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A B S T R A C T   

Fault location plays an essential role in the integration of self-healing functionalities in active distribution net-
works and microgrids. However, the fault location methods formulation presents great challenges for these types 
of networks because the operating changes that occur them, such as changes in topology, DER connection/ 
disconnection and microgrids operating modes. Several fault location solutions have been proposed; neverthe-
less, these are strongly dependent on robust communication systems. This paper presents an artificial 
intelligence-based master–slave strategy for the estimation of the fault section in active distribution networks and 
microgrids using dispersed measurements. The strategy is composed by two stages. The master stage uses a 
genetic algorithm that determines the location and number of devices which maximize the faulted location e 
performance. The slave stage uses artificial neural networks to predict the fault section by using local voltage and 
current measurements trough an intelligent electronic device (IED). This approach is useful because it neglects 
the need of a robust communication systems and synchronization process between measurements. Here, each IED 
estimates the faulted section and then sends it through the single communication system to the distribution 
system operator control center. The presented method is validated on the modified IEEE 34-nodes test feeder 
where the accuracy of the strategy was 95%. The results obtained and its easy implementation indicate potential 
for real-life applications.   

1. Introduction 

The transition from conventional power distribution networks to 
active distribution networks (ADN) and the implementation of Micro-
grids (MG) have increased the reliability, energy efficiency and resil-
ience of electrical distribution systems [1]. To improve the resilience 
and reliability, these networks lean on the development of fault location 
methods. However, the penetration of Distributed Energy Resources 
(DER) and MGs introduce new aspects that the conventional fault 
location (FL) approaches do not consider [2]. Several approaches have 
considered in a partial way the DER integration and MGs [3]. On the 
other hand, some impedance-based FL methods have formulated the 
effect of DERs. In [4] an approximate synchronous machine model is 
used to estimate the contribution of DERs to the fault. However, 
inverter-interfaced DER (IIDER) are not considered. Additionally, in [5] 
the effect of the DER is considered by using an IIDER analytical model. 
However, it does not take in account the effect of inverter-non interfaced 
DER (INIDER). In [6–8], a FL method that uses both synchronized 
measurements and a DER model are presented. Nevertheless, 

operational conditions as MG operation modes and the FL formulation 
does not contemplate. [9–12] use a traveling wave- based approach for 
fault location. Traditionally, this approach has been proposed for 
transmission lines. However, [13] demonstrates that this method is ac-
curate for distribution systems like impedance-based methods. In [10] is 
presented a fault location method for radial distribution network by 
using reclosure-generating traveling waves. This method can only be 
used for the location of permanent faults, and it is not suitable for 
feeders which do not allow reclosing operation. Additionally, DER 
integration and MGs are not contemplated. [9] proposes a fault classi-
fication method by using discrete wavelet transforms for distribution 
systems with wind power distributed generation. This method classifies 
the fault type, but it does not locate them. Additionally, the operating 
conditions of ADN, such as topology changes, intermittency of DERs, 
and MG operation modes are not considered in its formulation. Still, 
there are some challenges to deal in fault location problem such as the 
estimation of multiple fault distances, the presence of MG into the ADN 
and the equipment requirements for a high sampling rate. 

On the other hand, the fault location approaches have regarded the 
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use of machine learning techniques, such as Support Vector Machine 
(SVM), Artificial Neural Networks (ANN), Fuzzy Logic System (FLS) in 
the last years. Some of these approaches use wavelet transform for 
transients processing and improving FL method performance. In 
[14–16], ANN-based fault location strategy is proposed. This approach is 
formulated into two stages. The first stage trains an ANN model to 
determine the fault type, and the second stage determines the section in 
fault. The test considers load variation, and integration of DG; and [14] 
considers topology changes and high-impedance fault. However, DER 
connection/disconnection, different technologies of DER and MG oper-
ation modes are not considered. 

FL methods with integration of ADN and MGs have also been pro-
posed in [8,17]. Still, they do not consider the operational conditions as 
off/on grid modes of MGs and DER connection/disconnection. Finally, 
FL methods have been formulated considering wide-area synchronized 
current and voltage phasors measurements provided by digital fault 
recorders and Global Positioning System (GPS) [14–16,18–20]. These 
methods are robust, however depend strongly on the availability of the 
sparse measurements and their synchronization. Other works use wide- 
area non-synchronized measurement, although they are still dependent 
on the presence of a significant number of meters installed in the ADN. 
Furthermore, these methods do not determine the number and location 
of measurement devices necessary to achieve adequate performance of 
the fault location technique [21]. 

The previous information can be summarized in Table 1 which 
presents the main works of state-of-the-art, and the aspects faced by 
them. Also, it highlights some challenges to face in the FL formulation 
for ADN and MG. 

The main challenges are associated with considering the main ADN 
operating conditions, reducing the dependence of the LF formulation on 
the availability of the communication system, and considering the high- 
impedance faults and low-impedance faults. 

This work addresses the first two challenges by a master–slave 
strategy based in artificial intelligence for the estimation of the fault 
section in ADN and MG using dispersed measurements. The approach 
considers that ADN has an integrated Advanced Distribution Automa-
tion (ADA) system and all its IEDs can be used as fault section estimators. 

Thus, in this strategy, the master stage uses a genetic algorithm to 
determine the location and number of IEDs that maximize the faulted 
section estimation performance. The slave stage uses ANN to introduce 
the ability to each IED to determine the fault section using local voltage 
and current measurements. This eliminates the need for robust 
communication systems and synchronization process between mea-
surements, since each IED estimates the faulted section and sends it 
through the single communication system to the distribution system 
operator control center. The faulted section is determined from the 
faulted sections located by each IED. The main contributions of this 
work towards the state-of-the-art are:  

• Considering the main ADN operating conditions in FL formulation, 
such as topology changes, DER connection/disconnection, and 
microgrid operation modes (on-grid and off-grid). 

