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Abstract. M. Gromov introduced the mean dimension for a continuous
map in the late 1990’s, which is an invariant under topological conju-
gacy. On the other hand, the notion of metric mean dimension for a dy-
namical system was introduced by Lindenstrauss and Weiss in 2000 and
this refines the topological entropy for dynamical systems with infinite
topological entropy. In this paper we will show if N is an n dimensional
compact riemannian manifold then, for any a ∈ [0, n], the set consisting
of continuous maps with metric mean dimension equal to a is dense in
C0(N) and for a = n this set is residual. Furthermore, we prove some
results related to the existence and, density of continuous maps, defined
on Cantor sets, with positive metric mean dimension and also continous
maps, defined on product spaces, with positive mean dimension.
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1. Introduction

Let X be a compact metric space with metric d. The notion of mean di-
mension for a topological dynamical system (X,φ), which will be denoted by
mdim(X,φ), was introduced by M. Gromov in [9]. It is another invariant under
topological conjugacy. Applications and properties of the mean dimension can
be found in [10,11,14–17].

Lindestrauss and Weiss in [15], introduced the notion of metric mean
dimension for any continuous map φ on X. This notion depends on the metric
d on X (consequently it is not an invariant under topological conjugacy) and

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-021-01513-3&domain=pdf
http://orcid.org/0000-0001-7419-482X


2 Page 2 of 30 J. M. Acevedo Results Math

it is zero for any map with finite topological entropy (see [15,16,20]). Some
well-known properties of the topological entropy are valid for both the mean
dimension and the metric mean dimension. We will study the veracity of other
fundamental and topological properties for the metric mean dimension.

In the next Section we will present the definitions of lower metric mean
dimension and upper metric mean dimension of a dynamical system (X, d, φ),
which will be denoted by mdimM(X, d, φ) and mdimM(X, d, φ), respectively.
The definition of the mean dimension mdim(X,φ) can be found in [15].

In Section 3 we will show the following properties of the metric mean
dimension:

• It is well-known the metric mean dimension is not an invariant under
topological conjugacy. In Remark 3.2 we will present an example of a
path of topologically conjugate continuous maps with different metric
mean dimension.

• Misiurewicz in [18] proved if φ has an s-horseshoe with s ≥ 2, then
htop(φ) ≥ log s. In Theorem 3.3 we present a formula for the metric
mean dimension related to the presence of horseshoes for a certain class
of continuous maps on the interval. This formula allows us to provide
an expression for the metric mean dimension of the compositions of a
continuous map (see Corollary 3.4).

• If φ : X → X and ψ : Y → Y are continuous maps (Y is a metric
space with metric d′) we have htop(φ × ψ) = htop(φ) + htop(ψ). This
equality is not always valid for the (metric) mean dimension (see Ex-
ample 3.8). For the mean dimension we have mdim(X × Y, φ × ψ) ≤
mdim(X,φ) + mdim(Y, ψ) (see [15], Proposition 2.8). This inequality
can be strict (see [21], Example 1.2). In Theorem 3.7 we will present
lower and upper bounds for both mdimM(X × Y, d × d′, φ × ψ) and
mdimM(X × Y, d × d′, φ × ψ).

Let N be a compact riemannian manifold with n = dim(N). Yano in [24]
showed if n ≥ 2, then set consisting of homeomophisms on N whose topological
entropy is infinite is a residual subset of Hom(N). In [4], the authors proved
if n ≥ 2, then the set consisting of homeomorphisms with upper metric mean
dimension equal to n is residual in Hom(N). In Section 4 we will show for
any a ∈ [0, n] the set consisting of continuous maps with lower and upper
metric mean dimension equal to a is dense in C0(N) (see Theorems 4.1 and
4.5). Furthermore, the set consisting of continuous maps with upper metric
mean dimension equal to n is residual (see Theorem 4.6). From these results
we have the metric mean dimension map is not continuous anywhere on the
set consisting of continuous maps defined on manifolds (see Corollaries 4.7 and
4.8).

In Section 5 we will show the existence of continuous maps on Cantor sets
with positive metric mean dimension (see Proposition 5.1). Bobok and Zin-
dulka in [3] shown the existence of homeomorphisms, defined on uncountable
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compact metrizable spaces with topological dimension equal to zero, with in-
finite topological entropy. We will use these techniques in order to prove there
exist continuous maps on the Cantor set with positive metric mean dimension
(see Proposition 5.1) and furthermore the density of these maps (see Theo-
rem 5.3). Block, in [2], proved the topological entropy map is not continuous
anywhere on the set consisting of continuous map on Cantor sets. This fact
also holds for the metric mean dimension map (see Theorem 5.5). We will fin-
ish this work showing some results related to the density of continuous maps,
defined on product spaces, with positive mean dimension (see Theorem 5.7).

2. Mean Dimension and Metric Mean Dimension

Let α be a finite open cover of a compact topological space X. Set

ord(α) = sup
x∈X

∑

U∈α

1U (x) − 1 and D(α) = min
β�α

ord(β),

where 1U is the indicator function and β � α means that β is a finite open
cover of X finer than α. Recall that for a topological space X, the topological
dimension is defined as

dim(X) = sup
α

D(α),

where α runs over all finite open covers of X. For any continuous map φ : X →
X, define

αn−1
0 = α ∨ (φ−1(α)) ∨ (φ−2(α)) ∨ · · · ∨ (φ−n+1(α)).

Definition 2.1. The mean dimension of φ : X → X is defined to be

mdim(X,φ) = sup
α

lim
n→∞

D(αn−1
0 )
n

,

where α runs over all finite open covers of X.

If dim(X) < ∞, then mdim(X,φ) = 0 (see [15]). Furthermore, in [15],
Proposition 3.1, is proved that mdim(XZ, σ) ≤ dim(X), where σ is the shift
map on XZ.

Let X be a compact metric space endowed with a metric d and φ : X → X
a continuous map. For any non-negative integer n we define dn : X × X →
[0,∞) by

dn(x, y) = max{d(x, y), d(φ(x), φ(y)), . . . , d(φn−1(x), φn−1(y))}.

Fix ε > 0. We say that A ⊂ X is an (n, φ, ε)-separated set if dn(x, y) > ε,
for any two distinct points x, y ∈ A. We denote by sep(n, φ, ε) the maximal
cardinality of an (n, φ, ε)-separated subset of X. We say that E ⊂ X is an
(n, φ, ε)-spanning set for X if for any x ∈ X there exists y ∈ E such that
dn(x, y) < ε. Let span(n, φ, ε) be the minimum cardinality of any (n, φ, ε)-
spanning subset of X. Given an open cover α, we say that α is an (n, φ, ε)-cover
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of X if the dn-diameter of any element of α is less than ε. Let cov(n, φ, ε) be
the minimum number of elements in any (n, φ, ε)-cover of X. Set

• sep(φ, ε) = lim sup
n→∞

1
n log sep(n, φ, ε);

• span(φ, ε) = lim sup
n→∞

1
n log span(n, φ, ε);

• cov(φ, ε) = lim sup
n→∞

1
n log cov(n, φ, ε).

Definition 2.2. The topological entropy of (X,φ, d) is defined by

htop(φ) = lim
ε→0

sep(φ, ε) = lim
ε→0

span(φ, ε) = lim
ε→0

cov(φ, ε).

Definition 2.3. The lower metric mean dimension and the upper metric mean
dimension of (X, d, φ) are defined by

mdimM(X, d, φ) = lim inf
ε→0

sep(φ, ε)
| log ε| = lim inf

ε→0

span(φ, ε)
| log ε| = lim inf

ε→0

cov(φ, ε)
| log ε|

mdimM(X, d, φ) = lim sup
ε→0

sep(φ, ε)
| log ε| = lim sup

ε→0

span(φ, ε)
| log ε| = lim sup

ε→0

cov(φ, ε)
| log ε| ,

respectively.

Remark 2.4. Throughout the paper, we will omit the underline and the over-
line on the notations mdimM and mdimM when a result be valid for both cases,
that is, we will use mdimM for the both cases.

3. Some Fundamental Properties

One of the most important properties of the topological entropy is that it is an
invariant under topological conjugacy. Mean dimension is an invariant under
topological conjugacy (see [15]). It is well-known the metric mean dimension
for continuous maps depends on the metric d on X. Consequently, it is not
an invariant under topological conjugacy between dynamical systems. In the
next example we will show that we can find paths of continuous maps that are
topologically conjugate and have different metric mean dimension.

Example 3.1. Fix r ∈ (0,∞). Set a0 = 0 and an =
∑n−1

i=0
C
3ir for n ≥ 1, where

C = 1∑∞
i=0

1
3ir

= 3r−1
3r . For each n ≥ 0, let Tn : In := [an, an+1] → [0, 1] be the

unique increasing affine map from In onto [0, 1].
For s ∈ N, set φs,r : [0, 1] → [0, 1], given by φs,r|In = T−1

n ◦ gs(n+1) ◦ Tn

for any n ≥ 0, where g : [0, 1] → [0, 1], is defined by x �→ |1−|3x−1|| (see Fig.
1). We will prove that

mdimM([0, 1], | · |, φs,r) =
s

r + s
for any s ∈ N.



