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Abstract: This research deals with the problem regarding the optimal siting and sizing of distribution
static compensators (D-STATCOMs) via the application of a master–slave optimization technique.
The master stage determines the nodes where the D-STATCOMs must be located and their nominal
rates by applying the generalized normal distribution optimizer (GNDO) with a discrete–continuous
codification. In the slave stage, the successive approximations power flow method is implemented in
order to establish the technical feasibility of the solution provided by the master stage, i.e., voltage
regulation and device capabilities, among other features. The main goal of the proposed master–slave
optimizer is to minimize the expected annual operating costs of the distribution grid, which includes
the energy loss and investment costs of the D-STATCOMs. With the purpose of improving the
effectiveness of reactive power compensation during the daily operation of the distribution grid, an
optimal reactive power flow (ORPF) approach is used that considers the nodes where D-STATCOMs
are located as inputs in order to obtain their daily expected dynamical behavior with regard to
reactive power injection to obtain additional net profits. The GNDO approach and the power flow
method are implemented in the MATLAB programming environment, and the ORPF approach
is implemented in the GAMS software using a test feeder comprising 33 nodes with both radial
and meshed configurations. A complete comparative analysis with the Salp Swarm Algorithm is
presented in order to demonstrate the effectiveness of the proposed two-stage optimization approach
in the fixed operation scenario regarding the final objective function values. In addition, different
tests considering the possibility of hourly power injection using D-STATCOMs through the ORPF
solution demonstrate that additional gains can be obtained in the expected annual operative costs of
the grid.

Keywords: generalized normal distribution optimizer; optimal reactive power flow; distribution
static compensators; radial and meshed distribution networks; annual operating cost minimization

1. Introduction

Medium- and low-voltage distribution networks have undergone important changes
in their physical and computational structures that have transformed these passive grids
into to active distribution networks [1,2]. These changes have been provoked by new
regulations regarding the integration of renewable energy resources that have focused
on the decabornization of the world’s energy matrix [3–5]. The main goal of electricity
distribution networks is to transport electricity to end-users with the necessary standards
of efficiency, quality, and reliability. This requires minimizing energy losses and improving
transport processes in order to achieve more efficient and competitive networks [6].

To improve the efficiency of electrical distribution networks with regard to reducing
power losses, reactive power compensation is one of the most widely recognized methods,
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given its contribution in this regard and other benefits such as power factor correction,
increased transport capacity, improved operation of network lines and devices, voltage sta-
bility, and improved voltage profiles. All of these depend on different operating constraints
[7], as it is of great importance to reduce losses and minimize investment costs for current
distribution systems.

One of the best options for energy loss reduction is distributed generation (DG). The
authors of [8] presented a decision-making analysis aimed at determining the optimal
location and sizes for DG in radial distribution networks, considering the improvement of
the voltage profiles and the minimization of the total grid’s active and reactive power losses.
However, DG may have very high initial installation costs, especially when compared
to strategies such as grid reconfiguration and shunt reactive power compensation with
capacitors [9]. Capacitive compensation can yield the benefits of loss reduction, power
factor correction, and voltage profile improvement to the fullest if the location and size are
efficiently determined. However, capacitor banks typically inject reactive power in fixed
steps [10], which reduces the positive effect of reactive power injection on reducing energy
losses, mainly when daily demand profiles with high variations are considered in the grid
operation environment.

In order to improve the advantages of using reactive power to minimize total grid
power losses, it is possible to use distribution static compensators (D-STATCOMs). These
are regulation devices based on a power electronics voltage source converter that add
flexibility to the power distribution network. In comparison with a variable-step capacitor
bank, a D-STATCOM is a more flexible device, as it injects the exact amount of reactive
power in accordance with the network requirements. This is by means of efficient control
techniques [11]. It is important to mention that D-STATCOMs can inject and absorb reactive
power with very fast dynamic responses through the injection of phase-shifted current
to the system at the common coupling point, which aids in power factor correction and
harmonic filtering, among other benefits [12]. D-STATCOMs can be located in any of the
nodes of the distribution system, so it is important to determine their optimal siting and
sizing using efficient optimization techniques for the reduction of energy losses and the
minimization of operating costs.

In the specialized literature, there are multiple reports regarding the optimal loca-
tion and sizing of D-STATCOMs in distribution networks. Some of these approaches are
discussed in this document. The authors of [12] presented a complete way to determine
the optimal location and size of D-STATCOMs via analytical and heuristic optimization
methods. In addition, they presented the typical objective functions of the specialized
literature to improve network performance, i.e., voltage stability and power losses indi-
cators. The work by [13] proposed a multi-objective particle swarm optimizer to place
and size D-STATCOMs while considering simultaneous power grid reconfiguration. As
objective functions, the minimization of active power losses, the voltage stability index,
and the load capacity factor of the distribution lines were considered. The main feature
of this approach is that the optimization process was carried out only under maximum
load conditions, which is not considered a suitable scenario given the potential oversiz-
ing of the compensating devices, since the consumption of active and reactive power are
variable inputs.