• Reducing of FL strategy dependency on robust communication sys-
tem availability and synchronization processes between measure-
ments for precise location of the fault. 

• Determining of number and location of the IED that allows maxi-
mizing the faulted section estimation performance. 

The remaining of this paper is organized as follows. Section 2 pre-
sents the formulation of an ANN model as fault section estimator and its 
integration into an IED. Section 3 explains the artificial intelligence- 
based master–slave scheme for the estimation of the fault section. Sec-
tion 4 illustrates the cases of studies, and Section 5 presents the relevant 
implementation aspects of FL strategy. Section 6 shows the results and 
discussion, and the main conclusions of this work are presented in 
Section 7. 

2. Formulation of an ANN model as fault section estimator to be 
integrated in an IED 

Consider the ADN presented in Fig. 1. The system can change its 
topology through the switchgears sw1, sw2 y swMG. Also, it contains a MG 
which can connect and disconnect through sw1andswMG. 

Additionally, we can include a fault in the node 812. Then, the 

Table 1 
Comparison of the state of the art for fault location methods.  

Aspect References  
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] PM 

IED and communication 
architecture                    

Determine the number and 
location of IED 

x x x x x x x x x x x x x x x x x x √ 

Consider sparse 
measurements 

x x x x √ x x √ √ x √ √ √ √ √ x √ √ √ 

Can use synchronized 
measurements 

x x √ x √ x x √ √ x √ √ √ x √ x √ √ √ 

Can use unsynchronized 
measurements 

√ √ x √ √ √ √ x x x x x x √ x x √ x √ 

ADN features considered                    
Unbalance √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
Topology changes x x x x x x √ x x x √ x √ x x x x x √ 
Load change x x x x x x √ x x x √ x x √ x x x x √ 
DER technologies (IIDER 

and INIDER) 
x x x √ √ x x x x x x x x x x x x x √ 

Several DER connected √ √ x x √ x x √ √ √ √ √ x √ x √ √ x √ 
DER connection/ 

disconnection 
x x x x x x x x x x x x x x x x x x √ 

MG operation modes (on- 
grid/off-grid) 

x x x x x x x x x x x x x √ x x x x √ 

Fault considerations                    
Fault types √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
Low impedance faults √ √ √ √ √ √ √ √ √ √ x √ √ √ √ x √ √ √ 
High impedance faults x x x x x x x x x x √ x x x x √ x x x 
Deal with the multiple 

estimation problem. 
x x x x x x x x √ √ √ √ √ √ x √ √ √ √  
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protection system operates, and the ADA system begins the isolation of 
the fault and the restoration of the electricity supply. To improve the 
effectiveness of this process, a fault section estimator based on ANN 
model is integrated into each IED as shown in Fig. 2. 

The faults section estimation problem can be formulated as a clas-
sifier to then obtain an ANN model. For this, the methodology divides 
the ADN and MG in sections as shown in Fig. 3, where we can see two 
possibilities. The first in Fig. 3(a), when we have IEDs in the main grid, 
here, the methodology defines a section to classify the faults that occur 
into MG (Section 8). The second in Fig. 3(b), when we have IEDs into 
MG, here, the methodology defines a section to classify the faults that 
occur in the main grid (Section 4). 

The sections presented in Figs. 3 and 4 represents the classes of the 
ANN model, and the location of the fault associate with it. To obtain the 
ANN model a set of fault operating conditions must be considered, here 
each operating conditions have a fault location from a set of n classes. 
Each operating condition presents a set of k features for the i-th IED as 
xi = {x1i, x2i, x3i,⋯xki}. The features are estimated from the local cur-
rent and voltage signals. Therefore, the ANN model is composed by a 
dataset with a k feature and n classes is presented in (1). 

yqIEDi (xi,w) = σ
(
∑m

j=1
wqj⋅φ

(
γj
)
+ W0

)

s.a.
xi ∈ Rd i = {0, 1, 2,⋯, number of IEDs}

and q = {0, 1, 2,⋯, n}

Where, γj =
∑k

m=1wjm⋅xmi, wjm and wqj are the weight parameters, m is 
the number of neurons in the hidden layer, σ and γ are the active 
functions which the most common functions used are logistic sigmoid, 
hyperbolic tangent function and RBF [22]. 

In (1) we can observe that there is a class denominated 0, which is 
used to appoint the scenarios that do not present a fault condition, and 
instead they belong to a normal operating condition. Those scenarios 
must be analyzed because they can cause changes in the current and 
voltage signals measured by the IEDs. Additionally, the last class 
denominated yn gives to the DMS information about faults that take 
place out of its operating zone. This can be useful when a DMS and a 
MGCC work simultaneously in an active distribution network. 

The complexity of the training of ANN model is proportional to the 
number of classes. Fig. 4 shows the generalized algorithm to obtain the 
ANN model for the IEDs installed into the ADN. The stages of the al-
gorithm are explained in the following subsections. 

2.1. Preliminary stage 

This stage is composed by three steps. Each step is explained as 
below: 

2.1.1. Step I: Definition of the network information, IEDs locations, and 
sections 

In this step, the methodology seeks to define the network informa-
tion such as topologies, networks parameters, DER location, and normal 
and fault operating conditions. This information allows dividing the 
systems into different sections, as well, obtaining the dataset for training 
and validation. 

The number of sections select to divide the systems must consider 
factors like the critical loads, zones of accessibility issues, and 
geographic area. In this research, we decide to define the sections ac-
cording to the geographic area. Besides, each IED located along the 
system works beside with a digital relay belonging to the protection 
system. 

Fig. 1. ADN with a MG integrated.  

Fig. 2. Integration between the ANN model and IED.  
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2.1.2. Step II: Database simulation 
The methodology has as a main premise that a high number of faults 

must be taken in account to obtain a reliable dataset and ANN model. 
However, the electric power systems are designed to reduce the proba-
bility of fault, that means that a dataset have to be composed by fault 
synthetic information. The synthetic dataset is obtained by a cooperative 
works between an EMT software and a numeric computing software as is 
presented in Fig. 5. 