Vol. 77 (2022) Genericity of Continuous Maps Page 5 of 30 2

Figure 1. Graphs of g, g2, g3

Take any ε ∈ (0, 1). For any k ≥ 1 set εk = |Ik|
3s(k+1) = C

3k(r+s)+s , where |Ik| =
ak+1 − ak. There exists some k ≥ 1 such that ε ∈ [εk, εk−1]. Note that

sep(n, φs,r, ε) ≥ sep(n, φs,r, εk−1) ≥ sep(n, φs,r|Ik−1 , εk−1) for any n ≥ 1.

From Lemma 6 in [22] it follows that for any n ≥ 1 we have

sep(n, φs,r|Ik−1 , εk−1) ≥
(

3sk

2

)n

and hence sep(φs,r, ε) ≥ log
(

3sk

2

)
.

Thus

mdimM([0, 1], | · |, φs,r) = lim inf
ε→0

sep(φs,r, ε)
| log ε| ≥ lim

k→∞
log 3sk

| log εk|

= lim
k→∞

log 3sk

log 3k(r+s)+s
=

s

r + s
.

On the other hand, note that s(k+1) log 3
((k−1)(r+s)+s) log 3−log C → s

r+s as k → ∞.
Hence, for any δ > 0 there exists k0 ≥ 1 such that for any k > k0 we have

s(k+1) log 3
((k−1)(r+s)+s) log 3−log C < s

r+s + δ. Hence, suppose that ε is small enough such
that ε < εk0−1. Let k ≥ k0 such that ε ∈ [εk, εk−1]. For each 0 ≤ j ≤ k,

dividing each Ij into 3s(j+1)n|Ij |
ε sub-intervals with the same length, we have

the set consisting of the end points of these sub-intervals is an (n, φs,r, ε)-
spanning set (see [5], Corollary 7.2). Hence, if Yk = ∪k

j=0Ij , for every n ≥ 1
we have

span(n, φs,r|Yk , ε) ≤
k∑

j=0

3s(j+1)n|Ij |
ε

≤
k∑

j=0

3s(j+1)n|Ij |
εk

=

k∑

j=0

3s(j+1)n3s(k+1)|Ij |
|Ik|

=
k∑

j=0

3sn(j+1)3s(k+1)3kr

3jr
≤ (k + 1)3s(k+1)n3s(k+1)+kr.

Hence
span(φs,r|Yk

, ε)
| log ε| ≤ lim sup

n→∞
log[(k + 1)3s(k+1)n3s(k+1)+kr]

n| log εk−1|
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= lim sup
n→∞

s(k + 1) log 3
[((k − 1)(r + s) + s) log 3 − log C]

=
s(k + 1) log 3

((k − 1)(r + s) + s) log 3 − log C
<

s

s + r
+ δ.

This fact implies that for any δ > 0 we have

mdimM([0, 1], | · |, φs,r) <
s

r + s
+ δ and hence mdimM([0, 1], | · |, φs,r)

≤ s

r + s

The above facts proves mdimM([0, 1], | · |, φs,r) = s
r+s .

Note for each s ≥ 1 and r ∈ (0, 1) we have

φs,r = φs
1,r. (3.1)

Hence, in this case we have

mdimM([0, 1], | · |, φs
1,r)

=
s

r + s
=

smdimM([0, 1], | · |, φ1,r)
mdimM([0, 1], | · |, φ1,r)(s + 1) − 1

for each s ∈ N.

Remark 3.2. Let r1 > 0 and r2 > 0. For each n ≥ 1, take Ir1
n and Ir2

n the
intervals obtained as in the Example 3.1, for r1 and r2, respectively. Fix s ≥ 1
and let φs,r1 and φs,r2 be the continuous maps defined above for r1 and r2,
respectively. Note that, for each n ≥ 0, φs,r1 |Ir1

n
and φs,r2 |Ir2

n
are topologically

conjugate by a continuous map hn : Ir1
n → Ir2

n :

φs,r1 |Ir1
n

= h−1
n ◦ φs,r2 |Ir2

n
◦ hn.

Therefore, φs,r1 and φs,r2 are topologically conjugate by h : I → I given by
h|Ir1

n
= hn for each n ≥ 0. This fact proves, for each s ∈ N, As = {φs,r :

r ∈ (0,∞)} is a path of topologically conjugate continuous maps such that
mdimM([0, 1], | · |, φs,r) = s

r+s for each r ∈ (0,∞).

An s-horseshoe for φ : [0, 1] → [0, 1] is an interval J ⊆ [0, 1] which has
a partition into s subintervals J1, . . . , Js such that J◦

j ∩ J◦
i = ∅ for i �= j and

J ⊆ φ(J i) for each i = 1, . . . , s.
If g is the map defined in Example 3.1, we have I = [0, 1] is an 3-horseshoe

for g. Furthermore, for n ≥ 0, each In can be divided into 3s(n+1) closed
intervals with the same length I1

n, . . . , I3s(n+1)

n , such that

φs,r(Ii
n) = In for each i ∈ {1, . . . , 3s(n+1)}.

Consequently, each In is a 3s(n+1)-horseshoe for φs,r.
Misiurewicz in [18], proved if φ has an s-horseshoe with s ≥ 2, then

htop(φ) ≥ log s. Suppose for each k ∈ N there exists an sk-horseshoe for
φ ∈ C0([0, 1]), Ik = [ak−1, ak] ⊆ [0, 1], consisting of sub-intervals I1

k , I2
k , . . . , Isk

k
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with the same length, where sk ≥ 2 for all k ≥ 1. From Lemma 6 in [22] we
can prove that (see Example 3.1)

mdimM([0, 1], | · |, φ) ≥ lim sup
k→∞

1∣∣∣1 − log |Ik|
log sk

∣∣∣
. (3.2)

Next theorem provides upper bounds for the lower metric mean dimen-
sion.

Theorem 3.3. Suppose for each k ∈ N there exists a sk-horseshoe for φ ∈
C0([0, 1]), Ik = [ak−1, ak] ⊆ [0, 1], consisting of sub-intervals with the same
length I1

k , I2
k , . . . , Isk

k and [0, 1] = ∪∞
k=1Ik. We can rearrange the intervals and

suppose that 2 ≤ sk ≤ sk+1 for each k. If each φ|Ii
k

: Ii
k → Ik is a bijective

affine map for all k and i = 1, . . . , sk, we have
i. mdimM([0, 1], | · |, φ) ≤ lim inf

k→∞
1∣∣∣1− log |Ik|
log sk

∣∣∣
.

ii. If the limit lim
k→∞

1∣∣∣1−log |Ik|
log sk

∣∣∣
exists, then mdimM([0, 1], | · |, φ)= lim

k→∞
1∣∣∣1− log |Ik|
log sk

∣∣∣
.

Proof. Let ki be a strictly increasing sequence of positive integers such that

a := lim inf
k→∞

1∣∣∣1 − log |Ik|
log sk

∣∣∣
= lim

i→∞
1∣∣∣1 − log |Iki

|
log ski

∣∣∣
.

For any δ > 0, there exists k0 such that if, ki ≥ k0, then 1∣∣∣∣1− log |Iki
|

log ski

∣∣∣∣
< a + δ.

For any ki ≥ k0, set εki
= |Iki

|
ski

. For each 1 ≤ j ≤ ki, dividing each Ij into
sn
j |Ij |
εki

sub-intervals with the same length, we have the set consisting of the end
points of these sub-intervals is an (n, φ|Ij , εki

)-spanning set (see [5], Corollary
7.2). Hence, if Yki

= ∪ki
j=1Ij , for every n ≥ 1 we have

span(n, φ|Yki
, εki

) ≤
ki∑

j=1

sn
j |Ij |
εki

≤
ki∑

j=1

sn
ki

|Ij |
εki

.

Thus

span(φ|Yki
, εki

)
| log εki

| ≤ lim sup
n→∞

log
[∑ki

j=1

sn
ki

|Ij |
εki

]

n| log ski
− log |Iki

|| =
1∣∣∣1 − log |Iki

|
log ski

∣∣∣
< a + δ

This fact implies that for any δ > 0 we have

mdimM([0, 1], | · |, φ) ≤ a + δ and hence mdimM([0, 1], | · |, φ) ≤ a,

which proves i.
Next, we will prove ii. From (3.2) we have

mdimM([0, 1], | · |, φ) ≤ lim
k→∞

1∣∣∣1 − log |Ik|
log sk

∣∣∣
≤ mdimM([0, 1], | · |, φ). (3.3)
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We can prove that for any δ > 0 there exists k0 such that for any k ≥ k0 we
have

span(φ|Yk
, ε)

| log ε| ≤ span(φ|Yk
, ε)

| log εk| ≤ log sk

|log sk − log |Ik|| =
1∣∣∣1 − log |Ik|
log sk

∣∣∣
< a + δ,

for any ε > 0 small enough such that ε ≤ εk (see Example 3.1). Hence

mdimM([0, 1], | · |, φ) ≤ lim
k→∞

1∣∣∣1 − log |Ik|
log sk

∣∣∣
.

The equality follows from (3.3). �

It is well-known that for any continuous map φ : X → X and s ∈ N we
have

mdimM([0, 1], | · |, φs) ≤ smdimM([0, 1], | · |, φ)

and this inequality can be strict. Next corollary, which follows directly from
Theorem 3.3, provides a formula for the metric mean dimension of the com-
positions of a map satisfying the conditions of the theorem.

Corollary 3.4. If φ is a map which satisfies the properties of Theorem 3.3 then
for any s ∈ N we have

mdimM([0, 1], | · |, φs) ≥ lim sup
k→∞

s∣∣∣s− log |Ik|
log sk

∣∣∣
and mdimM([0, 1], | · |, φs)

≤ lim inf
k→∞

s∣∣∣s− log |Ik|
log sk

∣∣∣
.