The authors of [14] proposed a multi-objective fuzzy approach based on ant colony
optimization in order to solve the simultaneous and proximate reconfigurations (sizing
and placement) of PV sources and D-STATCOMs in distribution systems. The objective
was to minimize network losses and to improve voltage profiles and feeder load balancing
operation characteristics. This methodology was validated in the IEEE 33-bus grid with
excellent numerical results. The authors of [15] presented a heuristic method based on
voltage and power loss indexes in order to locate and size D-STATCOMs in radial electrical
distribution networks. Numerical validation of this heuristic approach was performed
on the IEEE 33-bus test feeder. However, the authors only considered maximum load
conditions.
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Table 1 summarizes the different algorithms used in the literature to solve the problem
concerning the placement and sizing of D-STATCOMs in distribution networks.

Table 1. Main literature reports regarding the optimal placement and sizing of D-STATCOMs in
distribution grids.

Solution Method Objective Function Ref. Year

Evolutionary programming Power loss minimization and voltage profile improvement [16] 2011

Particle swarm optimization Power loss minimization and voltage profile improvement [17] 2014

Sensitivity index Power loss minimization and voltage profile improvement [18] 2015

Gravitational search algorithm Power loss minimization, voltage profile improvement, and investment
cost minimization [19] 2016

Adaptive particle swarm optimization Energy loss and investment cost minimization [20] 2018

Particle swarm optimization Energy loss minimization [21] 2018

Salp swarm algorithm Energy loss and investment cost minimization [22] 2022

Two-stage convex optimization model Energy loss and investment cost minimization [23] 2022

The main features of the optimization methods in Table 1 are the following: (i) the
most common function is the minimization of energy losses, and (ii) the studied problems
show two tendencies: the first is related to metaheuristics, and the second offers convex
formulations or approaches that combine convex and combinatorial methods.

Based on the aforementioned literature review, the problem of reactive power com-
pensation in power systems is still an area of interest for both academia and the industry.
Therefore, this research article proposes the following contributions:

i. We provide a new solution method based on application of the generalized normal
distribution optimizer (GNDO) for locating and sizing D-STATCOMs in distribu-
tion networks with radial and meshed topologies while using a discrete–continuous
codification.

ii. We combine the GNDO approach with an efficient power flow multi-period approach
that allows solving of the technical constraints of the optimization problem, i.e., power
balance, voltage regulation, and device capabilities, among others.

iii. We improve the final solution obtained with the proposed master–slave optimizer
by using the set of nodes where the D-STATCOMs must be located as inputs for the
optimal reactive power flow (ORPF) problem, aiming to further minimize the final
expected annual operating costs of the distribution grid.

Note that the selection of the GNDO as a solution technique to address the opti-
mal location and sizing problem for D-STATCOMs in distribution networks is based on
three facts:

i. The GNDO is a metaheuristic method inspired by the classical theory of normal probabil-
ity distributions. It considers an initial population that evolves throughout the iterative
process, considering the means and the standard deviation as advance parameters.

ii. The computational implementation of the GNDO is simple and requires only a few
mathematical programming skills to adapt it to any optimization problem that includes
binary and continuous variables.

iii. Multiple reports in the specialized literature have confirmed that the GNDO approach
is efficient at solving complex optimization problems such as the placement location of
renewable energy resources in AC and DC networks [24,25] and parameter extraction
for photovoltaic models [26], among other optimization problems.

Note that the proposed solution methodology addressed in this research to locate, size,
and operate D-STATCOMs in electrical distribution networks is different from recently
published literature reports, since the GNDO approach allows reaching better objective
function values with respect to the literature in the case of fixed reactive power injection, and
also, with the improvement stage based on the ORPF solution, we find additional profits
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for the utility company that have not been previously presented by solution methodologies
based on combinatorial optimizers available in the current literature. It is important to
mention that this work focuses on the optimal design and operation of D-STATCOMS in
distribution networks under normal operating conditions and upon the basis of the demand
curves provided by utilities. However, as future research, an interesting development
could consider the probabilistic nature of the loads and new paradigms regarding the
transformation of energy consumption habits with the massive integration of electric
vehicles into medium- and low-voltage distribution networks [27].

The remainder of this work has the following structure presented: Section 2 presents
the mathematical formulation of the D-STATCOM optimal integration problem in power
distribution systems via mixed-integer nonlinear programming models. Section 3 presents
the proposed solution method, which is based on the GNDO and the successive approxima-
tions power flow approach, with the aim of determining the nodes where the D-STATCOMs
must be located as well as their sizes. These nodes are also used as inputs for the ORPF
formulation to reach additional reductions in the objective function value. Section 4 outlines
the main characteristics of the test system, which is a 33-node IEEE system that includes
demand scenarios for residential, industrial, and commercial users. Section 5 presents the
results of the simulation as well as its analysis and discussion. Finally, Section 6 describes
the main conclusions derived from this study.

2. Mathematical Formulation

This section formulates the problem regarding the optimal location and size of D-
STATCOMs in electrical distribution networks as a general mixed-integer nonlinear pro-
gramming (MINLP) model. The continuous variables of the model denote the voltages,
angles, and active and reactive power variables, while the discrete variables correspond to
the possibility of integrating D-STATCOMs in all the nodes of the distribution network. In
addition, these equations take a nonlinear form due to the products between them and the
trigonometric functions in the power balance equations. The complete MINLP model of
the studied problem is presented below.