The proceeding to obtain the synthetic dataset is described as below.  

• ADN modeling and simulation: The ADN can be modeled by using an 
EMT software. If the ADN involves a MG, as was presented in Fig. 1, 
the MG and main grid simulation must converge for each fault sce-
nario simulated for when the MG operates in off-grid mode. [23].  

• Fault Scenario Generation: The normal and fault operating conditions 
can be defined according to the stage 1. Once, the factors and levels 
are determinate. Table 2 presents the useful factors and levels for the 
formulation of the fault location and fault protection problems 
[24,25]. The number of operating conditions can be obtained with =

∏n
k=1δk, where δk is defined as the number of levels for the k-th 

factor.  
• Simulation of scenarios: Before of simulating the normal and fault 

operating conditions we must run an optimal power flow (OPF) to 
determine the power injection of each DER. The OPF seeks to find a 
better point of operating, for this case, it minimizes the power losses. 
Then, the normal and fault operating conditions are simulated by 
EMT software. In this process, the strategy stores the current and 
voltage signals of each IED installed in the ADN.  

• Labeled of the fault scenarios: the labeled process considers the section 
where was simulated each fault for the actual operating condition. If 
the network involves a MG as is shown in Fig. 1, the strategy inde-
pendently labels both networks as shown in Fig. 3. 

The result of this step is a dataset with the voltage and current signals 
in the location of the IEDS. Additionally, each fault operating conditions 
must be labelled according to its own section. The following steps 
explain how obtain the dataset. 

Fig. 3. Sections division proposed for the ADN.  
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2.1.3. Step III: Database processing 
The dataset processing is made through three steps as below:  

• Feature Selection: The features allow maximizing the performance of 
the ANN model used to identify a fault section. This process takes a 
relevant role for the ANN model construction because the perfor-
mance can be affected by the increase or decrease of the dimen-
sionality of the problem [26]. Several features have been proposed in 
the state of the art for the solution of the adaptive protection and 
fault location problem [242527]. In this research the features can be 
obtained by using a Fast Fourier Transform (FFT) where its phasor 
representation could be associated with the last cycle before of the 
fault (Pre-fault) and the last cycle registered (fault) as is showed in 
(2) and (3), 

∪p = |∪p|∡θp
∪ (2)  

∪F =
⃒
⃒∪F
⃒
⃒∡θF

∪ (3) 

The features are defined as the difference between the fault and pre- 
fault values as are presented in (4) and (5). 

d| ∪ |w = ∪F
w − ∪p

w (4)  

dθw = θF
w − θp

w (5) 

Where ∪ is the magnitude of the current or voltage phasor for the 
phase w, and θ is the angle of the current or voltage phasor for the phase 
w. The superscripts F and p denote that the quantity will be obtained 

between the cycles of fault and pre-fault. 
The combination of the features obtained by (2) and (5) allow 

generating new features such as the power, impedance, and power 
factor. Table 3 shows the most common features used in the state of the 
art by the fault location problems [242527].  

• Dataset standardization: Once the dataset is obtained, it will be 
standardized by using (6). This process can improve the performance 
of the machine learning techniques as ANN or SVM [28]. 

xst
fm =

xfm − μm

σm
(6) 

Where, 
xfm is the value for the f-th fault operating scenario in the m-th 

feature, 
μm is the average for the m-th feature, 
σm is the standard deviation for the m-th feature, 
xest

fm is the standardized value for the f-th fault operating scenario in 
the m-th feature.  

• Dataset Splitting: This research considers as rule of thumb split the 
dataset with rate equal to 4, where 80% of the dataset will be used to 
the training and 20% will be used to validate the ANN model [29]. 

2.2. ANN models for IED 

2.2.1. Step IV: Training and validation by using feature selection and tuning 
In this step, the strategy obtains the fault section classifiers by 

training ANN models formulated in (1). Also, the strategy uses a Cuckoo 
Search Algorithm (CSA) to find the better combination of hyper- 
parameters for ANN model with the main goal of improving its perfor-
mance [30,31]. Also, the Algorithm 1 can select the best combination of 
features that maximize the accuracy indicator given in (7) for each ANN 
model in each IED. 

acci[%] =
TNFi

TNSi
(7) 

Where, TNF represents the number of fault operating conditions 
correctly located for the i-th IED and TNS is the total number of oper-
ating conditions considered for the i-th IED.  

Algorithm 1 - Cuckoo search algorithm 

Input: Database with the whole features 
Output: IEDs and its ANN model. Feature selection and tunning. 
Begin 
1: Set the initial value of the host nest size N, probability pa∊[0, 1] and maximum 

number of iterations MG. 
2: Set t = 1. {Counter initialization} 
3: For k = 1:NIED do 
4: For j = 1:N do 
5: Generate the j-th initial nest host xj. The nest host are divided into two: attributes and 

hyperparameters. 
6: Evaluate the fitness function for j-th initial nest: train and validate the k-th IED by 

the ANN technique with  
setting defined by xj, and obtain the performance of ANN model by (8) f

(
xj
)
. 

7: End For 
8: Determinate the maximum value of f

(
xj
)

and save as f
(
xj
)max 

9: While t ≤ MG repeat 
10: Delete the worst nests and create new ones using the probability of worse nests to be 

abandoned (pa) 
11: Update each nest by levy flights for hyper-parameters and levy flights and sigmoid 

function for the  
attributes solution by (9) to (11). 