If the limit lim
k→∞

1∣∣∣1− log |Ik|
log sk

∣∣∣
exists, then mdimM([0, 1], | · |, φs) = lim

k→∞
s∣∣∣s− log |Ik|
log sk

∣∣∣
.

Note that in Example 3.1, for each map φs,r we have

lim
k→∞

log |Ik|
log sk

= − lim
k→∞

log 3kr

log 3s(k+1)
= −r

s
.

Example 3.5. Set a0 = 0 and an =
∑n

i=1
6

π2i2 for n ≥ 1. Set In := [an−1, an]
for any n ≥ 1. Let ϕ ∈ C0([0, 1]) be defined by ϕ|In = T−1

n ◦ gn ◦ Tn for any
n ≥ 1, where Tn and g are as in Example 3.1 (see Example 3.4 in [20]). For
ϕs, with s ∈ N, we have sk = 3sk for each k ∈ N. Therefore,

lim
k→∞

log |Ik|
log sk

= − lim
k→∞

log k2

log 3sk
= 0 for any s ∈ N.

It is follows from Theorem 3.3 that

mdimM([0, 1], | · |, ϕs) = lim
k→∞

s∣∣∣s − log |Ik|
log sk

∣∣∣
= 1 for any s ∈ N.

The equality mdimM([0, 1], | · |, ϕs) = 1 can be proved as in Example 3.1.
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Example 3.6. Take In = [an−1, an] as in the above example. Divide each in-
terval In into 2n + 1 sub-intervals with the same lenght, I1

n, . . . , I2n+1
n . For

k = 1, 3, . . . , 2n + 1, let ψ|Ik
n

: Ik
n → In be the unique increasing affine map

from Ik
n onto In and for k = 2, 4, . . . , 2n, let ψ|Ik

n
: Ik

n → In be the unique de-
creasing affine map from Ik

n onto In. For ψs, with s ∈ N, we have |Ik| = 6
π2k2

and sk = (2k + 1)s for each k ∈ N. Therefore,

lim
k→∞

log |Ik|
log sk

= − lim
k→∞

log k2

log(2k + 1)s
= −2

s
.

It follows from Theorem 3.3 that

mdimM([0, 1], | · |, ψs) = lim
k→∞

1∣∣∣1 − log |Ik|
log sk

∣∣∣
=

s

s + 2
for any s ∈ N.

The equality mdimM([0, 1], | · |, ψs) = s
s+2 can be proved as in Example 3.1.

Take φ : X → X and ψ : Y → Y where Y is a compact metric space with
metric d′. On X × Y we consider the metric

(d × d′)((x1, y1), (x2, y2)) = d(x1, x2) + d′(y1, y2), for x1, x2 ∈ X and y1, y2 ∈ Y.
(3.4)

The map φ×ψ : X × Y → X ×Y is defined to be (φ× ψ)(x, y) = (φ(x), ψ(y))
for any (x, y) ∈ X × Y . The equality htop(φ × ψ) = htop(φ) + htop(ψ) always
hold. Lindenstrauss in [15], Proposition 2.8, proved that

mdim(X × Y, φ × ψ) ≤ mdim(X,φ) + mdim(Y, ψ) (3.5)

and this inequality can be strict (see [13,21]). For the metric mean dimension
we have:

Theorem 3.7. Take two continuous maps φ : X → X and ψ : Y → Y . On
X × Y consider the metric given in (3.4). We have:

i. mdimM(X × Y, d × d′, φ × ψ) ≤ mdimM(X, d, φ) + mdimM(Y, d′, ψ).
ii. mdimM(X, d, φ) + mdimM(Y, d′, ψ) ≤ mdimM(X × Y, d × d′, φ × ψ).
iii. mdimM(X, d, φ) + mdimM(Y, d′, ψ) ≤ mdimM(X × Y, d × d′, φ × ψ).
iv. mdimM(X × Y, d × d′, φ × ψ) ≤ mdimM(X, d, φ) + mdimM(Y, d′, ψ).
v. If mdimM(X, d, φ) = mdimM(X, d, φ) or mdimM(Y, d′, ψ)

= mdimM(Y, d′, ψ), then

mdimM(X × Y, d × d′, φ × ψ) = mdimM(X, d, φ) + mdimM(Y, d′, ψ)

and

mdimM(X × Y, d × d′, φ × ψ) = mdimM(X, d, φ) + mdimM(Y, d′, ψ).

Proof. For any ε > 0, we always have

span(φ×ψ, 2ε) ≤ span(φ, ε)+span(ψ, ε) and sep(φ×ψ, 2ε) ≥ sep(φ, ε)+sep(ψ, ε).
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Hence, item i. follows from

lim sup
ε→0

span(φ × ψ, 2ε)
| log 2ε| ≤ lim sup

ε→0

span(φ, ε)
| log ε| + lim sup

ε→0

span(ψ, ε)
| log ε| ,

item ii. follows from

lim sup
ε→0

sep(φ × ψ, 2ε)
| log 2ε|

≥ lim sup
ε→0

sep(φ, ε)
| log ε| + lim inf

ε→0

sep(ψ, ε)
| log ε| ,

item iii. follows from

lim inf
ε→0

sep(φ × ψ, 2ε)
| log 2ε| ≥ lim inf

ε→0

sep(φ, ε)
| log ε| + lim inf

ε→0

sep(ψ, ε)
| log ε|

and item iv. follows from

lim inf
ε→0

span(φ × ψ, 2ε)
| log 2ε| ≤ lim inf

ε→0

span(φ, ε)
| log ε| + lim sup

ε→0

span(ψ, ε)
| log ε| .

Note that item v. is a consequence of items i-iv. �

For the box dimension we have the following inequalities (see [8,23]):

dimB(X, d) + dimB(Y, d′) ≤ dimB(X × Y, d × d′) ≤ dimB(X, d) + dimB(Y, d′)
(3.6)

and

dimB(X, d) + dimB(Y, d′) ≤ dimB(X × Y, d × d′) ≤ dimB(X, d) + dimB(Y, d′).
(3.7)

If dimB(X, d) = dimB(X, d) or dimB(Y, d′) = dimB(Y, d′), we can prove that

dimB(X × Y, d × d′) = dimB(X, d) + dimB(Y, d′)

and

dimB(X × Y, d × d′) = dimB(X, d) + dimB(Y, d′).

Each inequality in (3.6) and (3.7) can be strict (see [23]). In the next example
we will prove the inequalities i-iv in Theorem 3.7 can be strict.

Example 3.8. Let (X, d) and (Y, d′) be any compact metric spaces. The metric
d̃ × d̃′ on XZ × Y Z is defined by

(d̃ × d̃′)((x̄, ȳ), (z̄, w̄)) =
∑

i∈Z

1
2|i| d(xi, zi) +

∑

i∈Z

1
2|i| d

′(yi, wi),

for x̄ = (xi)i∈Z, z̄ = (zi)i∈Z ∈ XZ, ȳ = (yi)i∈Z, w̄ = (wi)i∈Z ∈ Y Z. Further-
more, the metric (d × d′)∗ on (X × Y )Z is given by

(d × d′)∗((x, y), (z, w)) =
∑

i∈Z

1
2|i| d(xi, zi) +

∑

i∈Z

1
2|i| d

′(yi, wi),
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for (x, y) = (xi, yi)i∈Z and (z, w) = (zi, wi)i∈Z in (X × Y )Z. Consequently, the
bijection

Θ : (X × Y )Z → XZ × Y Z, given by (xi, yi)i∈Z �→ ((xi)i∈Z, (yi)i∈Z),

is an isometry and furthermore the diagram

(X × Y )Z σ−−−−→ (X × Y )Z
⏐⏐
Θ

⏐⏐
Θ

XZ × Y Z σ1×σ2−−−−→ XZ × Y Z

is commutative, where σ is the left shift on (X × Y )Z, σ1 is the left shift on
XZ and σ2 is the left shift on Y Z. It is clear that the metric mean dimension
is invariant under isometric topological conjugacy. Therefore,

mdimM(XZ × Y Z, d̃1 × d̃2, σ1 × σ2) = mdimM((X × Y )Z, (d × d′)∗, σ)

= dimB(X × Y, d × d′)

and

mdimM(XZ × Y Z, d̃1 × d̃2, σ1 × σ2) = dimB(X × Y, d × d′).

If (X, d) and (Y, d′) are compact metric spaces such that each inequality in
(3.6) and (3.7) is strict (see [23]), then we can prove that the inequalities i-iv
in Theorem 3.7 are strict. For instances, if

dimB(X × Y, d × d′) < dimB(X, d) + dimB(Y, d′),

then

mdimM(XZ × Y Z, d̃1 × d̃2, σ1 × σ2) = dimB(X × Y, d × d′) < dimB(X, d) + dimB(Y, d′)

= mdimM(XZ, d̃, σ1) + mdimM(Y Z, d̃′, σ2).

4. Density of Continuous Maps on Manifolds with Positive
Metric Mean Dimension

Yano in [24] proved that the set consisting of homeomorphisms with infinite
topological entropy defined on any manifold with dimension biggest to one
is residual in the set consisting of homeomorphisms on the manifold. Further-
more, the set consisting of continuous maps defined on the interval or the circle
with infinite topological entropy is residual. In this section we will prove if N
is any riemannian manifold, then for any a ∈ [0,dim(N)] the set consisting of
continuous maps on N whose metric mean dimension is equal to a is dense in
C0(N). Furthermore, the set consisting of continuous maps with upper metric
mean dimension equal to dim(N) is residual.