2.1. Objective Function Structure

The problem under study is addressed in this research from an economic perspective.
The main idea of installing these devices is to minimize the expected operating cost of the
network, which is mainly associated with the energy loss costs for a one-year period of
operation ( f1), to which the annualized investments in D-STATCOMs ( f2) are added.

f1 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

YkmVkhVmh cos
(
δkh − δmh − θkm

)
∆h, (1)

f2 = T
k1

k2
∑

k∈N

(
α
(
Qst

k
)2

+ βQst
k + γ

)
Qst

k , (2)

where for f1 and f2, CkWh corresponds to the average cost of energy in kW/h; T represents
a constant associated with the number of days in a regular year (length of the period of
study); Ykm defines the magnitude of the admittance matrix that relates k node to m node,
which also has an associated angle θkm; Vkh and Vmh are the voltages that relate nodes k and
m in period of time h with voltage angles defined as δkh and δmh, respectively; ∆h is a period
of time assigned as 1 h;H and N refer to the set of time periods and nodes in the network,
respectively; k1 and k2 are two positive parameters that denote the annualization costs of
the D-STATCOMs (i.e., k1 represents the annual investment required by the D-STATCOM,
and k2 refers to the useful life of the device); and the parameters α, β, and γ are positive
scalars that represent the installation costs of the D-STATCOMs with nominal power and
generation capacity Qst

k .
It is worth mentioning that Equation (1) is the most typical representation of power and

energy losses in distribution networks, and it can be expressed as the difference between
the energy input (energy injected by power sources) and energy output (energy consumed
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by constant power loads) [23]. However, this is typically represented by the product
between voltages and trigonometric functions of their angles, as this allows evidencing
the effect of the power balance constraints (which are presented later in this document)
regarding variations in active or reactive power injection. In the case of the quantification
of the investment costs of D-STATCOMs, as defined by Equation (2), this function was
adapted from [19], where the authors presented different cubic functions to represent
the costs of variable reactive power compensators based on power electronics for power
system applications.

The objective function corresponding to the object of minimization is defined in this
research as the sum of the components f1 and f2, as presented in Equation (3) for the
variable A f .

min A f = f1 + f2, (3)

where A f is denoted as the objective function value to be minimized.

Remark 1. The structure of the objective function (3) is nonlinear and non-convex due to the
following facts: (i) the component f1 is defined as a product between the continuous variables
(voltages) and the trigonometric function of the voltage angles, and (ii) the component f2 is a cubic
function defined with the expected sizes of the D-STATCOMs, which makes the final function value
A f a complex nonlinear objective function that requires advanced optimization techniques in order
to obtain a solution.

In this research, to solve the complex objective function regarding the installation
and sizing of D-STATCOMs in distribution grids with radial or meshed structures, the
GNDO approach is combined with the successive approximations power flow method.
In addition, an improving stage based on the ORPF problem is implemented in order to
obtain additional reductions in the final A f by fixing the location of the D-STATCOMs
determined via the GNDO approach.

2.2. Set of Constraints

To establish the location and size of D-STATCOMs in radial and meshed distribution
networks, it is necessary to observe several constraints regarding the physical operation of
the distribution network. Some of these have to do with active and reactive power balance,
voltage grid regulation characteristics, and the sizes of the reactive power compensation
devices. These constraints are listed below and defined for ∀k ∈ N and ∀h ∈ H.

Pg
kh − Pd

kh = ∑
m∈N

YkmVkhVmh cos(δkh − δmh − θkm), (4)

Qg
kh −Qd

kh + Qst
k = ∑

m∈N
YkmVkhVmh sin(δkh − δmh − θkm), (5)

Vmin ≤ Vk,h ≤ Vmax, (6)

ZkQst
min ≤ Qst

k ≤ ZkQst
max, (7)

∑
k∈N

Zk ≤ Nst
A , (8)

where Qst
k is the reactive injection generated by the D-STATCOM at node k; the variables

Pg
kh and Qg

kh are the active and reactive power injection in power sources connected to k
in the period h; the parameters Qd

kh and Pd
kh are the dynamical loads associated with node

k at time h, which are defined as a function of the residential, industrial, and commercial
users connected to the distribution grid; Zk is a binary variable (i.e., it takes values of 0 or
1) that indicates the connection or not of a D-STATCOM at node k; and Nst

A corresponds to
the maximum number of D-STATCOMs that can be installed in the distribution network.
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Constraints (4)–(7) can be interpreted as follows. Equations (4) and (5) defines the
power balance constraints at each node of the network for each period. These are known as
the power flow constraints [28]. Inequality constraint (6) refers to the voltage regulation
imposed by the regulatory entities for the adequate operation of the distribution network
[29]. Inequality constraint (7) concerns the upper and lower bounds assigned for the D-
STATCOMs that are to be installed in the distribution network. Finally, inequality constraint
(8) is associated with the maximum number of D-STATCOMs that can be placed in the
distribution grid.

3. Proposed Solution Method

To solve the complex MINLP formulation in Equations (1)–(8), this research presents a
two-stage optimization model. In the first stage, a master–slave optimization algorithm
based on the GNDO approach and the successive approximations power flow method is
implemented in order to determine the nodes where the D-STATCOMs must be placed as
well as their initial sizing. In the second stage, an approach of improvement is implemented,
which involves solving the ORPF problem by fixing the nodes where the D-STATCOMs
must be located and recalculating their sizes. Each of the previous stages and algorithms
are presented in this section.

3.1. Master–Slave Optimization Algorithm

This subsection discusses the master–slave approach, which comprises the GNDO
and the successive approximations power flow method.