12: Keep the best solutions (nests with quality solutions) 
13: Rank the solutions and find the current best solution 
14: Determinate the maximum value of f

(
xt

j

)
and update if needed f

(
xt

j

)max 

15: Set t = t + 1. {Iteration counter increasing} 
16: End While 
13: Produce the best solution for IEDk: ANN model, attributes and hyperparameters 
17: End For 
End 

Step I

Step II

Features database

Step III

V and I signal 
database

- Network topologies 
and IEDs location 

loca

Network topologies 
and IEDs location 

loca

Step IV: 
= + 1

Fig. 4. Flow chart for the generation of the ANN model as a fault sec-
tion estimator. 
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The nests are updated through a levy flight function given in (8). 

xt+1
j = xt

j +∝ ⊕ Levy(λ) (8) 

When the nests have objects as the features, they can be updated 
according to the sigmoid function given in (9)-(10). 

S(xt
j) =

1
1 + e− xt

j
(9)  

xt+1
j =

⎧
⎨

⎩

1 if S
(

xt
j

)〉
σ

0 otherwise

⎫
⎬

⎭
(10) 

The strategy implements the ANN models into the IEDs located along 
of the ADN, in this way, they are capable to estimate the fault section 
only with the local current and voltage measurements. 

3. Artificial intelligence-based master–slave scheme for the 
estimation of the fault section. 

The centralized communication architecture of the ADA system al-
lows to each IED send the fault section estimated toward a control 
center. In this way, a unique fault section can be defined from the pre-
vious sections for each IED. For this process, the strategy uses the IEDs 
which have the duty of protecting the ADN system. However, the higher 
number of IEDs, the worse is the performance for the strategy, in this 
way, ANN models must be obtained for each IED. Additionally, as pre-
sented in [25], the individual performance of IEDs depends on their 
location in the network. Considering the above, this research presents a 

i-th

i-th

i-th

i E

i=1

= 1:

i-th

EMT software

EMT software

Programing 
software

Programing 
software

Fig. 5. Database simulation flowchart.  

Table 2 
Factors and levels commonly used in ADN operating scenarios.  

Group Factor Levels 

No-fault 
operation 

Load change 30%-150% 
Generation change 50%-150% 
Topology change Reconfiguration, DER outage, and MG in off- 

grid mode 
Operation mode of 
microgrid 

On-grid/off-grid 

Fault 
operation 

Fault type Single-phase faults, double-phase faults, 
double-phase to ground faults and three- 
phase faults 

Fault location Overall, ADN nodes 
Fault resistance 0 Ω to 50 Ω  

Table 3 
Features used in protection and fault location strategies.  

N◦ Feature Description 

1–3 dVabc Difference between voltage magnitude for instances of fault 
and pre-fault for each phase 

4–6 dθVabc Difference between voltage angle for instances of fault and pre- 
fault for each phase 

7–9 dIabc Difference between current magnitude for instances of fault 
and pre-fault for each phase 

10–12 dθIabc Difference between current angle for instances of fault and pre- 
fault for each phase 

13–15 dZabc Difference between the impedance for instances of fault and 
pre-fault for each phase 

16–18 dSabc Difference between the apparent power for instances of fault 
and pre-fault for each phase  

J. Atencia-De la Ossa et al.                                                                                                                                                                                                                   



International Journal of Electrical Power and Energy Systems 148 (2023) 108923

7

master–slave strategy based on artificial intelligence to determine the 
number and location of IEDs which maximize the performance of a 
centralized fault section locator. The master–slave strategy is presented 
in Fig. 6. 

The stages that compose the strategy will be described in the sections 
below. 

3.1. Preliminary stage 

In this stage, we can obtain the fault dataset used to train the ANN 
models which would estimate the fault section. The strategy uses the 
information given in the Section 2.1 to accomplish this task. 

3.2. Master-slave stage 

The master–slave strategy uses AI to find the number of IEDs and 
their location that maximize the performance of a centralized fault 
section locator who is into the control center. This strategy has as master 
stage a genetic algorithm which determine the optimal location of IEDs. 
The slave stage proposes an ANN model per each IED to estimate the 
section of the fault. Fig. 7 presents the flow chart for the genetic algo-
rithm that works into the master–slave strategy to find the optimal 
location of IEDs. Subsections 3.2.1 to 3.2.4 presents the description of 
the algorithm steps. 

3.2.1. Step I: Initial population 
The initial population can be divided in two segments. The first 

represents the population for the location of the IEDs into the main grid 
denominated h(1)

n , and the second represents the population for the 
location of the IEDs into the MG named h(2)

n . Both populations could be 
obtained in a random way through a uniform distribution. Also, it must 
consider the maximum number of IEDs (N) for each subsystem (main 
grid and MG). To formulate the chromosomes, a binary codification can 
be used, here N genes compose each chromosome. Each gene represents 
the location of one IED into the ADN used to estimate the fault section. 
The value of each gene can be zero (0) or one (1), where one (1) in-
dicates that the IED will have an ANN model to estimate the fault sec-
tion, and zero (0) indicates that the IED will not select. Each 
chromosome has a performance indicator which will be defined in the 
next stage. 

3.2.2. Slave stage implementation 
Consider a set of fault scenarios denominated as P, which has a fault 

section for each scenario that can be estimated by using the information 
of each chromosome that composes the initial population h(1)

n and h(2)
n . 

Each gen of chromosome locates the fault section yIEDi , with an accuracy 
for its ANN model accIEDi as is presented in Fig. 8. 

To assess the fitness function for each chromosome for P, the IEDs 
that compose the i-th chromosome estimate the fault sections and report 
them to the control center (DMS or MGCC). Then, a unique fault section 
can be obtained by processing the fault sections gave by all IED as in 
Fig. 9. From (1) note that a label could be defined to represent events 
that are not faults for IEDs. Also, the last label, ym for the IEDs in the 
main grid and yn for the IEDs into the microgrid, are to locate the faults 
that occur outside the coverage of the control center. For instance, the 
location of faults into the microgrid by IEDs installed in the main 
network and vice versa. 