On C0(X) we will consider the metric

d̂(φ, ϕ) = max
x∈X

d(φ(x), ϕ(x)) for any φ, ϕ ∈ C0(X).
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For any a ∈ [0,dimB(X, d)], set

Ca(X) = {φ ∈ C0(X) : mdimM(X, d, φ) = mdimM(X, d, φ) = a}.

Note for any riemannian manifold N with riemannian metric d, we have
C0(N) is dense in C0(N), since the set consisting of C1-maps on N is dense
in C0(N) and the metric mean dimension of any C1-map is equal to zero.

Examples 3.1 and 3.5 prove for any a ∈ [0, 1] there exists a φa ∈ C0([0, 1])
such that

mdimM([0, 1], | · |, φa) = mdimM([0, 1], | · |, φa) = a.

In [4], Theorem C, the authors proved for each a ∈ [0, 1] the set consisting
of continuous maps on [0, 1] with lower and upper metric mean dimension equal
to a is dense in C0([0, 1]). We will present a proof of this fact for the sake of
completeness.

Theorem 4.1. Ca([0, 1]) is dense in C0([0, 1]) for each a ∈ [0, 1].

Proof. We had seen that C0([0, 1]) is dense in C0([0, 1]). Therefore, in order to
prove the theorem, it is sufficient to show if φ0 ∈ C0([0, 1]), then for any ε > 0
there exists ψa ∈ Ca([0, 1]) such that d(φ0, ψa) < ε. Fix φ0 : [0, 1] → [0, 1] ∈
C0([0, 1]) and take ε > 0.

Let p∗ be a fixed point of φ0. Choose δ > 0 such that |φ0(x) − φ0(p∗)| <
ε/2 for any x with |x − p∗| < δ. Take φa ∈ Ca([0, 1]) for some a ∈ (0, 1]
(it is follows from Examples 3.1 and 3.5 that for any a ∈ (0, 1] there exists
φa ∈ Ca([0, 1])). Set J1 = [0, p∗], J2 = [p∗, p∗ + δ/2], J3 = [p∗ + δ/2, p∗ + δ]
and J4 = [p∗ + δ, 1]. Take the continuous map ψa on X defined as

ψa(x) =

⎧
⎪⎨

⎪⎩

φ0(x), if x ∈ J1 ∪ J4,

T−1
2 φaT2(x), if x ∈ J2,

T3(x), if x ∈ J3,

where T2 : J2 → I is the affine map such that T2(p∗) = 0 and T2(p∗ +δ/2) = 1,
and T3 : J3 → [p∗ + δ/2, φ0(p∗ + δ)] is the affine map such that T3(p∗ + δ/2) =
p∗ + δ/2 and T3(p∗ + δ) = φ0(p∗ + δ) (see Fig. 2). Note that d̂(ψa, φ0) < ε. Set
A = ∪∞

i=0ψ
−i
a (J2) and B = Ac. Note that

Ω(ψa|A) = Ω(ψa|J2) ⊆ J2.

Hence

mdimM([0, 1], | · |, ψa) = max{mdimM(A, | · |, ψa|A),mdimM(B, | · |, ψa|B)}
= mdimM(J2, | · |, ψa) = a.

This fact proves the theorem. �

Remark 4.2. Note that in Theorem 4.1 we prove the set A consisting of maps
ψ ∈ C0([0, 1]) such that, for some a, b ∈ [0, 1], ψ|[a,b] : [a, b] → [a, b] satisfies
the conditions in Theorem 3.3 and outside of [a, b] ψ has zero entropy, is dense
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Figure 2. Graphs of φ0 and ψa. φa = T−1
2 φaT2

in C0([0, 1]). Therefore, Corollary 3.4 can be applied for any map in A, which
is a dense subset of C0([0, 1]).

For a, b ∈ (0, 1], let φa, φb ∈ C0([0, 1]) be such that

mdimM([0, 1], d, φa) = a and mdimM([0, 1], d, φb) = b

(see Example 3.1). It follows from Theorem 3.7, item v, that
mdimM([0, 1] × [0, 1], d × d, φa × φb) = mdimM([0, 1], d, φa) + mdimM([0, 1], d, φb) = a + b.

Hence, we have:

Lemma 4.3. Fix n ∈ N. For any a ∈ [0, n], there exists φa ∈ C0([0, 1]n) such
that

mdimM([0, 1]n, dn, φa) = mdimM([0, 1]n, dn, φa) = a.

Furthermore, given that dn (see (3.4)) and ‖ · ‖, where ‖(x1, . . . , xn)‖ =√
x2

1 + · · · + x2
n for any (x1, . . . , xn) ∈ R

n, are uniformly equivalent, we have
for any a ∈ [0, n], there exists φa ∈ C0(Xn) such that

mdimM([0, 1]n, ‖ · ‖, φa) = mdimM([0, 1]n, ‖ · ‖, φa) = a.

Remark 4.4. Fix r1, r2, . . . , rn ∈ (0,∞) and s1, s2, . . . , sn ∈ N and for i =
1, 2, . . . , n take n maps φsi,ri

∈ C0([0, 1]) defined as in Example 3.1. Thus for
each i = 1, 2, . . . , n we have

mdimM([0, 1], | · |, φsi,ri
) =

si

ri + si
.

From Theorem 3.7, item v, we have

mdimM([0, 1]n, dn, φs1,r1 × φs2,r2 × · · · × φsn,rn
) =

n∑

i=1

si

ri + si
.
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Furthermore, it follows from 3.1 and Theorem 3.7 that for any k ∈ N we have
mdimM([0, 1]

n
, d

n
, (φs1,r1 × · · · × φsn,rn )

k
) = mdimM([0, 1]

n
, d

n
, (φs1,r1 )

k × · · · × (φsn,rn )
k
)

= mdimM([0, 1]
n

, d
n

, φks1,r1 × · · · × φksn,rn )

=

n∑

i=1

ksi

ri + ksi

.

Throughout this section, we will fix a compact riemannian manifold N
with riemannian metric d and dim(N) = n ≥ 1. The proof of the following
theorem consists in perturbing a map on small neighborhoods (on which we
will work using coordinate charts) of the orbit of a periodic point, that is,
on finitely many neighborhoods. Since the metric mean dimension depends
on the metric, we must be careful to choose the charts that will be used to
make the perturbations. For this reason we will take the charts given by the
exponential map, which provides us the required properties. Indeed, for each
p ∈ N , consider the exponential map

expp : Bδ′(0p) ⊆ TpN → Bδ′(p) ⊆ N,

where 0p is the origin in the tangent space TpN , δ′ is the injectivity radius of
N and Bε(x) denote the open ball of radius ε > 0 with center x. We will take
δN = δ′

2 . The exponential map has the following properties (see [6], Chapter
III):

• Since N is compact, δ′ does not depends on p.
• expp(0p) = p and expp[BδN (0p)] = BδN (p);
• expp : BδN (0p) → BδN (p) is a diffeomorphism;
• If v ∈ BδN (0p), taking q = expp(v) we have d(p, q) = ‖v‖.
• The derivative of expp at the origin is the identity map:

D(expp)(0) = id : TpN → TpN.

Since expp : BδN (0p) → BδN (p) is a diffeomorphism and D(expp)(0) =
id : TpN → TpN, we have expp : BδN (0p) → BδN (p) is a bi-Lipschitz map
with Lipschitz constant close to 1. Therefore, we can assume that if v1, v2 ∈
BδN (0p), taking q1 = expp(v1) and q2 = expp(v2), we have d(q1, q2) = ‖v1−v2‖.
Furthermore, we will identify BδN (0p) ⊂ TpN with BδN (0) = {x ∈ R

n : ‖x‖ <
δN} ⊆ R

n.

Theorem 4.5. For any a ∈ [0, n], the set

Ca(N) = {φ ∈ C0(N) : mdimM(N, d, φ) = mdimM(N, d, φ) = a}
is dense in C0(N).

Proof. Let P r(N) be the set consisting of Cr-differentiable maps on N with
a periodic point. This set is C0-dense in C0(N) (see [1,12]). Hence, in order
to prove the theorem it is sufficient to show if φ0 ∈ P r(N), then for any
ε > 0 there exists ϕa ∈ Ca(N), with d(φ0, ϕa) < ε. Fix φ0 ∈ Pr(N) and take
ε ∈ (0, δN ). Suppose that p is a periodic point of φ0 with period k. We can
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Figure 3. Extension of ϕa

suppose that Bε(φi
0(p)) ∩ Bε(φ

j
0(p)) = ∅, for i, j = 1, . . . , k with i �= j. Take

λ ∈ (0, ε/4) such that φ0(B4λ(φi
0(p))) ⊆ Bε/4(φi+1

0 (p)) for i = 0, . . . , k−1. Take
φa ∈ C0([−λ

3 , λ
3 ]n) obtained by a cartesian product of maps given in Example

3.1, with [−λ
3 , λ

3 ] instead of [0, 1], such that mdimM([−λ
3 , λ

3 ]n, ‖ · ‖, φa) = a
(see Lemma 4.3). Set

A =

[
−λ

3
,
λ

3

]n

, B = [−λ, λ]n \ (−2λ/3, 2λ/3)n, C = [−λ, λ]n \ (A ∪ B).