Slave Stage: Successive Approximations Power Flow Method

This power flow method is a well-known approach that reformulates Equations (4) and (5)
using a complex equivalent in order to find a solution for radial and meshed distribution
networks. This method was initially proposed by [30], who were inspired by the classical
Gauss–Seidel power flow approach. The general iterative power flow formula for the
successive approximations power flow method is defined in Equation (9). Note that the
dimensions of vectors and matrices for the successive approximations power flow method
and a numerical example can be consulted in [31].

Vm+1
dh = Y−1

dd

[
diag−1(Vm,?

dh
)
(S?sth − S?dh)−YdsVsh

]
, {h ∈ H} (9)

where Vdh is the vector containing all the voltage demand variables for the period of time
h; Vsh is the vector that contains the slack voltage output in the period of time h; Ydd
represents a square matrix containing the admittance relation of the demand nodes; Yds
is a rectangular matrix that associates the demand nodes with the slack source regarding
their admittance interconnections; S?sth is a vector that contains all the reactive power
injections provided by the D-STATCOMs in the nodes where they are connected (note that
the reactive power injection is zero at nodes where there are no D-STATCOMs); and S?dh is
a complex vector comprising the constant power consumption of the distribution network
per period of time h. Note that m represents the iteration counter, and the recursive power
flow formula in Equation (9) converges if the following criterion is met:

max
{∣∣∣∣∣∣Vm+1

dh

∣∣∣− |Vm
dh|
∣∣∣} ≤ ε. (10)

It is worth mentioning that in Equation (10), the stopping criterion has to be reached
before the maximum number of iterations. Here, ε is the assigned tolerance.

Remark 2. The main advantage of using the successive approximations power flow method to deal
with the power flow problem in radial and meshed distribution grids is that it ensures convergence
to the solution if the grid is connected (there are no isolated areas) and is operating far from the
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voltage collapse point. Its convergence can be demonstrated by applying the Banach fixed-point
theorem [30].

Once the recursive power flow formula (9) has converged to the power flow solution,
the power generation in the slack source can be calculated as presented in Equation (11).

S∗sh = diag(V∗sh)[YssVsh +YsdVdh] ∀{h ∈ H}. (11)

With this solution, it is possible to evaluate the expected annual energy loss cost of
the distribution grid ( f1), as stated in the objective function. In addition, the constraint
regarding voltage regulation is checked, (i.e., see inequality constraint (6)). If it is fulfilled,
then a zero value is added to the objective function; if not, then a penalization regarding
the amplitude of the voltage deviation with respect to its upper and lower bounds is added
to the objective function value. Note that adding penalty factors to the objective function
is a typical approach employed to find feasible solutions while exploring and exploiting
the solution space. More details about penalty factors in metaheuristics can be consulted
in [32].

3.2. Master Stage: GNDO

The GNDO approach is a recently developed metaheuristic optimization approach
based on the behavior of the Gaussian distribution that can model multiple physical and
natural phenomena with a high level of precision [26]. This metaheuristic optimization
method is part of the mathematics-inspired approaches, and it uses two main parameters
to explore and exploit the solution space: the mean value (µ) and the standard deviations
(δ). In addition, the GNDO approach considers two main steps during this process: local
and global searching, which are discussed below.

3.2.1. Local Exploration

Local exploration is a common search technique in metaheuristic-based optimization
methods, the main idea of which is to explore in the vicinity of a current solution (i.e.,
minimum variations) in order to find a better one. In other words, it is an exploitation stage.
The rule defined in the GNDO for this exploration is defined below:

vt
i = µi + δiη, i = 1, 2, · · ·, Ni, (12)

where vt
i corresponds to the trailing vector associated with the current solution i at iteration

t; µi denotes the generalized mean location of the individual solution i during iteration t; δi
corresponds to the generalized standard deviation of this solution; and η is a penalty factor.
It is worth mentioning that Ni is a constant parameter related to the number of individuals
that make up the algorithm population.

For the optimal location and sizing problem regarding D-STATCOMs in radial and
meshed distribution networks, the proposed codification is a discrete–continuous represen-
tation, where the integer part defines the nodes where the compensators must be installed,
and the continuous part of the codification corresponds to their optimal sizes. Equation (13)
presents the proposed codification.

xt
i =

[
15, k, · · ·, 28 |1.3566, Qst

k , · · ·, 2.0101
]

(13)

Remark 3. It is important to observe that with the codification presented in Equation (13), the
objective function component related to the D-STATCOM investment costs ( f2) is completely known.

To determine the value of the parameters µi, δi, and η defined in Equation (12), the
following set of equations is used:



Algorithms 2023, 16, 29 8 of 18

µi =
1
3
(

xt
i + xt

best + M
)
, (14)

δi =
1√
3

((
xt

i − µ
)2

+
(
xt

best − µ
)2

+ (M− µ)2
) 1

2 , (15)

η =

{
(−log(λ1))

1
2 cos(2πλ2) if a ≤ b

(−log(λ1))
1
2 cos(2πλ2 + π) if a > b

(16)

In Equations (14)–(16), it can be noted that:

i. The parameters a, b, λ1, and λ2 are values generated with a uniform distribution in
the interval [01];

ii. xt
best represents the best current solution reached as of iteration t;

iii. M is a vector that represents the average (mean value) associated with all the individ-
uals in the current population.

To calculate the vector M, Equation (17) is used.