The DMS and MGCC estimate the fault section by using a statistic 
indicator as the mode. Then, the DMS and MGCC must determinate the 
final decision, which can be represented by two possibilities. The first 
represents that the DMS and MGCC do not find a fault into the network, 
in this case, the label must be 0. The second possibility poses that the 
network presents a fault, so a section yj is selected as the section in fault. 
However, an additional process must be executed to define if the fault is 
inside or outside of the main grid. The strategy propose that each central 
control must analyze the decision taken by their IEDs, where yDMS and 
yMGCC are the section of fault located by the DMS and MGCC, respec-
tively. If the DMS does not observe a fault into the main grid, but the 
MGCC detect the section of fault, yDMS = 0 & yMGCC ∕= 0, what means 
that the final decision indicates that the fault is in the section yMGCC of 
the MG. A similar task must be executed when the MGCC does not 
observe a fault into the MG, but the DMS detect the section of fault, 
yDMS ∕= 0 & yMGCC = 0. The above indicates that each fault locator works 
in an independently way, however, both always must have a commu-
nication between the control centers. 

The fitness function for each chromosome can be assessed with the 
accuracy obtained in (7) when the validation process is made. 

3.2.3. Stage 2: The offspring of the next generation 
In this stage can be obtained the chromosomes that will be partici-

pated to consolidate the next generation by using the crossover operator. 
The strategy proposes three steps for accomplishing this process: selec-
tion, crossover, and mutation [32]. The first step uses a tournament 
selection to obtain the chromosomes that will participate in the cross-
over step. The tournament selection seeks to select several chromo-
somes, where the chromosomes with s higher performance could be a 
better likely to be chosen. The second step is the crossover. Here, we pick 
up two random number between 0 and the length of the chromosome 
(N), to then exchange the genes content between those values. 

In this process we obtain two new chromosome or offspring, [32]. 

Features database

ML models 
for each IED

Step III

Features for 
each IED

Network topologies 
and IEDs location 

loca

Step I

Maximum number of IED to consider

Step II

Step IV

-IEDs 
location 

Fig. 6. Flow chart for the master -slave strategy based in artificial intelligence 
for the fault section estimation in ADN and MG. 
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The last step is the mutation, here, a random gene of the chromosome 
can be modified according to a mutation rate Tm which can be settled in 
values between 0.1 % and 5%. In this way, if this number is above of 
(1 − Tm/100), the gene will become of 1 to 0 and vice versa. These three 

steps will be executed until obtain the offspring population. 

3.2.4. Step IV: Decision criterion 
In this stage can be calculated the fitness function for the offspring 

population by using the slave stage presents in the Section 3.2.2. Then, 
we can obtain the accuracy per chromosome, and determinate the 
incumbent solution for the offspring population h(1)

n and h(2)
n as the 

chromosome with the best performance. If the current incumbent so-
lution is better than the previous, the global incumbent will be updated, 
and the process continues in the next generation. The genetic algorithm 
ends when the number of generations NG is reached or when the global 
incumbent solution has a number RG without being updated. The genetic 
algorithm gives as output the incumbent chromosome composes by the 
number and location of the IEDs that maximize the estimation of the 
section of the fault into the network. Additionally, the strategy allows 
obtaining the ANN models for each IED as is presented in Fig. 7. 

4. Cases of studies 

The proposed fault location strategy was validated by using the 
modified IEEE 34 bus test feeder shown in Fig. 1 [33]. This feeder has a 
voltage level of 24.9 k V. Some modifications were necessaries to 
become the test feeder in an active distribution network. The summary 
of the modifications are: adding four INIDER and one IIDER, inserting 
two switchgears to allow topological changes and integrating a MG 
capable to operate in islanded or grid mode. The method proposes as 
maximum number of IEDs 16, and 13, for the ADN and the MG, 
respectively. Table 4 presents the fault operating scenarios used to 
create the dataset. Also, the features used for the validation are con-
signed in Table 3 presented in the Section 2.1.3. 

The proposed strategy was validated considering two cases as pre-
sented in the following sections. 

4.1. Case 1: ANN model as fault section estimator integrated into an IED 

In this case, we will train and validate the ANN models as a fault 
section estimator for each IED along of ADN and the MG by using the 
Cuckoo search-based tuning strategy. Table 5 presents the range of 
values considered for each hyperparameter in the tuning strategy. Also, 
we decide to use the features consigned in Table 3 to determine the best 

G=1 
(1)

(2)

(1)

(2)

(1) (2) (1) (2)

= + 1=

Fig. 7. Flowchart of optimal meter placement using Genetic Algorithm.  

IED 1 IED 2 IED 3 IED 4 IED N-1 IED N Fitness Function

1

1

Fig. 8. Chromosome codification and fitness function assessment.  
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combination of them. 

4.2. Case 2: Fault section estimator based in an artificial intelligence 
master -slave strategy 

In this case, we will seek to evaluate the performance of the strategy 
described in the Section 3. The master–slave strategy has as main goal 
find the number of IEDs and its location that maximize the performance 

of the centralized fault section estimator. Table 6 shows the genetic al-
gorithm parameters used by the master–slave strategy. 

5. Implementation of master–slave strategy for the fault section 
estimation 

The master–slave strategy based in artificial intelligence for the fault 
section estimation was implemented using Power Factory DigSilent® 

i

j

i 

& = 0

i

1, ,…,

1, ,…,

= 0& 0

=

= =

1, ,…,

1, ,…,

=

=

=

=

>

=

0& = 0

=

=

Fig. 9. Flow chart to assess the fitness function of each chromosome.  
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and Python® as EMT software and programming language, respectively. 
The following subsections describe the most important considerations of 
the implementations of the cases studies. 