Take the map ϕa : A ∪ B → A ∪ B defined by

ϕa(x) =

{
φa(x), if x ∈ A

x, if x ∈ B.

Note that

ϕa(∂A) = ∂A and ϕa (∂ ([−2λ/3, 2λ/3]n)) = ∂ ([−2λ/3, 2λ/3]n) .

Furthermore, if (x1, . . . , xn) ∈ ∂A, then xi ∈ {−λ/3, λ/3} for some i and we
have

ϕa(x1, . . . , xi, . . . , xn) = (z1, . . . , zi−1, xi, zi+1, . . . , zn), (4.1)
for some zj ∈ [−λ

3 , λ
3

]
, for j ∈ {1, . . . , i − 1, i + 1, . . . , n}. Hence

(x1, . . . , xi, . . . , xn) and ϕa(x1, . . . , xi, . . . , xn) belong to the same face of ∂A.
Considering this fact, we extend ϕa to a continuous map ϕ̄a : [−λ, λ]n →
[−λ, λ]n.

For any x ∈ ∂([−2λ/3, 2λ/3]n), take the line segment passing through
x and 0 ∈ R

n. This line passes through a unique point θ(x) ∈ ∂A. Any
y ∈ C can be written as y = tθ(x) + (1 − t)x, for some t ∈ [0, 1], where
x ∈ ∂([−2λ/3, 2λ/3]n) (see Fig. 3, noting that from (4.1) we have θ(x) and
ϕa(θ(x)) belong to the same face of ∂A). We define

ϕ̄a(y) = ϕ̄a(tθ(x) + (1 − t)x) = tϕa(θ(x)) + (1 − t)x, for y ∈ C.
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We have ϕ̄a : [−λ, λ]n → [−λ, λ]n is a continuous map: For y, z ∈ C, there
exist xy, xz ∈ ∂([−2λ/3, 2λ/3]n) and t, s ∈ [0, 1] such that

y = tθ(xy) + (1 − t)xy and z = sθ(xz) + (1 − s)xz.

If y and z are close, then xy, xz are close and therefore θ(xy) and θ(xz) are close
(note that θ : ∂([−2λ/3, 2λ/3]n) → ∂A is a continuous map), which implies
that t and s are close. Given that ϕa is a continuous map, we have ϕa(θ(xy))
and ϕa(θ(xz)) and therefore ϕ̄a(y) and ϕ̄a(z) are close. Next, if y ∈ ∂A, then
t = 1 and thus y = θ(x). Therefore

ϕ̄a(y) = ϕ̄a(θ(x)) = ϕa(θ(x)).

If y ∈ ∂([−2λ/3, 2λ/3]n), then t = 0. Thus y = x and therefore

ϕ̄a(y) = ϕ̄a(x) = x = ϕa(x).

From 4.1 we have if t ∈ [0, 1] then tθ(x)+(1−t)x and ϕa(tθ(x)+(1−t)x)
belong to C. Given that ϕ̄a(∂C) = ∂C (ϕ̄a is the identity on ∂B and it is
equal to ϕa on ∂A, which is surjective), we have by the continuity of ϕ̄a that
ϕ̄a(C) = C. Therefore, mdimM(C, ‖ · ‖, ϕ̄a) ≤ a. Hence,

mdimM([−σ, σ]n, ‖ · ‖, ϕ̄a) = max{mdimM(A, ‖ · ‖, ϕ̄a), mdimM(B ∪ C, ‖ · ‖, ϕ̄a)}
= mdimM(A, ‖ · ‖, ϕ̄a) = mdimM(A, ‖ · ‖, φa) = a.

Consider

ψa(q) =

⎧
⎪⎪⎨

⎪⎪⎩

exp
φi+1
0 (p)

◦ ϕ̄a ◦ exp−1

φi
0(p)

(q), if q ∈ Ni = expφi
0(p)

([−λ, λ]n), for some i

φ0(q), if q ∈ B = N \
(

⋃
i=1,...,k

expφi
0(p)

((−2λ, 2λ)n)

)
.

Next, we extend ψa to a continuous map ψ̄a : N → N . For any
u ∈ ∂([−2λ, 2λ]n), take the line segment passing through u and 0 ∈ R

n.
This line passes through a unique point β(u) ∈ ∂[−λ, λ]n. Any w ∈ Ci =
expφi

0(p) [[−2λ, 2λ]n \ [−λ, λ]n] can be written as

w = expφi
0(p)(tβ(u) + (1 − t)u),

for some t ∈ [0, 1], where u ∈ ∂([−2λ, 2λ]n). For w ∈ Ci we set

ψ̄a(w) = ψ̄a(expφi
0(p)(tβ(u) + (1 − t)u))

= expφi+1
0 (p)[tϕ̄a(β(u)) + (1 − t)exp−1

φi+1
0 (p)

(φ0(expφi
0(p)(u)))]

= expφi+1
0 (p)[tβ(u) + (1 − t)exp−1

φi+1
0 (p)

(φ0(expφi
0(p)(u)))].

We have ψ̄a : N → N is a continuous map (note that β : ∂([−2λ, 2λ]n) →
∂[−λ, λ]n is a continuous map). Furthermore, we have d̂(φ0, ψ̄a) < ε. Note if
q ∈ Ni, we have

(ψa)s(q) = exp
φ
(i+s) mod k
0 (p)

◦ (ϕ̄a)s ◦ exp−1
φi
0(p)

(q) and

(ψa)k(q) = expφi
0(p) ◦ (ϕ̄a)k ◦ exp−1

φi
0(p)

(q).
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Figure 4. Strong horseshoe

Hence, A ⊆ [−λ, λ]n is an (s, ϕa, ε)-separated set if and only if expφi
0(p)(A) ⊆ N

is an (s, ψa, ε)-separated set for any ε > 0. Therefore, setting L =
k⋃

i=1

Ni, we

have

sep(s, ψa|L, ε) = k sep(s, ϕa, ε) and thus
mdimM(L, d, ψ̄a|L) = mdimM([−λ, λ]n, ‖ · ‖, ϕ̄a).

Set K = ∪∞
i=0ψ̄

−i
a (L) and Z = Kc. Note that Ω(ψ̄a|K) ⊆ L and φ0|Z is a

differentiable map. Hence mdimM(Z, d, ψ̄a|Z) = 0 and therefore

mdimM(N, d, ψ̄a) = max{mdimM(K, d, ψ̄a|K),mdimM(Z, d, ψ̄a|Z)}
= max{mdimM(L, d, ψ̄a|L),mdimM(Z, d, ψ̄a|Z)}
= mdimM(L, d, ψ̄a|L) = a,

which proves the theorem. �

In [4], Theorem A, the authors proved if dim(N) ≥ 2, then the set
consisting of homeomorphisms with upper metric mean dimension equal to
n = dim(N) is residual in Hom(N). Furthermore, they showed the set consist-
ing of continuous maps on [0, 1] with upper metric mean dimension equal to 1
is residual in C0([0, 1]). Inspired by the proof of these facts, we will show the
set consisting of continuous maps on N with upper metric mean dimension
equal to n, which we will denote by Cn(N), is residual in C0(N).

A closed n-rectangular box is a product Jn = J1 × · · · × Jn of closed
subintervals Ji for any i = 1, . . . , n. From now on, we denote by Jn a closed
n-rectangular box and we set

|Jn| := min
i=1,...,n

|Ji|, where Jn = J1 × · · · × Jn.

For any closed interval J = [a, b], let Ĵ = [2a+b
3 , a+2b

3 ], that is, the second third
of J . For a closed n-rectangular box Jn = J1 ×· · ·×Jn, set Ĵn = Ĵ1 ×· · ·× Ĵn

(see Fig. 4a).
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For ε ∈ (0, 1) and k ∈ N, we say a closed n-rectangular box Jn ⊂ U ⊂ R
n

is a strong (n, ε, k)-horseshoe of a continuous map φ : U → R
n if |Jn| > ε

and Jn contains k closed n-rectangular boxes Jn
1 , . . . , Jn

k ⊆ Jn, with (Jn
s )◦ ∩

(Jn
r )◦ = ∅ for s �= r, such that |Jn

i | > |Jn|
2

n√
k

and Jn ⊂ (φ(Ĵn
i ))◦ for any

i = 1, . . . , k. In Fig. 4b we present an example of a strong (2, ε, 20)-horseshoe.
We say φ ∈ C0(N) has a strong (n, ε, k)-horseshoe Jn, where Jn ⊂ R

n is a
closed n-rectangular box, if there exist s exponential charts expi : B(0, δN ) →
N , for i = 1, . . . , s, such that:

• φi = exp(i+1)mod s ◦ φ ◦ exp−1
i : B(0, δ) → B(0, δN ) is well defined for

some δ ≤ δN ;
• Jn ⊂ (φi(Jn))◦ for each i = 1, . . . , s;
• Jn is a strong (n, ε, k)-horseshoe for φi for each i = 1, . . . , s.

To simplify the notation, we will set φi = φ for each i = 1, . . . , s.
For ε > 0 and k ∈ N, set

H(n, ε, k) = {φ ∈ C0(N) : φ has a strong (n, ε, k)-horseshoe}

H(n, k) =
⋃

i∈N

H

(
n,

1
i2

, 3n k i

)

Hn =
∞⋂

k=1

H(n, k).

Theorem 4.6. Hn is residual and if φ ∈ Hn, then mdimM(N, d, φ) = n. There-
fore, for any n ≥ 1, if N is a n-dimensional compact riemannian manifold with
riemannian metric d, the set Cn(N) = {φ ∈ C0(N) : mdimM(N, d, φ) = n} is
residual in C0(N).