M =
1
Ni

Ni

∑
i=1

xt
i . (17)

3.2.2. Global Exploration

Global exploration is an intrinsic characteristic of combinatorial optimization methods,
where the main idea is to explore the solution space in search of promissory solution regions
that may contain the global optimum of the studied problem [24]. The global exploration
stage, as proposed by the authors of [26], is defined in Equation (18).

vt
i = xt

i + β× (|λ3| × v1) + (1− β)× (|λ4| × v2), (18)

where β × (|λ3| × v1) is a component associated with information regarding the local
exploration, and (1− β) × (|λ4| × v2) is a component related to the global exploration
stage. Note that λ3 and λ4 denote random numbers generated with a normal distribution,
and β is an adjusting parameter contained in the interval [01], which is randomly obtained
using a uniform distribution. In addition, v1 and v2 are also two trail vectors obtained with
the following rules:

v1 =

{
xt

i − xt
j if A f

(
xt

i
)
< A f

(
xt

j

)
xt

j − xt
i otherwise

(19)

v2 =

{
xt

k − xt
k if A f

(
xt

k
)
< A f

(
xt

m
)

xt
m − xt

k otherwise
(20)

Note that subscripts j, k, and m correspond to integer numbers between 1 and Ni
that are associated with three different individuals contained in the population xt. These
subscripts are different from each other as well as from the current individual i.

Prior to deciding which vt
i will be part of the next population of individuals, it is

mandatory to check its feasibility regarding the upper and lower limits of the decision
variables, i.e.,

vt
i,l =

{
vt

i,l if xmin
l ≤ vt

i,l ≤ xmax
l

vt
i,l = xmin

l + λ5
(
xmax

l − xmin
l
)

otherwise
(21)

where xmin
j and xmax

j are the lower and upper admissible bounds of variable j, respectively.
Note that due to the integer nature of the variables regarding the nodes where the D-
STATCOMs must be located, the first Nst

A position of each solution vector is rounded to the
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nearest integer value. Finally, to select the solution that will be part of the next generation
of individuals, the following selection rule is applied:

xt+1
i =

{
vt

i if A f
(
vt

i
)
< A f

(
xt

i
)

xt
i otherwise

(22)

3.2.3. Implementation of the GNDO Approach

As explained by Equations (9)–(22), to illustrate the application of the GNDO approach
to the problem regarding the optimal placement and sizing of D-STATCOMs in electrical
distribution grids, Algorithm 1 is used.

Algorithm 1: General application of the GNDO approach to select nodes and
define sizes for D-STATCOMs in distribution networks.

Data: Chosse the AC network under study
1 ; Find the per-unit network equivalent;
2 Select the values of Ni and tmax;
3 Select the µ parameter as 1

2 , and t = 0;
4 Create the initial population with the structure defined in (13);
5 Apply the slave stage (power flow) to know the fitness function value for each

individual solution xt
i , that is, A f

(
xt

i
)
;

6 Select xt
best as the individual with the minimum value of the fitness function;

7 for t ≤ tmax do
8 for i = 1 : Ni do
9 Obtain a random value γ between 0 and 1;

10 if γ > 1
2 then

11 /*Local exploration search*/;
12 Select the best current solution xt

best;
13 Compute the value of the vector M using Equation (17);
14 Calculate the generalized mean value µi using Equation (14);
15 Obtain the generalized standard variance δi through Equation (15);
16 Compute the penalty factor η with Equation (16);
17 Make the local exploration using Equation (12);
18 else
19 /*Global exploration search*/;
20 Obtain three random integers j, k, and m that are different from each

other and from i;
21 Compute the value of the vector v1 with formula (19);
22 Compute the value of the vector v2 with formula (20);
23 Evaluate the global exploration rule (18) to obtain vt

i ;

24 Revise the upper and lower bounds of vt
i using rule (21);

25 Evaluate the slave stage to obtain the fitness function value A f
(
vt

i
)
;

26 Select the next individual xt+1
i through Equation (22);

Result: Report the final solution value xt+1
best.

Note that Algorithm 1 uses all of the formulas involved in the GNDO approach (9)–(22)
in order to explore and exploit the solution space by dividing the search into local and
global explorations.

3.3. Optimal Reactive Power Flow Solution

This improvement stage deals with defining the optimal sizes of the D-STATCOMs in
the case of daily operation, i.e., considering variable reactive power injection throughout
the operation scenario. To this effect, the first Nst

A positions of the final best solution xt
best,
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i.e., the nodes where the D-STATCOMs must be located, are fixed in the optimization model
(1)–(8), which transforms the exact MINLP model into an NLP one known as the optimal
reactive power flow problem [33].

To summarize the proposed improvement, a flow diagram is presented in Figure 1.

Start: Solution
methodologyLoad profile AC network info.

Apply the GNDO
approach to find xt

best

Chose the nodes
where the D-
STATCOMs

must be located

Fix the variables
Zk in the model

Solve the model

Find the optimal
sizes of the D-

STATCOMs, i.e., Qst
k

Refine the value
of A f for each Qst

k

Evaluation
ends?

End: Analy-
sis of results

Report the solutionModify the po-
sition of Zk

no

yes

Figure 1. General flow diagram of the proposed solution methodology.

Remark 4. Note that the solution of the NLP problem in Figure 1 is independent of the optimization
tool. However, this research resorts to the GAMS software, as it has been used in multiple literature
reports with excellent numerical performance for power system optimization with low computational
effort [34].