5.1. Preliminary stage 

We obtained the normal and fault operating scenarios according to 
the combination of the factors presented in Table 4. Additionally, the 
dataset was generated by 23.328 fault operating scenarios with a sam-
pling rate of 128 samples/cycle, a simulation time of 200 ms, and the 
fault time of 100 ms. The current and voltage signals were obtained in 
the locations of the IED as shown in Fig. 1. On the other hand, we decide 
to divide the main grid in eight sections and the MG in four sections 
according to Fig. 2. Each fault operating scenario were labeled according 
to the number of sections where it was simulated the fault. These con-
siderations were taken in account in the cases 1 and 2. 

5.2. Artificial intelligence-based master–slave strategy for the estimation 
of the fault section. 

The implementation of master–slave strategy for the fault section 
estimation considers the dataset obtained in the Section 5.1 and the 
tuning hyperparameters presented in Table 5. In the slave stage, we 

obtain the ANN models that use the combination of features and 
hyperparameters proposed by the Cuckoo Search. The ANN model only 
can be obtained one time per location, i.e., if several chromosomes 
present the same gene with value of one, the same ANN model is used for 
these chromosomes. 

6. Results and discussion 

The results for the previous cases were analyzed according to the 
accuracy given by (7). The results are presented in the subsections 
below. 

6.1. Case 1: ANN model as fault section estimator integrated into an IED 

Fig. 10 shows the performance of the fault section estimator models 
for each IED installed along of the main grid and the MG, respectively. 
Here, we estimated the performance for each ANN model by using the 
default ANN parameters and using the Cuckoo Search-based tuning al-
gorithm. When we observe the results, they show that the accuracy of 
the models varies according to the position of the IEDs not only for the 
grid but also for the MG. For instance, if we note the behavior of default 
parameters models, the ANN model with the best performance for the 
IEDs installed in main grid is IED 10 with an accuracy of 88.3%, whereas 
the model with the lowest performance is IED 1 with an accuracy of 
80.8%. In this way, the IED location and the section size could be a factor 
that affect the performance of the ANN models. On the other hand, we 
can observe the ANN models with tuning and features selection which 
their performance shows an improvement between 2% and 6% for the 
models of IEDs installed in the main grid and an improvement between 
1% and 5% in the models of IEDs installed in MG. 

Complementary to Fig. 10, we can illustrate in Table 7 and 8 the best 
combination of features and tuning of hyperparameters that improved 
the performance of the ANN models for each IED. Hence, the IEDs that 
had the best performance for main grid and MG were 10 and 21, 
respectively, while the IEDs that presented the lowest performance were 
IED 1 and IED 19. 

Table 9 and 10 present the confusion matrix for the IED 1 and IED 19. 
In Table 9 we can note that there is a improve in the IED1 which could be 
achieved by increasing the prediction in 4 and 8 (MG) sections with 
12.2% and 11.8%, respectively. However, if we note the column asso-
ciated to Section 8, we observe that the fault section estimator still 
presents a tendency to detect the faults into the MG (Section 8) instead of 
the main grid, especially in the prediction of faults in sections 4 and 6. 
On the contrary, Table 10 presents the confusion matrix for the IED 19 
located into the MG. The results show that there is an increase in the 
performance of the IED19 model due to the improvement in the pre-
diction of faults into the main grid (Section 4). However, the other 
section presents a reduction in their performance of faults prediction. 

In general, the results obtained in this case present accuracies above 
of 86% for the IEDs of main grid and the MG. Despite of this, the models 
would work independently to select the fault section if there will be a 
failure of communication into the network., However, if the communi-
cation stills working, we can bring another option that will improve the 
performance of the fault section estimation. 

6.2. Case 2 artificial intelligence-based master–slave strategy for the 
estimation of the fault section 

The main grid protection system and the MG have 16 IEDs and 13 
IEDs, respectively, which can be used by the centralized fault section 
estimation strategy. This strategy seeks to point out that there is an 
optimal number of IEDs that maximize the performance, we have varied 
the maximum number of IEDs that it can use both in the main grid and in 
the MG. Figs. 11 and 12 show the optimal number of IEDs that maximize 
the performance of the artificial intelligence-based master–slave strat-
egy for the estimation of the fault section. 

Table 4 
Scenario proposed for method validation.  

Factors Levels Number of 
levels 

Network 
topology  

Top1: Original Network 
Top2: Network with L824-L858 active. 
Top3: Network with L854-L862 active. 
Top4: Original network without the MG. 
Top5: Network with L824-L858 active without 
the MG. 
Top6: Original Network plus a load test feeder 

6 

Cut off 
generation 

0: Without cut off generation 
3: Generator 3 out of service 
4: Generator 4 out of service 
5: Generator 5 out of service 

4 

Load change 1: Low scenario (40% − 55%).3: Middle 
scenario  
(71% − 85%).5: High scenario  
(101% − 120%). 

3 

Fault resistance 0, 20, 45 Ohms 3 
Type of fault Single phase to ground (A), Double phase fault 

(AB), three phase fault 
3 

Location of the 
fault 

All the nodes 36 

Total scenarios #L =
∏n

k=1δkWhere δk is the number of levels 
of the factor k. 

23.328  

Table 5 
Hyperparameter tuning intervals.  

Hyperparameter Levels 

Number of Neurons 0 – 200 
Hidden layers 1–3 
Function of activation Identity, logistic, tanh, relu 
Solver lbfgs, sgd, adam 
Learning Rate Constant, invscaling, adaptive  

Table 6 
Genetic Algorithm Parameters.  

Parameters Value 

Number of chromosomes 30 
Maximum number of generations 500 
Limit of stabilization of the generations (RG) 40  
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Fig. 11 shows that for a maximum number of IEDs greater than 7 in 
the main grid, the number of IEDs selected by the proposed strategy 
tends to 7 and their performance is set at 95.5%. With the above, we can 
conclude that only 7 IEDs of 16 are necessary for the implementation of 
the proposed artificial intelligence-based master–slave strategy in the 
main network. A similar trend can be observed for the IEDs on the MG as 
shown in Fig. 12. Here, we can note the maximum number of IEDs is 
greater than 5, the number of IEDs selected by the proposed strategy 
tends to be 5 and its performance is established at 94.7%. This shows 
that only is necessary 5 IEDs of 13 for the MG to implement the proposed 
strategy. 

