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Abstract
This paper proposes a quadratic convex model for optimal operation of battery 
energy storage systems in a direct current (DC) network that approximates the origi-
nal nonlinear non-convex one. The proposed quadratic convex model uses Taylor’s 
series expansion to transform the product between voltage variables in the power 
balance equations into a linear combination of them. Numerical simulations in the 
general algebraic modeling system (GAMS) for both models show small differ-
ences in the daily energy losses, which are lower than 3.00% . The main advantage 
of the proposed quadratic model is that its optimal solution is achievable with inte-
rior point methods guaranteeing its uniqueness (convexity properties of the solution 
space and objective function), which is not possible to guarantee with the exact non-
linear non-convex model. The 30-bus DC test feeder with four distributed generators 
(with power generation forecast via artificial neural networks with errors lower than 
1% between real and predicted generation curves) and three batteries is used to vali-
date the proposed convex and exact models. Numerical results obtained by GAMS 
show the effectiveness of the proposed quadratic convex model for different simula-
tion scenarios tested, which was confirmed by the CVX tool for convex optimization 
in MATLAB.

Keywords  Battery energy storage systems · Quadratic convex approximation · 
Economic dispatch · Taylor’s series expansion · Direct current distribution 
networks · Artificial neural networks

List of symbols
Δt	� Length of the period of time where the loads are constants (h)
N 	� Set that contains all the nodes of the network
T 	� Set that contains all the nodes of the periods of time
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CoEt	� Cost of the energy in period t (COP$/Wh)
Gij	� Conductance value that associates nodes i and j ( Ω−1)
pmax
i

, t	� Maximum bound of the power generated in the conventional source con-
nected at node i in the period t (W)

pmin
i

, t	� Minimum bound of the power generated in the conventional source con-
nected at node i in the period t (W)

p
b,max

i
	� Maximum discharge capability of a battery connected at node i (W)

p
b,min

i
	� Minimum charge capability of a battery connected at node i (W)

pb
i
, t	� Power injected/absorbed in the battery connected at node i in the period t 

(W)
p
dg

i
, t	� Power generated in the distributed generator connected at node i in the 

period t (W)
pd
i
, t	� Power demanded in node i in the period t (W)

pi,t	� Power generated in the conventional source connected at node i in the 
period t (W)

SoC
b,max

i
	� Maximum bound of the state of charge of the battery in the ith node (pu)

SoC
b,min

i
	� Minimum bound of the state of charge of the battery in the ith node (pu)

SoC
b,fin

i
	� Final state of charge of the battery in the ith node (pu)

SoC
b,ini

i
	� Initial state of charge of the battery in the ith node (pu)

SoCb
i
, t	� state of charge of the battery in the ith node at the t th time period (pu)

vmax
i

	� Maximum voltage regulation bound at node i (V)
vmin
i

	� Minimum voltage regulation bound at node i (V)
vi, t	� Voltage value at node i at the period of time t (V)
vi, t	� Voltage value at node j at the period of time t (V)
z	� Value of the objective function regarding the costs of the energy losses 

(COP$/day)
����	� Battery energy storage system
����	� General algebraic modeling system
���	� Nonlinear programming
p
dg,max

i
, t	� Maximum bound of the power generated in the distributed generator 

connected at node i in the period t (W)
p
dg,max

i
, t	� Minimum bound of the power generated in the distributed generator con-

nected at node i in the period t (W)

1  Introduction

Electrical networks have been submitted to important changes during the last decade 
in their conceptions and paradigms due to the high challenges imposed by green-
house effects [1, 2]. It is widely-known that electrical networks are the third high 
emitter of pollutants to the atmosphere, after transportation systems and cattle farms 
[3, 4], due to the usage of fossil fuels (i.e., coal, diesel, or natural gas) to produce 
energy in thermal plants [5, 6]. The signature of the Paris agreement has obligated 
the majority of the countries worldwide to propose policies that make a sustainable 
environment that makes possible the survival of the new generations [7, 8]. In this 
context, one of the main challenges is to transform the classical electrical networks 
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with predominant fossil fuels into clean, renewable, and sustainable energy systems 
[9]. To deal with this objective, manufacturers of renewable energy systems, after 
years of continuous developments and researches, have reached competitive prices 
in the photovoltaic generation, wind power and geothermic generation that make 
it possible to substitute fossil generation with competitive prices in the electricity 
spot market [10, 11]. An additional fact, in this paradigm shift, is the importance of 
energy storage systems roll-out based on batteries [12–14], supercapacitors [15, 16], 
superconductors [17, 18], or flywheels [19, 20], among others; since these energy 
storage technologies compensate the intermittency of renewables when dispatching 
power sources based on clean and sustainable energies [21].

Additionally, due to the transformation of the energetic matrix and the emerging 
of distributed energy resources in distribution networks [22], these grids have passed 
from classical upright networks with active sources and passive users to active net-
works with dynamically interactions between energy producers and end-users; which 
have originated the concepts of active grids and microgrids [23]. The concept of 
microgrid comes with the opportunity of having electrical networks with the possi-
bility of grid-connected or isolated operation [24]. This implies that microgrids are 
autonomous electrical networks capable of independent grid operation, suitable for 
rural or urban applications [25]. An important characteristic of microgrids is that these 
can be operated in ac [26], dc [21, 27] or hybrid configurations [28]. Notwithstanding, 
due to recent advancements, power electronic interfaces have promoted the usage of 
dc grids since these are more efficient and less complex than their ac counterparts.