4. Test System Characterization

To demonstrate the efficiency and robustness of the proposed optimization, the IEEE
33-bus grid with radial and meshed configurations was employed [22]. The electrical
configuration of this distribution grid is depicted in Figure 2. Note that this electrical
system operates at substation terminals with a nominal voltage of 12.66 kV. In addition,
the parametric information regarding the peak load consumption and distribution lines is
presented in Table 2.
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AC

Slack

1 2

3 4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

Commercial area
Residential area
Industrial area

Figure 2. Nodal connections between nodes in the IEEE 33-bus grid with load classifications.

Table 2. Load and distribution line parameters of the IEEE 33-bus grid.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40

To consider the effect of load classification in the IEEE 33-bus grid for optimally
locating and sizing the D-STATCOMs, the electrical curves of residential, industrial, and
commercial users are shown in Table 3.

Table 3. Expected percentages of consumption for residential, industrial, and commercial users

Hour Ind. (pu) Res. (pu) Com. (pu)

1 0.56 0.69 0.20
2 0.54 0.65 0.19
3 0.52 0.62 0.18
4 0.50 0.56 0.18
5 0.55 0.58 0.20
6 0.58 0.61 0.22
7 0.68 0.64 0.25
8 0.80 0.76 0.40
9 0.90 0.90 0.65
10 0.98 0.95 0.86
11 1 0.98 0.90
12 0.94 1 0.92
13 0.95 0.99 0.89
14 0.96 0.99 0.92
15 0.9 1 0.94
16 0.83 0.96 0.96
17 0.78 0.96 1
18 0.72 0.94 0.88
19 0.71 0.93 0.76
20 0.70 0.92 0.73
21 0.69 0.91 0.65
22 0.67 0.88 0.5
23 0.65 0.84 0.28
24 0.60 0.72 0.22

To calculate the objective function value regarding component f2 (see Equation (2)), all
the parameters listed in Table 4 are used [19,35]. Note that the evaluation of this objective
function considers that the variable Qst

k is defined in Mvar.
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Table 4. Parametric information to evaluate the objective function regarding the investment costs of
the D-STATCOMs.

Par. Value Unit Par. Value Unit

CkWh 0.1390 USD*kWh T 365 Days
∆h 0.50 h α 0.30 USD/MVAr3

β −305.10 USD*MVAr2 γ 127,380 USD/MVAr
k1 6/2190 1/Days k2 10 Years

In this research, the concept of a benchmark case is assigned to the scenario where
the distribution system is operated without considering shunt compensation, i.e., it is the
simulation scenario where the total active and reactive power consumptions are always
supplied by the generation source, which, in the case of distribution networks, is the
substation bus when there is no penetration of distributed energy resources. In the case of
the IEEE 33-bus grid with a radial connection, the benchmark case is calculated with the
parameters in Table 4, which corresponds only to an f1 value of about USD 130, 613.90 per
year of operation, with f2 being equal to zero since no D-STATCOMs are considered.

5. Results and Discussion

To validate the proposed solution methodology, the solution of the optimization
model for locating and sizing D-STATCOMs in electrical distribution via the AESDC was
implemented in MATLAB version R2021b on a computer with an Intel Core i7-10750H
@2.6 GHz and 16.0 GB of DDR4 RAM at 2300 MHz on a 64-bit version of Microsoft Windows
10 Home. The validation of the proposed master–slave optimization model in conjunction
with the improvement stage was carried out while considering the following facts:

i. Two configurations are considered for the IEEE 33-bus grid: a radial configuration
with the original structure presented in Figure 2 and a meshed configuration with
three tie-lines added to the radial topology, as proposed in [22].

ii. The GNDO approach, combined with the successive approximations power flow
method, is used to obtain the initial nodal locations and sizes for the D-STATCOMs
with fixed reactive power injection. Thus, the location of these devices is fixed in the
exact MINLP model while aiming for additional gains for operating these reactive
power compensators with variable reactive power throughout the day.

iii. For comparison, the MINLP model’s exact solutions obtained with the BONMIN and
COUENNE solvers and the recently developed Salp Swarm Algorithm (SSA) [22]
are considered in order to confirm the effectiveness and robustness of the proposed
optimization approach.

Note that in order to ensure the effectiveness of the proposed master–slave optimiza-
tion regarding the solution quality, 100 consecutive evaluations of the complete solution
methodology were considered, with 1000 iterations for each of them. With these values, a
statistical study of the GNDO performance was conducted considering mean, maximum,
minimum, and standard deviation parameters. It is worth mentioning that in order to to
make fair comparisons with the SSA approach presented by the authors of [22] as well as the
implementation of the exact model in GAMS software with the BONMIN and COUNNE
solvers, all results were obtained with our own implementations that were conducted
during this research.

It is worth mentioning that in order to ensure that all the numerical validations
presented in this paper were correct, the following validation procedure was followed.

i. The solution of the multi-period optimal power flow problem for the benchmark
case was implemented in MATLAB with our own scripts. However, to ensure the
effectiveness of this approach, a comparative analysis with the DIgSILENT software
was performed.

ii. The convergence analysis of the power flow problem for the proposed successive
approximations power flow method was proven by the authors of [30], which im-
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plies that under the studied conditions this method always converges to the power
flow solution.

iii. The solution of the MINLP model with he GNDO approach combined with the
successive approximations method was also validated via GAMS and DIgSILENT.

5.1. Radial Configuration Results

Table 5 shows the comparison between the SSA approach, the BONMIN and COUENNE
solvers, and to the proposed GNDO approach that considers fixed reactive power injection
throughout the day for the IEEE 33-bus system with a radial configuration.