On the other hand, we can illustrate the locations of IEDS selected by 
the strategy in Fig. 13 for the main grid and in the MG. 

As a summary we can mention that the IEDs selected in the main grid 
were 2, 4, 6, 10, 12, 13, and 16, while the IEDs selected in the MG were 
19, 21, 22, 24, 27, 28, and 29. 

6.3. Comparison test 

This section presents a comparison of the proposed FL strategy with 
three ML techniques, such as Support Vector Machine (SVM), Decision 
Tree (DT), and ANN. The comparison is made for the two cases analyzed 
in this research. 

For case 1, ML models as estimators of the fault section are obtained 
using the Cuckoo Search-based tuning strategy. Table 11 compares the 
accuracy of the ML models obtained using DT and SVM for the IEDs with 

Fig. 10. Performance of ANN model a) IEDs located in the main grid; b) IEDs located in the MG.  

Table 7 
Best combination of features and tuning of hyperparameters for IEDs of the main grid.  

IED Hyperparameters Features Accuracy [%] 

1 62,132,175,3, tanh, 2,3,4,5,6,7,8,9,11,12,13,14,16,17,18  85.8 
2 160,69,120,9, relu, 2,3,4,5,6,7,8,9,10,12,13,15,16,17  88.4 
3 117,197,107,2, relu, 3,5,6,7,9,10,11,12,13,14,15,16,17,18  88.0 
4 89,115,198,2, tanh, 2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18  88.5 
5 138,125,71,2, relu, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18  89.0 
6 35,44,66,9, tanh, 3,4,5,7,8,9,11,13,14,15,16,18  87.6 
7 146,73,86,1, relu, 1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17  87.0 
8 127,125,152,4, tanh, 2,3,4,6,10,11,12,13,18  88.6 
9 86,84,185,3, relu, 2,3,4,5,7,8,10,12,13,16,18  89.3 
10 112,105,158,7, relu, 1,2,3,4,5,6,7,9,11,12,13,16  90.9 
11 157,52,195,3, tanh, 2,3,5,6,7,8,9,10,11,12,13,15,16,18  88.7 
12 122,109,149,6, relu, 3,4,5,7,8,9,10,11,12,13,14,15,16,17,18  87.6 
13 128,151,143,8, relu 2,3,4,7,9,10,15,17  86.9 
14 101,164,93,6, relu, 2,3,4,5,6,7,9,11,12,13,15,16,17,18  87.7 
16 41,142,124,8, relu, 1,2,3,4,6,8,9,13,14,15,16,17  86.9  

Table 8 
Best combination of features and tuning of hyperparameters for IEDs of the MG.  

IED Hyperparameters Features Accuracy [%] 

17 192,172,148, relu, sgd, adaptive 2,4,5,6,7,8,9,10,11,12,13,14,15,17  90.8 
18 107,80,87,7, relu, sgd, adaptive 2,4,5,6,8,9,11,12,13,15,16,17,18  89.6 
19 130,168,148,7, relu, sgd, adaptive 2,3,4,5,6,7,8,9,10,11,13,14,15,16  87.6 
20 76,106,133,3, tanh, sgd, adaptive 3,4,5,6,7,8,12,13,15,16,17,18  90.5 
21 134,171,173,7, relu, sgd, adaptive 4,5,7,8,9,10,11,13,14,15,16,17,18  92.6 
22 177,112,72,6, tanh, sgd, adaptive 1,2,4,5,6,7,8,10,11,13,15,18  90.7 
23 121,180,134,1, tanh, sgd, adaptive 2,4,5,6,7,8,10,11,13,14,15,16,17,18  89.1 
24 111,114,52,4, tanh, sgd, adaptive 2,3,4,5,7,8,9,12,13,14,15,16,17,18  90.2 
25 144,140,170,5, relu, sgd, adaptive 1,2,5,6,7,8,10,11,12,13,17  90.8 
26 132,158,124,5, relu, sgd, adaptive 2,4,5,6,7,8,9,10,11,12,13,14,15,17,18  90.3 
27 83,138,131,8, tanh, sgd, adaptive 1,2,4,5,6,9,10,14,15,16,18  91.5 
28 170,179,146,3, tanh, sgd, adaptive 1,4,7,8,9,10,11,12,13,14,15  91.2 
29 97,91,146,3, tanh, sgd, adaptive 2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18  91.6  
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higher and lower performance presented for the proposed strategy (PS). 
The results show that the proposed strategy presents a higher pre-

cision in its ML models as estimators of the fault section when ANN is 
used. For the reference cases presented in Table 11, this improvement is 

up to 23% compared to the models obtained with DT and up to 10% 
compared to the models obtained with SVM. 

For case 2, the artificial intelligence-based master–slave strategy is 
implemented using DT and SVM for the MG. Fig. 14 shows the optimal 
number of IEDs that maximize the performance the proposed strategy 
using DT, when the maximum number of IEDs is varied. 

The results show a tendency of the strategy to maximize its perfor-
mance when 4 IEDs are used, presenting an estimation accuracy of the 
faulted section of 87%. This shows that the proposed strategy increases 
its accuracy up to 10% when the communication system is available, and 
it can operate centralized way. However, it is also evident from the re-
sults that if the communication system is lost, each IED located in the 
MG will estimate the fault section with an accuracy higher than 79%. 
However, the performance of the strategy is still higher when ANN 
models are used. 

On the other hands, Fig. 15 shows the optimal number of IEDs that 
maximize the performance the proposed strategy using SVM, when the 
maximum number of IEDs is increased. 