Proof. We prove for any ε ∈ (0, δN ) and k ∈ N, we have H(n, ε, k) is nonempty.
In fact, consider the map g : [0, 1] → [0, 1] defined in Example 3.1. For any
s ≥ 2, gs has a strong

(
1, 1 − 4

3s , 3s−3
3

)
-horseshoe (see Fig. 5):

J =

[
1

3s
,

4

3s

]
∪

[
4

3s
,

7

3s

]
∪ · · · ∪

[
3s − 5

3s
,
3s − 2

3s

]
, |J | = 3s − 3 > 1 − 4

3s
,

|Jr| : =

∣∣∣∣

[
3(r − 1) + 1

3s
,
3(r − 1) + 4

3s

]∣∣∣∣ =
3

3s
>

1

2|J | =
1

2(3s − 3)
,

J ⊂ (0, 1) = (gs(Ĵr))
◦ =

(
gs

([
3(r − 1) + 2

3s
,
3(r − 1) + 3

3s

]))◦
,

for anyr = 1, . . . , 3s−3
3 .
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Figure 5. J is a strong (1,1-4/9,2)-horseshoe for g2

Take an s large enough such that 1− 4
3s > ε and 3s−3 ≥ k. We have Jn is a

strong (n, ε, k)-horseshoe of g̃ := g×· · ·×g ∈ C0([0, 1]n). We can make a affine
change of variable and we can assume that g : [−δN , δN ] → [−δN , δN ]. Let ψ :
B(0, δN ) → N be an exponential chart. The map ψ◦ g̃◦ψ−1 : ψ([−δN , δN ]n) →
ψ([−δN , δN ]n) can be extended to a continuous map ĝ on N as we made in
Theorem 4.5 (note g̃ has the properties needed in order to do this extension).
We have ĝ ∈ H(n, ε, k).

H(n, ε, k) is open in C0(N): if φ ∈ H(n, ε, k) and Jn is a strong (n, ε, k)-
horseshoe of φ we can take a small enough open neighborhood U of φ such
that for any ψ ∈ U we have Jn is a strong (n, ε, k)-horseshoe of ψ.

H(n, k) is dense in C0(N): fix ψ ∈ C0(N) with a s-periodic point. Every
small neighborhood of the orbit of this point can be perturbed in order to
obtain a strong

(
n, 1

i2 , 3n k i
)

horseshoe for a φ close to ψ for a large enough i
(see the proof of Theorem 4.5).

The above facts prove that Hn =
∞⋂

k=1

H(n, k) is residual in C0(N).

Finally, we prove mdimM(N, d, φ) = n for any φ ∈ Hn. Take φ ∈ Hn.
We have φ ∈ H(n, k) for any k ≥ 1. Therefore, for any k ∈ N, there exists
ik, with ik < ik+1, such that φ has a strong

(
n, 1

i2k
, 3n k ik

)
-horseshoe Jn

ik
,

consisting of 3n k ik rectangular boxes Jn(ik, 1), . . . , Jn(ik, 3n k ik), such that
Jn ⊂ (φi(Ĵn(ik, t)))◦ for each t = 1, . . . , 3n k ik , where φi = exp(i+1)mod s ◦ φ ◦
exp−1

i . For each k ∈ N, set εk = 1
4i2k3k ik

. For any m ∈ N, set

Cn,k(t0, t1, . . . , tm−1) = {x ∈ Jn
ik

: φl(x) ∈ Ĵn
ik,tl

for all l ∈ {0, . . . , m − 1}}.
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From the definition, we have |Jn
ik,t| > εk, for each t = 1, . . . , 3n k ik . Thus, the

set consisting of any point on each C̃n,k = exp[Cn,k(t0, t1, . . . , tm−1)] is an
(m,φ, εk) separated set. Therefore, for each m ∈ N we have

sep(m,φ, εk) ≥ (
3n k ik

)m
and hence

sep(φ, εk)
| log εk| ≥ n

log 3k ik

log 3k ik + log 4i2k
.

Note log 3k ik

log 3k ik+log 4i2k
→ 1 as k → ∞. This fact implies that

mdimM(N, d, φ) ≥ n,

which proves the theorem, since for any ψ ∈ C0(N), the inequality
mdimM(N, d, ψ) ≤ n always hold. �

The continuity of the topological entropy is one of the most studied prob-
lem in dynamical systems (see [2,19,24]). If X is the interval or the circle,
Block, in [2], proved the topological entropy map is not continuous on con-
tinuous maps on X with finite topological entropy. Now, Yano in [24] proved
the topological entropy map is continuous on any continuous map φ ∈ C0(N)
with infinite topological entropy. For the metric mean dimension, it follows
from Theorem 4.5 that:

Corollary 4.7. If N is any compact riemannian manifold with riemannian met-
ric d, then mdimM : C0(N) → R is not continuous anywhere.

A real valued function ϕ : X → R ∪ {∞} is called lower (respectively
upper) semi-continuous on a point x ∈ X if

lim inf
y→x

ϕ(y) ≥ ϕ(x) (respectively lim sup
y→x

ϕ(y) ≤ ϕ(x)).

ϕ is called lower (respectively upper) semi-continuous if is lower (respectively
upper) semi-continuous on any point of X.

The map htop : C0([0, 1]) → R ∪ {∞} is lower semi-continuous (see [18],
Corollary 1). However, for metric mean dimension we have if X = [0, 1] or S

1,
then mdimM : C0(X) → R is nor lower neither upper semi-continuous (see
[20], Proposition 7.6). Furthermore, from Theorem 4.5 we have:

Corollary 4.8. Let N be any compact riemannian manifold with riemannian
metric d. We have mdimM : C0(N) → R is nor lower neither upper semi-
continuous on maps with metric mean dimension in (0,dim(N)). Furthermore,
mdimM : C0(N) → R is not lower semi-continuous on maps with metric
mean dimension in (0,dim(N)] and is not upper semi-continuous on maps
with metric mean dimension in [0,dim(N)).
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5. Density of Continuous Maps on Cantor Sets with Positive
Metric Mean Dimension

Bobok and Zindulka in [3] shown that if X is an uncountable compact metriz-
able space of topological dimension zero, then given any a ∈ [0,∞] there exists
a homeomorphism on X whose topological entropy is a. In particular, there
exist homeomorphisms on the Cantor set with infinite topological entropy. We
will use the techniques presented by Bobok and Zindulka in order to prove
there exist infinitely many continuous maps on the Cantor set with positive
metric mean dimension. In fact, any x ∈ [0, 1] is written in base 3 as

x =
∞∑

n=1

xn3−n where xn ∈ {0, 1, 2}.

A number x belongs to the ternary Cantor set if and only if it has a ternary
representation where the digit one does not appear. Therefore, we can consider

C = {(x1, x2, . . . ) : xn = 0, 2 for n ∈ N} = {0, 2}N (5.1)

as being the Cantor set endowed with the metric

d((x1, x2, . . . ), (y1, y2, . . . )) =
∞∑

n=1

3−n|xn − yn| =

∣∣∣∣∣

∞∑

n=1

xn3−n −
∞∑

n=1

yn3−n

∣∣∣∣∣ .

(5.2)

Proposition 5.1. For each j ∈ N, there exists ψj ∈ C0(C) with

mdimM(C, d, ψj) = mdimM(C, d, ψj) =
j log 2

(j + 1) log 3
.

Proof. For any k ≥ 1, set

C k = {(xi)∞
i=1 : xi = 0 for i ≤ k − 1, xk = 2 and xi ∈ {0, 2} for i ≥ k + 1}.

Note that if k �= s, then C k ∩C s = ∅ and C \∪∞
k=1C k = {(0, 0, . . . )}. Further-

more, each C k is a clopen subset homeomorphic to C via the homeomorphism

Tk : C k → C , ( 0, . . . , 0︸ ︷︷ ︸
(k−1)-times

, 2, x1, x2, . . . ) �→ (x1, x2, . . . ),

which is Lipschitz. For j ∈ N, take ψj ∈ C0(C ) the map defined as ψj(0, 0, . . . )
= (0, 0, . . . ) and ψj |Ck

= T−1
k σjkTk for k ≥ 1. It is not difficult to prove that

ψj is a continuous map. Take ε > 0. For any k ≥ 1, set εk = 3−k(j+1).
There exists k ≥ 1 such that ε ∈ [εk+1, εk]. For n ≥ 1 and k ≥ 1, take
z̄1 = (z1

1 , . . . , z1
jk), . . . , z̄n = (zn

1 , . . . , zn
jk), with zs

i ∈ {0, 2}, and set

Ak
z̄1,...,z̄n

={( 0, . . . , 0︸ ︷︷ ︸
(k−1)-times

, 2, z1
1 , . . . , z1

jk, . . . , zn
1 , . . . , zn

jk, x1, . . . , xs, . . .) : xi ∈ {0, 2}}⊆Ck.
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Note that if Ak
z̄1,...,z̄n

�= Ak
w̄1,...,w̄n

and x̄ ∈ Ak
z̄1,...,z̄n

, ȳ ∈ Ak
w̄1,...,w̄n

, then
dn+1(x̄, ȳ) > 1

3k(j+1) , where dn+1 is considered with respect to ψj . Therefore
sep(n + 1, ψj , εk) ≥ 2jnk and hence

lim sup
n→∞

log sep(n + 1, ψj , ε)
n + 1

≥ lim sup
n→∞

log sep(n + 1, ψj , εk)
n + 1

≥ lim
n→∞

n log(2jk)
n + 1

= log 2jk,

thus

mdimM(C , d, ψj) ≥ lim
k→∞

log sep(ψj , εk)
− log εk+1

≥ lim
k→∞

log(2jk)
log(3(k+1)(j+1))

= lim
k→∞

kj log 2
(k + 1)(j + 1) log 3

=
j log 2

(j + 1) log 3
.

