the processing
time can be considered low for daily economic dispatch studies, the main complication
is that the solution reported by this approach can vary for each evaluation, which
implies that it is not reproducible. At the same time, the proposed convex approach
will always find the exact solution for the same input parameters.

5.4.2. Analysis with Wind and Diesel Generation Sources

To validate the effectiveness and robustness of the proposed optimization methodol-
ogy for operating BESS in the presence of renewable and conventional energy sources, a
modification of the DC version of the IEEE 33-bus system was proposed, including a wind
turbine and a diesel generator, as depicted in Figure 6. For this test system, the PV genera-
tors at nodes 12 and 15 have been substituted by a diesel source with a generation capacity
of 800 kW and a wind power source with 1750 kW of generation capacity. The remaining
PV generator has a nominal generation capacity of 2400 kW. To guarantee that future works
can validate the numerical results reported in this proposed simulation, Table 6 presents
the daily demand and renewable generation curves.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 6. Modified version of the IEEE 33-bus grid for wind, diesel, PV, and batteries.

In this numerical evaluation, two cases of analysis were considered.

i. C1: The evaluation of the proposed convex model, including all the renewable genera-
tion sources and a continuous generation of the 600 kW diesel source, i.e., 75% of its
nominal capacity for all 24 h of the day.

ii. C2: The possibility of dispatching the dispersed generation source between 0 and its
nominal capacity at any hour of the day.

Note that, for both simulation cases, the renewable generation sources are optimally
dispatched as a function of the grid requirements. Moreover, all the numerical results
reported were validated in the GAMS software, and no comparison with metaheuristics
was included, because the previous subsection demonstrated that the proposed recursive
convex model is the only methodology with the ability to reach the optimal global solution.

Table 7 shows the numerical results for both proposed simulation cases. The bench-
mark cases correspond to the optimal dispatch of renewables under the conditions imposed
for diesel generation without connecting batteries.
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Table 6. Renewable and demand generation curves.

Hour Wind Power (pu) Solar Power (pu) Demand (pu)

1 0.7275 0 0.655092250
2 0.7151 0 0.630152498
3 0.7078 0 0.615569653
4 0.7079 0 0.615829592
5 0.7223 0 0.644566657
6 0.7495 0 0.698937446
7 0.7676 0.045411451 0.734229507
8 0.7986 0.184241504 0.793483486
9 0.8279 0.340998605 0.843313061
10 0.8953 0.481610242 0.876224102
11 0.8862 0.573748577 0.917021370
12 0.9783 0.625715388 0.945950545
13 0.9779 0.618090573 0.943876054
14 0.9730 0.557162448 0.931269100
15 0.9069 0.452363827 0.925405805
16 0.8754 0.320523656 0.922597520
17 0.8620 0.176932056 0.908069636
18 0.8497 0.050658349 0.888587275
19 0.8732 0.000498894 0.946218065
20 0.8781 0 0.956175455
21 0.8578 0 0.915546278
22 0.8239 0 0.847794326
23 0.7842 0 0.768310994
24 0.7515 0 0.702968456

Table 7. Analysis of the simulation cases C1 and C2.

Method Eloss (kWh/day) Reduction (%)

Ben. case (C1) 623.3192 —
Ben. case (C2) 620.5141 —

C1 554.8556 10.9837
C2 553.7511 10.7593

The results in Table 7 allow us to state that (i) the proposed convex optimization
methodology can work with multiple generation sources (renewables and diesel) while
ensuring that the global optimal solution is found (these results were validated in the
GAMS software). In the case of fixed generation in the diesel source, the daily energy
losses are approximately 623.3192 kWh/day, which are reduced by about 2.8051 kWh/day
when this source is optimally dispatched during the day without any generation restriction.
Moreover, (ii) batteries allow for additional reductions in the objective functions under
analysis (between 10.9837 and 10.7593%) when they are optimally dispatched considering
fixed and free generation scenarios in the diesel source.

The main result in Table 7 is that it validates the proposed convex approximation
methodology based on a recursive solution approach, which can analyze multiple dis-
tributed energy resources in monopolar DC grids with small computational effort (less
than 40 s for all the C1 and C2 simulations) in order to ensure their optimal operation while
considering different operating conditions, with the main advantage that the convex nature
of the solution space allows ensuring that the final solution reported for each case is indeed
the global optimum.

6. Conclusions and Future Works

The problem regarding an efficient EMS design for distributed energy resources in
monopolar DC distribution grids was solved in this research by transforming the exact
NLP model that represents it into a convex approximated model by using the McCormick
approximation for the product of two variables. To reduce/eliminate the estimation error
in the final objective function value (i.e., the daily energy losses), a recursive solution
methodology was introduced, which iteratively updated the value of the voltage profiles
until the desired convergence was reached. To confirm the effectiveness of the proposed
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recursive convex approximation, the DC version of the IEEE 33-bus grid was adapted
with information regarding PV generation and demand in the city of Medellín, Antioquia,
Colombia. Numerical results considering four simulation scenarios confirmed that (i) when
the BESS are operated without considering renewable generation, their effect on the total
grid power losses reduction is minimal (reductions of less than 5%), which is an expected
result because these systems must be charged from the substation in periods with low
demand, in order to inject power when demand increases, and (ii) when they are optimally
dispatched while considering PV generation, the expected reductions in the total energy
losses were higher than 50%, thus confirming that the efficient coordination between energy-
storage systems and renewable energy resources is a perfect combination to improve the
electrical grid performance with regard to the minimization of the total grid energy losses
during the operation horizon.

A comparative analysis with different combinatorial optimizers for the optimal op-
eration of PV generation units demonstrated that the proposed recursive convex model
could indeed find the global optimum. In contrast, all the combinatorial optimization meth-
ods (i.e., MVO, PSO, CSA, and SSA) were stuck in local optima. Regarding the objective
function value, the proposed recursive convex approximation found a reduction of approx-
imately 43.9754% with respect to the benchmark case (optimal solution), only followed
by the SSA approach with a similar reduction of approximately 43.9536%. Nevertheless,
the main advantage of our proposal is that, due to the convex nature of the solution space,
every time that the optimization model (13) is solved by using convex tools, the optimal
solution will be the same, which is not possible to ensure with combinatorial optimization
methods, given their random nature.

Numerical results considering wind-based renewable generation and diesel-based
conventional generation confirmed that the proposed RCA allows finding better generation
outputs and energy storage profiles as a function of the desired grid operating conditions
while considering fixed and variable power generation. The system’s operation, which
included batteries, allowed for reductions in the daily energy losses higher than 10% for
both simulation cases with respect to the benchmark, confirming that these devices are
optimally managed as a function of the grid operating consigns.

In future works, it will be possible to conduct the following studies: (i) extending
the proposed recursive convex model to the problem regarding the optimal integration
of distributed energy resources, i.e., developing a mixed-integer convex formulation to
locate and size PV sources and BESS in monopolar DC networks; (ii) evaluating additional
recursive convex models to operate PV generation units and batteries in DC networks,
considering generation and demand uncertainties and different kinds of users (i.e., resi-
dential, industrial, and commercial); and (iii) including uncertainties in PV generation and
demand profiles into the exact NLP model to make the proposed EMS system more realistic
in monopolar DC networks by considering the stochastic nature of these parameters.
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Nomenclature and Notations

This section lists all mathematical symbols, parameters, and variables employed in the exact
nonlinear programming model and the proposed convex approximation to operate battery energy
storage systems in monopolar DC distribution grids with high penetration of renewable generation
based on photovoltaic sources.
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