Table 5. Optimal solutions obtained by the studied optimization methods for a radial grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/year) Red. (%)

Ben. Case — — 130,613.90 0.00
COUENNE

[
5 6 11

] [
0.0000 0.53600 0.27466

]
115,960,99 11.22

BONMIN
[
8 25 30

] [
0.29796 0.09204 0.51265

]
109,560.85 16.12

SSA
[
13 25 30

] [
0.25851 0.10547 0.52801

]
108,249.36 17.12

GNDO
[
14 25 30

] [
0.23083 0.09996 0.53905

]
108,215.94 17.15

The numerical results presented in Table 5 allow stating that:

i. The GAMS solvers (COUENNE and BONMIN) are stuck in locally optimal solutions,
with reductions of 11.22 and 16.12%, respectively, with respect to the benchmark case.
This can be attributed to the fact that the MINLP structure of the model (1)–(8) causes
exact solution methods based on Branch and Bound and combined with interior point
methods to get stuck in local solutions without the ability to escape from them because
of the non-convexity of the solution space.

ii. The proposed GNDO approach improved the best solution reported in the literature,
which was obtained with the SSA approach, i.e., by about USD 33.42 per year of opera-
tion. This improvement was reached since the GNDO detected that node 14 is a better
location for one of the D-STATCOMs, instead of node 13 as per the SSA approach.

iii The total installed reactive power obtained with the GNDO approach was 869.84 kvar,
while the solution found with the SSA approach installed 891.99 kvar. This implies
that the proposed GNDO approach improved the objective function value by selecting
a better set of nodes to place the D-STATCOMs, with the main advantage being that
less investment is required for these devices.

To demonstrate that the hourly variation of the reactive power injection with D-
STATCOMs in distribution networks allows additional gains in the expected annual grid
operating costs, Table 6 compares fixed and variable reactive power injection by fixing
the nodes reached by the GNDO approach in the exact MINLP model (1)–(8) using the
BONMIN solver as a solution method.

Table 6. Additional improvements reached when variable reactive power is used for daily compensa-
tion with D-STATCOMs for the radial grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/year) Red. (%)

Ben. Case — — 130,613.90 0.00
GNDO (Fixed)

[
14 25 30

] [
0.23083 0.09996 0.53905

]
108,215.94 17.15

GNDO (Variable)
[
14 25 30

] [
0.24092 0.10118 0.69257

]
106,550.69 18.42

The results in Table 6 show that an additional reduction of USD 1665.25 is obtained
when variable reactive power injection is implemented with D-STATCOMs. That is to say,
this is in comparison with the fixed injection scenario. This additional profit is reached
when the total installed capabilities of the D-STATCOMs increase to 1034.67 kvar, which in
turn implies an increase of 164.83 kvar with respect to the fixed injection scenario. With
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this additional reactive power, the D-STATCOMS have more flexibility to generate variable
reactive power, i.e., they gain the ability to follow the demand behavior in order to inject
only the needed reactive power for each hour as a function of the total grid requirements.

5.2. Meshed Configuration Results

Table 7 presents the comparison between the SSA approach, the BONMIN and
COUENNE solvers, and the proposed GNDO approach that considers fixed reactive power
injection throughout the day for the IEEE 33-node grid with a meshed grid topology.

Table 7. Optimal solutions reached by the comparison and proposed optimization methods with
fixed reactive power injection in a meshed grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/year) Red. (%)

Ben. Case — — 86,914.74 0.00
COUENNE

[
5 6 11

] [
0.0000 0.32577 0.23872

]
83,254.95 4.21

BONMIN
[
15 16 17

] [
0.11818 0.00391 0.34700

]
81,171.76 6.61

SSA
[
14 30 32

] [
0.14620 0.39440 0.20230

]
77,870.17 10.41

GNDO
[
14 30 32

] [
0.11554 0.46482 0.15147

]
77,834.42 10.45

The numerical results shown in Table 7 imply that:

i. Once again, the COUENNE and BONMIN solvers got stuck in locally optimal so-
lutions, which is attributed to the nonlinear non-convex nature of the exact MINLP
model. The COUENNE solver only reached a reduction of 4.21% with respect to the
benchmark case, while the BONMIN solver yielded a better local solution, with a
reduction of 6.61% with respect to the benchmark.

ii. The proposed GNDO approach found a solution with an expected reduction in the
annual operative costs of about 10.45%, i.e., 0.04% better than the solution reported
by the SSA approach. However, the main characteristic of both solutions is that these
located the D-STATCOMs in the same set of nodes (14, 30, and 32). However, their
sizes differ, which explains the difference in the final objective function value.

iii. The total installed size of the D-STATCOMs with the GNDO is 731.83 kvar, whereas
the SSA installed 742.90 kvar, which implies that with a better definition of the D-
STATCOM sizes it is also possible to reach better final objective function values.
Nevertheless, the main characteristic of this behavior is that based on its probability
functions, the GNDO explored and exploited the solution space with better sensitivity
than the SSA approach.

To confirm that the variable reactive power injections play an important role in reduc-
ing the expected annual operating costs of the network with respect to the fixed injection
case, the results presented in Table 8 are employed.

Table 8. Additional improvements reached when variable reactive power is used for daily compensa-
tion with D-STATCOMs for the meshed grid configuration.