Therefore

mdimM(C , d, ψj) ≥ mdimM(C , d, ψj) ≥ j log 2
(j + 1) log 3

. (5.3)

On the other hand, note that for each l ∈ {1, . . . , k}, the sets Al
z̄1,...,z̄n

have dn-diameter less than εk. Furthermore, the sets {(0, 0, . . . )} and
∞⋃

s=k+1

C s

has dn-diameter less than εk. Hence

cov(n, ψj , εk) ≤ k2njk + 2 ≤ 2k2njk

and therefore

cov(ψj , εk) ≤ lim
n→∞

log(2k2njk)
n

= log 2jk.

Hence

mdimM(C , d, ψj)=lim sup
ε→0

cov(ψj , ε)
− log ε

≤ lim sup
k→∞

cov(ψj , εk+1)
− log εk

≤ j log 2
(j + 1) log 3

.

(5.4)
It follows from (5.3) and (5.4) that

mdimM(C , d, ψj) = mdimM(C , d, ψj) =
j log 2

(j + 1) log 3
,

which proves the proposition. �

For any continuous map φ : X → X we always have

mdimM(X, d, φ) ≤ dimB(X, d) and mdimM(X, d, φ) ≤ dimB(X, d).

Therefore mdimM(C , d, φ) ≤ dimB(C ) = log 2
log 3 for any continuous map φ :

C → C . A question that arises from the above proposition is: is there any
φ ∈ C0(C ) with mdimM(C , d, φ) = log 2

log 3?



Vol. 77 (2022) Genericity of Continuous Maps Page 23 of 30 2

Remark 5.2. Consider ψj as in Proposition 5.1. Note that ψsj = ψs
j for any

s ∈ N. It follows from the proposition that

mdimM(C , d, ψs
j ) = mdimM(C , d, ψsj) =

sj log 2
(sj + 1) log 3

=
s log 2

(s + 1
j ) log 3

.

Therefore, for any s ∈ N, we have

mdimM(C , d, ψj) < mdimM(C , d, ψs
j ) < smdimM(C , d, ψj).

For any m ≥ 2, take Xm = {1, 2, . . . ,m}. We endow XK

m with the metric
d given in 5.2. It follows from Proposition 5.1 there exist continuous maps on
XK

m with positive metric mean dimension.

Theorem 5.3. Take K = N or Z. If Ca = {φ ∈ C0(XK

m) : mdimM(XK

m, d, φ) =
a} �= ∅, then Ca is dense in C0(XK

m).

Proof. We will prove the case K = N (the case K = Z is analogous). We will fix
a continuous map φ : XN

m → XN

m, given by φ(x1, x2, . . . ) = (y1(x̄), y2(x̄), . . . ),
for any x̄ = (x1, x2, . . . ) ∈ XN

m. We will approximate φ by a sequence of
continuous maps in Ca.

Firstly, we prove that C0 is dense in C0(XN

m). Consider the sequence of
continuous maps on XN

m, (φn)n∈N, defined by

φn(x̄) = (y1(x̄), y2(x̄), . . . , yn(x̄), x0, x0, . . . ) for any n ∈ N and some x0 ∈ Xm.
(5.5)

Since the image of φn is a finite set, then we have mdimM(XN

m, d, φn) = 0 for
any n ∈ N. Note that φn converges uniformly to φ as n → ∞. This fact proves
the set C0 is dense in C0(XN

m).
Next, fix a > 0 and suppose that Ca �= ∅. Since C0 is dense in C0(XN

m), in
order to prove that Ca is dense in C0(XN

m) we can prove that any map in C0 can
be approximate by a sequence of maps in Ca. Therefore, we can suppose that
φ ∈ C0 is a map as the given in (5.5), that is, for any x̄ = (x1, x2, . . . ) ∈ XN

m,

φ(x̄) = (y1(x̄), y2(x̄), . . . , yK(x̄), z0, z0, . . . ) for some K ∈ N and some z0 ∈ Xm.

Suppose that ψa ∈ Ca is given by

ψa(x̄) = (z1(x̄), z2(x̄), . . . ) for any x̄ = (x1, x2, . . . ) ∈ XN

m.

For each n ≥ K + 1, set x̄n = (xn+1, xn+2, . . . ). Consider the sequence of
continuous maps on XN

m, (φn)n≥K+1, where

φn(x̄) = (y1(x̄), y2(x̄), . . . , yK(x̄), z0, . . . , z0︸ ︷︷ ︸
(n−K)-times

, z1(x̄n), z2(x̄n), . . . )

for any n ≥ K + 1 and x̄ ∈ XN

m.

We have φn converges uniformly to φ as n → ∞. Note that
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∞∑

j=n

3−j |xj−n+1 − yj−n+1| = 31−n
∞∑

j=n

3−j+n−1|xj−n+1 − yj−n+1|

= 31−n
∞∑

j=1

3−j |xj − yj |. (5.6)

Next, fix n ∈ N and take ε > 0. For any p ≥ n ∈ N, let A be a (p, ψa, ε)-
separated set. Take

Ã = {(xi)i∈N : xj = z0 for 1 ≤ j ≤ n, (xn+i)i∈N ∈ A} = {z0} × · · · × {z0}︸ ︷︷ ︸
n-times

× A.

Note that if (xi)i∈N and (yi)i∈N are two different sequences in A, from (5.6)
we have

dφn
p ((z0, . . . , z0, x1, x2, . . . ), (z0, . . . , z0, y1, y2, . . . ))

≥ 31−ndψa
p ((x1, . . . ), (y1, . . . )) ≥ 31−nε.

Hence Ã is a (p, φn, 31−nε)-separated set. Therefore sep(ψa, ε)≤sep(φn, 31−nε)
and thus

lim sup
ε→0

sep(ψa, ε)
| log ε| ≤ lim sup

ε→0

sep(φn, 31−nε)
| log 31−n + log ε| = lim sup

ε→0

sep(φn, 31−nε)
| log 31−nε| ,

which proves that mdimM(XN

m, d, ψa) ≤ mdimM(XN

m, d, φn).
On the other hand, note that

Ω(φn) ⊆ Xm × · · · × Xm︸ ︷︷ ︸
K-times

× {z0} × · · · × {z0}︸ ︷︷ ︸
(n−K)-times

× Xm × Xm × · · · := Z,

where Ω(ϕ) is the non-wandering set of a continuous map ϕ. Hence, we can
consider the restriction φn|Z : Z → Z in order to find the metric mean di-
mension of φn. Take ε < 3−n small enough such that if d(x̄, ȳ) < ε, then
d(φ(x̄), φ(ȳ)) < 3−K . Let B be a (p, ψa, ε)-spanning set and C a (p, φ, ε)-
spanning set. Set

C̃ = {(x1, . . . , xK) : (xi)i∈N ∈ C} and B̃ = C̃ × {z0} × · · · × {z0}︸ ︷︷ ︸
(n−K)-times

× B.

Take any ȳ = (y1, y2, . . . , yK , z0, . . . , z0, yn+1, yn+2, . . . ) ∈ Z. There exists

ā = (y1, y2, . . . , yK , z0, . . . , z0, an+1, an+2, . . . ) ∈ C

with dφ
p (ȳ, ā) < ε (ā has this form because ε < 3−n). Set

x̃ = (y1, y2, . . . , yK , z0, . . . , z0, xn+1, xn+2, . . . ),

for some (xn+1, xn+2, . . . ) ∈ B with dψa
p ((yn+1, yn+2, . . . ), (xn+1, xn+2, . . . )) <

ε. In particular d((yn+1, yn+2, . . . ), (xn+1, xn+2, . . . )) < ε. Note that x̃ ∈ B̃.
Hence,
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d(ȳ, x̃) = d((y1, . . . , yK , z0, . . . , z0, yn+1, yn+2, . . . ),

(y1, . . . , yK , z0, . . . , z0, xn+1, xn+2, . . . ))

=
∞∑

i=n+1

3−i|yi − xi| = 3−n
∞∑

i=n+1

3−i+n|yi − xi|

= 3−n
∞∑

i=1

3−i|yn+i − xn+i|

= 3−nd((yn+1, yn+2, . . . ), (xn+1, xn+2, . . . )) < 3−nε < ε

and therefore

d(φ(ȳ), φ(x̃)) < 3−K .

It follows from the definition of φ that φ(ȳ) = φ(x̃). Thus

dφn
p (ȳ, x̃) = max

k=0,...,p−1

⎧
⎨

⎩

∞∑

j=1

3−j |(φk
n(ȳ))j − (φk

n(x̃))j |
⎫
⎬

⎭

= max
k=0,...,p−1

⎧
⎨

⎩

n∑

j=1

3−j |(φk
n(ȳ))j − (φk

n(x̃))j | +
∞∑

j=n+1

3−j |(φk
n(ȳ))j − (φk

n(x̃))j |
⎫
⎬

⎭

= max
k=0,...,p−1

⎧
⎨

⎩

n∑

j=1

3−j |(φk(ȳ))j − (φk(x̃))j | +
∞∑

i=n+1

3−j |(φk
n(ȳ))j − (φk

n(x̃))j |
⎫
⎬

⎭

= max
k=0,...,p−1

⎧
⎨

⎩3−n
∞∑

j=1

3−j |(ψk
a(ȳ

n))j − (ψk
a(x̃

n))j |
⎫
⎬

⎭

= 3−ndψa
p ((yn+1, yn+2, . . . ), (xn+1, xn+2, . . . )) < 3−nε.