The results show that the number of IEDs required by the centralized 
strategy to maximize its performance in locating faults in the MG is 4. 
With this number of IEDs, the strategy reaches a precision of 93.3%, 
being higher than the precision presented by the strategy using DT 
(87.2%), but lower than that presented by the strategy using ANN 
(95.5%). However, the number of IED necessary to maximize its per-
formance is less than that presented by the previous strategies. This 
represents an advantage, since fewer ANN models would have to be 
integrated into the IEDs in the system. 

7. Conclusions 

This paper presented a master–slave strategy based on artificial in-
telligence for the fault section estimation for active distribution net-
works and microgrids using disperse measurements. Initially, this 
strategy was conceived in cases where there is a failure in a centralized 
communication. The strategy formulates a fault location scheme based 
on ANN models integrated to electronic intelligent device. The ANN 
model allows that each IED can obtain a fault section using only local 
current and voltage measures without a robust communication. Also, a 
feature selection and hyperparameter tuning strategy can be integrated 
and formulate to the strategy formulated to improve the performance of 
the ANN models. Additionally, the proposed strategy considered that, if 
a centralized communication system exists or is available, the fault 
section is determined by means of the individual estimations of the ANN 
models integrated to the IEDs of the system. As the accuracies of the IEDs 
are affected by their location in the system and it is not practical to 
consider ANN models for all the IEDs in the system. This paper 

Table 9 
Confusion matrix for the IED 1 using default parameter and features selection 
and tuning strategy.  

CM IED 1-ANN model with default parameter 

1 2 3 4 5 6 7 8 0 

1 375 2 0 0 0 0 0 9 0 
2 2 165 0 2 3 0 0 1 0 
3 0 0 463 10 0 5 0 14 0 
4 0 3 47 631 1 99 4 121 0 
5 0 1 0 0 130 4 0 0 0 
6 0 1 3 49 5 207 0 164 0 
7 0 0 1 0 0 0 105 3 0 
8 0 0 0 86 1 98 0 706 0 
0 0 0 0 0 0 0 0 0 188 
CM IED 1-ANN model with tuning and feature selection 

1 2 3 4 5 6 7 8 0 
1 376 1 0 5 0 0 0 4 0 
2 1 165 0 5 0 0 0 2 0 
3 0 0 468 18 0 0 0 6 0 
4 0 1 23 727 0 32 0 123 0 
5 0 1 0 2 129 2 0 1 0 
6 0 0 2 80 4 214 0 129 0 
7 0 0 0 1 0 0 105 3 0 
8 0 0 1 57 0 22 0 811 0 
0 0 0 0 0 0 0 0 0 188  

Table 10 
Confusion matrix for the IED 19 using default parameter and features selection 
and tuning strategy.  

CM IED 19- ANN model with default parameter 

1 2 3 4 0 

1 202 112 18 18 0 
2 76 181 67 0 0 
3 13 85 279 4 0 
4 97 49 13 2135 0 
0 0 0 0 0 360 
CM IED 19- ANN model with tuning and feature selection 

1 2 3 4 0 
1 195 93 20 42 0 
2 80 166 67 11 0 
3 27 79 264 11 0 
4 20 3 6 2265 0 
0 0 0 0 0 360  

Fig. 11. Optimal location of IEDS for the main grid using the centralized master–slave strategy.  
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formulates a master–slave strategy to determine the number of IEDs and 
their optimal location that maximizes the performance of the centralized 
fault section estimation strategy. The proposed strategy was validated in 
the modified IEEE 34-node test feeder. The results obtained show a 
performance higher than 80% of the ANN models obtained for IEDs 
when a centralized communication system is not used, nor is a hyper-
parameter tuning and feature selection strategy used. However, when 

the hyperparameter tuning and feature selection strategy is used, the 
performance of the ANN models obtained increases between 2% and 5%, 
presenting a performance greater than 86% for the ANN models. Finally, 
when the availability of the centralized communication system is 
considered, the master–slave strategy determined that the location 
performance of the fault section can be improved up to 95.5% using 7 
IEDs placed a long of the main grid and at 94, 7% using 5 IEDs placed a 
long of the MG. The proposed strategy was compared with other ma-
chine learning models which show results above of 91%. The results 
presented above indicate a promising potential of the proposed strategy 
for real-life applications. 

CRediT authorship contribution statement 

J. Atencia-De la Ossa: Conceptualization, Methodology, Formal 
analysis, Investigation, Writing – original draft. C. Orozco-Henao: 
Conceptualization, Methodology, Formal analysis, Investigation, 

Fig. 12. Optimal location of IEDS for the MG using the centralized master–slave strategy.  

Fig. 13. Location of the IEDs into the network using the centralized master–slave strategy.  

Table 11 
Comparación de la estrategia de FL propuesta con tres técnicas ML.  

Grid IED Accuracy [%] 

DT SVM PS 

Main grid 1 70,5% 75,1% 85,8% 
10 67,1% 83,4% 90,9% 

MG 19 80,2% 83,8% 87,6% 
29 79,2% 88,0% 92,6%  

J. Atencia-De la Ossa et al.                                                                                                                                                                                                                   



International Journal of Electrical Power and Energy Systems 148 (2023) 108923

14

Writing – original draft. J. Marín-Quintero: Conceptualization, Meth-
odology, Formal analysis, Investigation, Writing – original draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by Universidad del Norte, Fondo Nacional 
de Financiamiento para la Ciencia, la Tecnología e Innovación FCTEI del 
sistema general de regalías SGR, and Departamento Administrativo de 
Ciencia, Tecnología e Innovación - COLCIENCIAS (now Colombian 
Ministry of Science, Technology, and Innovation - Minciencias) by call 
contest ‘‘Convocatoria 809 de 2018: Formación de capital humano de 
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in AC microgrids. vol. 1. UTP editorial; 2020. doi: 10.22517/97895. 
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