Method Nodes Sizes (Mvar) Annual Costs (USD/year) Red. (%)

Ben. Case — — 86,914.74 0.00
GNDO (Fixed)

[
14 30 32

] [
0.11554 0.46482 0.15147

]
77,834.42 10.45

GNDO (Variable)
[
14 30 32

] [
0.11578 0.49915 0.17417

]
77.697.53 10.60

The results in Table 8 show that the scenario with variable reactive power injection
finds additional improvements regarding the final objective function value, i.e., approxi-
mately USD 136.89 per year of operation when compared with the fixed reactive power
injection case. This result confirms that the main advantage of using D-STATCOMs is that
variable reactive power is injected as a function of the network requirements, which justi-
fies the distribution of static compensators instead of capacitor banks in order to support
reactive power in distribution grids with variable demand behavior.
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5.3. Additional Results

With the purpose of demonstrating the effectiveness and robustness of the GNDO
approach in conjunction with the successive approximations power flow method, after
100 consecutive evaluations for the radial and meshed grid structures, the results in Table 9
show the statistical analysis for both simulation cases.

Table 9. Statistical analysis for the radial and meshed configurations of the IEEE 33-bus grid.

Case Min. (USD/year) Max. (USD/year) Mean (USD/year) Std. Dev. (USD/year) Time (s)

Radial 108,215.94 116,992.53 109,373.20 2053.04 42.70

Meshed 77,834.42 80,231.64 78,256.17 597.01 42.94

The results in Table 9 show that:

i. The difference between the minimum and maximum values reached in the radial
configuration was about USD 8776.59, which implies that in the worst simulation case,
the expected reductions with respect to the benchmark case would be 10.43%. When
compared to the results shown in Table 5, this is better than both GAMS solutions. Even
if the maximum result (worst result of the GNDO method) for the radial simulation
case is a local solution, it has better characteristics than the local optimal solutions
found with the MINLP BONMIN and COUENNE solvers in GAMS.

ii. As for the meshed configuration, the difference between the maximum and minimum
objective function values was USD 2397.22, i.e., the worst solution reached by the
GNDO approach reduces the expected annual operating costs by about 7.69%. This
result confirms that for the meshed configuration case, the worst solution of the GNDO
approach is also better than both solutions found with the GAMS software and with
the BONMIN and COUENNE solvers.

iii. The mean values for the radial and meshed configurations are very close to the
minimum values, i.e., most of the solutions are closer to each other in a closed ball with
a radius equivalent to the standard deviation. These results confirm the effectiveness
of the GNDO approach at solving the complex optimization problem involving the
optimal location and size of D-STATCOMs in distribution grids via combinatorial
optimization, with the main advantage that less than 43 s is required to reach a solution
in both simulation cases.

6. Conclusions and Future Work

The optimal reactive power compensation problem via D-STATCOM location and
sizing was studied in this research through the application of master–slave optimization
methodology that solves its exact MINLP formulation. In the master stage, the GNDO
approach was implemented using a discrete codification that decided the nodes where
the D-STATCOMs were to be located in conjunction with their optimal sizes. In the slave
stage, a power flow method (the successive approximations approach) was used to define
the expected energy loss costs for a daily operation horizon. An improvement stage
was implemented in the exact MINLP model that involved fixing the location of the D-
STATCOMs provided by the master–slave optimizer in order to obtain an NLP model that
could vary the reactive power injection on an hourly basis in order to obtain additional
profits for the distribution company.

The numerical simulations run in the IEEE 33-bus system with radial and meshed con-
figurations while including residential, industrial, and commercial users demonstrated that:

i. In the radial configuration scenario, the proposed GNDO approach reached a lower
minimum objective function value than the SSA approach. In addition, the improve-
ment stage allowed for an additional reduction of USD 1665.25 regarding the fixed
injection case, which confirms that the variable reactive power scenario via the daily
control of the D-STATCOMs allows the distribution company to obtain additional
profits in the total annual expected operating costs of the network.
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ii. In the meshed configuration, the proposed GNDO approach found the same nodal
location for the D-STATCOMs as the SSA methodology. However, the sizing was better,
which allowed for a better final objective function value. In the variable reactive power
scenario, an additional profit of USD 186.39 with respect to the fixed injection scenario
was also reached, thus confirming that controlling the reactive power injection as a
function of the system’s requirements is the better option to operate D-STATCOMs
based on utilities.

iii. The expected annual operative gains for the meshed topology are considerably lower
than those of the radial grid, i.e., USD 9080.32 for the meshed cased vs. USD 22,397.96
for the radial case. This is an expected result since in meshed configurations the energy
losses are lower when compared to radial configurations, which is attributed to better
flow distribution and voltage profiles.

iv. Regarding the processing times, the proposed GNDO approach found the solution
for the MINLP model in less than one minute for both topologies, which confirms the
effectiveness and robustness of the master–slave optimization methodology to deal
with complex electrical engineering problems involving solution spaces with infinite
dimensions and complex nonlinear, non-convex constraints.

In future work, the following studies can be conducted: (i) combining the D-STATCOMs
with renewable generators in radial and meshed distribution grids by defining their sizes
and locations in order to reduce the grid investments and the operating and maintain-
ing costs; and (ii) a comparative study between different reactive power compensators
such as D-STATCOMs, Thyristor-controlled series compensators (TCSCs), and Static VAR
Compensators (SVCs), as well as their impact on the expected annual grid operating costs.
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