This fact proves B̃ is a (p, φn, 3−nε)-spanning set. Hence

span(p, φn, 3−nε) ≤ span(p, ψa, ε) · span(p, φ, ε)

and thus

span(φn, 3−nε) ≤ span(ψa, ε) + span(φ, ε).

Therefore

lim sup
ε→0

span(φn, 3−nε)
| log 3−nε| = lim sup

ε→0

span(φn, 3−nε)
| log 3−n + log ε|

≤ lim sup
ε→0

span(ψa, ε)
| log ε| + lim sup

ε→0

span(φ, ε)
| log ε|

= lim sup
ε→0

span(ψa, ε)
| log ε| ,

which proves that mdimM(XN

m, d, φn) ≤ mdimM(XN

m, d, ψa). Analogously we
can prove that mdimM(XN

m, d, ψa) = mdimM(XN

m, d, φn). These facts proves
the theorem. �
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Remark 5.4. If p = j log 2
(j+1) log 3 for some j ∈ N, it follows from Proposition 5.1

and Theorem 5.3 that Cp is dense in C0(XN

m).

Block, in [2], studied the continuity of the topological entropy map on
the set consisting of continuous maps on the Cantor set, the interval and the
circle. On the continuity of the metric mean dimension on the set consisting of
continuous maps on the product space XK

m (in particular on the Cantor set),
we have from (5.1), Proposition 5.1 and Theorem 5.3 that:

Theorem 5.5. If m ≥ 2, then mdimM : C0(XK

m) → R is not continuous any-
where. In particular, mdimM : C0(C) → R is not continuous anywhere.

It is well-known that any perfect, compact, metrizable, zero-dimensional
space is homeomorphic to the middle third Cantor set (see [7], Chapter 6).
Hence, suppose that X is a perfect, compact, metrizable, zero-dimensional
space and let ψ : X → C be an homeomorphism. Consider the metric on X
given by

dψ(x, y) = d(ψ(x), ψ(y)) for x, y ∈ X,

where d is the metric given in (5.2). Note that if ρ is other metric on X which
induces the same topology that dψ on X, then ρ̂(φ, ϕ) = max

x∈X
ρ(φ(x), ϕ(x)),

for any φ, ϕ ∈ C0(X), induces the same topology on C0(X) that the metric
d̂ψ(φ, ϕ) = max

x∈X
dψ(φ(x), ϕ(x)). Therefore, the continuity of mdimM : C0(X) →

R∪{∞} does not depend on equivalent metrics on X. It follows from Theorem
5.5 that:

Corollary 5.6. Suppose that X is a perfect, compact, metrizable,
zero-dimensional space endowed with the metric dψ. The map mdimM :
C0(X, dψ) → R is not continuous anywhere. Therefore, for any perfect, com-
pact, metric, zero-dimensional space (X, d), the map mdimM : C0(X, dψ) → R

is not continuous anywhere.

Next, we will consider the map mdim : C0(X) → R ∪ {∞}. Note if
X is a finite set, then dim(XK) = 0. Therefore, mdim : C0(XK) → R is a
constant map. More generally, if (Xi)i∈J is a family of compact Hausdorff
spaces with dim(Xi) = 0 for each i ∈ J , then dim(

∏
i∈J Xi) = 0. Hence

mdim : C0(
∏

i∈J Xi) → R is a constant map. We will suppose that X is an
n (n ≥ 1) dimensional compact metric space, with metric d. We endow XK

with the product topology, which is obtained from any metric equivalent to
the metric

d̃((x1, x2, . . . ), (y1, y2, . . . ))

=
∞∑

n=1

3−nd(xn, yn) for any (x1, x2, . . . ), (y1, y2, . . . ) ∈ XN,
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for K = N and

d̃((. . . , x−1, x0, x1, . . . ), (. . . , y−1, y0, y1, . . . )) =
∑

n∈Z

3−|n|d(xn, yn),

for any (. . . , x−1, x0, x1, . . . ), (. . . , y−1, y0, y1, . . . ) ∈ XZ, for K = Z.

Theorem 5.7. Take K = N or Z and X any finite dimensional compact metric
space.

i. The set consisting of continuous maps on XK with zero mean dimension
is dense in C0(XK).

ii. If there exists ψa ∈ C0(XK) with mean dimension equal to a, then the set
consisting of continuous maps with mean dimension equal to a is dense
in C0(XK).

iii. mdim : C0(XK) → R ∪ {∞} is constant or is not continuous anywhere.

Proof. We consider K = N. We will fix a continuous map φ : XN → XN, given
by φ(x1, x2, . . . ) = (y1(x̄), y2(x̄), . . . ), for any x̄ = (x1, x2, . . . ) ∈ XN. Consider
the sequence of continuous maps on XN, (φn)n∈N, defined by

φn(x̄) = (y1(x̄), y2(x̄), . . . , yn(x̄), x0, x0, . . . ) for any n ∈ N and some x0 ∈ X.

Note that Ω(φn) ⊆ X × · · · × X︸ ︷︷ ︸
n-times

× {x0} × · · · , and then Ω(φn) is a finite

dimensional space. Hence mdim(φn,XN) = mdim(φn|Ω(φn),Ω(φn)) = 0, since
any continuous map on a finite dimensional space has mean dimension equal
to zero. Note that φn converges uniformly to φ as n → ∞. This fact proves i.

We prove ii. Suppose there exists ψa ∈ C0(XN), which is given by

ψa(x̄) = (z1(x̄), z2(x̄), . . . ) for any x̄ = (x1, x2, . . . ) ∈ XN,

and mdim(φn,XN) = a > 0. Fix φ ∈ C0(XN), which, without loss of generality,
we can suppose that

φ(x̄) = (y1(x̄), y2(x̄), . . . , yK(x̄), z0, z0, . . . ) for some K ∈ N and some z0 ∈ X,

for any x̄ = (x1, x2, . . . ) ∈ XN. For each n ≥ K + 1, if x̄ = (x1, x2, . . . ), set

x̄n = (xn+1, xn+2, . . . ) and x̄n = (x1, x2, . . . , xn, z0, z0, . . . ).

Consider the sequence of continuous maps on XN, (φn)n≥K+1, where

φn(x̄) = (y1(x̄n), y2(x̄n), . . . , yK(x̄n), z0, . . . , z0︸ ︷︷ ︸
(n−K)-times

, z1(x̄n), z2(x̄n), . . . ) for

n ≥ K + 1 and x̄ ∈ XN.

We have φn converges uniformly to φ as n → ∞. On the other hand, note
that

Ω(φn) ⊆ X × · · · × X︸ ︷︷ ︸
K-times

× {z0} × · · · × {z0}︸ ︷︷ ︸
(n−K)-times

× X × X × · · · := Z.
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Hence, we can consider the restriction φn|Z : Z → Z in order to find the mean
dimension of φn. Define I : XN → XN × XN, defined by I(x̄) = (x̄n, x̄n), and
Φn : XN × XN → XN × XN, defined by Φn(x̄, ȳ) = (φ(x̄n), ψa(ȳ)). We have

Φn(I(x̄)) = Φn(x̄n, x̄n) = (φ(x̄n), ψa(x̄n)) = I(φn(x̄)),

Hence,

mdim(XN, φn) ≤ mdim(XN × XN,Φn) ≤ mdim(XN, φ) + mdim(XN, ψa)

= mdim(XN, ψa).

On the other hand, we can refine each open cover of Z to one of the form

A = A1 × · · · × AK × {z0} × · · · × {z0}︸ ︷︷ ︸
(n−K)-times

× An+1 × An+2 × · · · ,

where Ai is an open cover of X and, for some J , Ai = X for all i ≥ J . Set

B = An+1 × An+2 × · · ·
B̃ = X × · · · × X × {z0} × · · · × {z0} × B

Bm
0 (ψa) = B ∨ (ψ−1

a (B)) ∨ · · · ∨ (ψ−m
a (B))

Am
0 (φn) = A ∨ (φ−1

n (A)) ∨ · · · ∨ (φ−m
n (A))

B̃m
0 (φn) = B̃ ∨ (φ−1

n (B̃)) ∨ · · · ∨ (φ−m
n (B̃)).

Let π : XN → XN, given by π(x1, . . . , xn, xn+1, . . . ) = (xn+1, xn+2, . . . ). Note
that

π(B̃m
0 (φn)) � Bm

0 (ψa) and Am
0 (φn) � B̃m

0 (φn).

Hence

D(Bm
0 (ψa)) ≤ D(π(B̃m

0 (φn))) ≤ D(B̃m
0 (φn)) ≤ D(Am

0 (φn)) for each m ∈ N.

Therefore

lim
m→∞

D(Bm
0 (ψa))

m + 1
≤ lim

m→∞
D(Am

0 (φn))
m + 1

,

which proves that

mdim(φn,XN) ≥ mdim(ψa,XN) for any n ≥ K + 1.

Note that iii follows from i and ii. �
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