In specialized literature, dc networks are being widely explored from static and 
dynamic points of view. The static analysis is related to power and optimal power 
flow analysis that are fundamental tasks in planning and operation environments [29, 
30]. In the case of dynamical analysis, the efforts are approached to design efficient 
controllers for operating power electronic converters [31, 32]. Here, the main interest 
is to analyze dc networks from the tertiary control approaches, which corresponds 
to the optimization stage in hierarchical control models [33]. In [34], a distributed 
economic dispatch strategy for multiple energy storage in a microgrid was presented. 
The strategy satisfied all coupled challenges with the dispatch in a centralized dis-
patching formulation such as decision variables and stochastic variables. In addi-
tion, the strategy could also be used in the microgrid central controller. In [35], the 
impact on the economic dispatch of the integration of two types of battery technolo-
gies (lithium and lead-acid) in DC microgrids was studied. In addition, the economic 
dispatch modeled the operation of a DC microgrid for 24 h considering variable price 
schemes, distributed generation, and energy storage resources, and finally, the authors 
of [35] concluded that lithium batteries have a better technical-economical perfor-
mance than lead-acid batteries. In [36], an economic dispatch for BESS operation in 
DC grids based on a master-slave methodology was proposed. This methodology was 
formulated using a parallel implementation of the particle swarm optimization algo-
rithm and an hourly power flow method based on successive approximations. The 
results shown in [36] reached a performance in terms of solution quality better than 
other methodologies based on metaheuristic optimization methods. In [9], an opti-
mal dispatch of BESS and renewables in dc grids considering voltage-dependent load 
models was developed. This dispatch solved the resulting optimization model using 
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the general algebraic modeling system (GAMS) via large-scale nonlinear optimizers. 
Although these methodologies have good performance, none of them can guarantee 
the optimum global since they used an exact nonlinear non-convex model. In order to 
achieve the optimal global of the problem, this research proposes a quadratic convex 
optimization model for optimal coordination of batteries in dc distributed networks 
considering high penetration of renewables; the proposed model allows guarantee-
ing the existence and uniqueness in the solution, with minimum estimation errors 
compared to the nonlinear non-convex model [9]. It is important to highlight that the 
current literature has proposed one model for optimal dispatch of BESS and renewa-
bles in dc grids, which ensures the optimum global based on a semidefinite program-
ming (SDP) model. This approach has been reported in [21], which used an SDP 
formulation to deal with the non-convexities of the original optimization problem; 
the obtained results are satisfactory, and the computational burden is acceptable for 
medium size distribution networks. The main lack of this approach is that the SDP 
approximation requires the n2 square number of variables to solve the equivalent con-
vex problem, which compromises the computational performance of this methodol-
ogy, mainly in an electrical network with a high number of nodes [37].

The main differences between the convex quadratic model proposed in this 
research and the previous ones are that:

–	 The proposed model does not increase the number of variables since it continues 
working in the same domain of the voltage variables.

–	 Special assumptions are not required for positive definiteness or rank conditions 
in the matrices of variables as the case of the SDP.

–	 The solution of the resulting quadratic optimization model can be made in any 
optimization package such as quadprog and CVX for MATLAB or QP solvers 
in GAMS guaranteeing global minimum and uniqueness in the solution [29].

Note that the main contribution of our proposal regarding existing researches cor-
responds to the reformulation of the problem of the optimal operation of batteries 
in DC distribution networks through an approximate quadratic programming model 
with linear constraints by using Taylor’s series approximation. The main advantage 
of this formulation lies in the size of the solution space since this remains equal to 
the exact NLP model since no new variables are introduced, which are not the cases 
of the SDP or conic programming models.

The remainder of this document is organized as follows: Sect. 2 presents the exact 
nonlinear formulation of the economic dispatch problem for BESS and renewable 
generators in dc networks considering constant power loads. In Sect. 3 is presented 
the convex reformulation of the power flow equations based on the product lineari-
zation of equations with multiple variables as reported in [29]. Section 4 presents 
the main aspects of renewable energy forecasting via artificial neural networks. Sec-
tion 5 presents the main characteristics of the test feeder, while Sect. 6 presents all 
the simulation results, their analysis, and discussion. In Sect. 7 is presented the main 
concluding remarks derived from this work and some possible future works.
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2 � Nonlinear non‑convex optimization model

The problem of optimal operation of battery energy storage systems in dc distri-
bution networks corresponds to a nonlinear non-convex optimization problem due 
to the power balance constraint that generates a set of non-affine quadratic equali-
ties [9]. The formulation of this problem generates a single-objective minimization 
problem where the total energy cost in the spot market is the objective to be mini-
mized [14]. The complete nonlinear non-convex optimization model is presented as 
follows.

Objective function

where z represents the objective function value, CoEt is the cost of the energy in 
period t, vi,t is the voltage value at node i at the period of time t, Gij is the conductive 
value that relates nodes i and j which is obtained from the conductance matrix, and 
Δt is the length of the time period under analysis (e.g., 1 h or 15 min). T  and N  are 
the sets that contain all periods of time considered and the total number of nodes in 
the DC microgrid, respectively.

Set of constraints

where pi,t , p
dg

i,t
 , pb

i,t
 , and pd

i,t
 are the power generation by conventional generators, 

renewable energy resources (i.e., distributed generation), the power delivered/

(1)min z =
∑

t∈T

CoEt

(

∑

i∈N

vi,t

(

∑

j∈N

Gijvj,t

))

Δt

(2)pi,t + p
dg

i,t
+ pb

i,t
− pd

i,t
= vi,t

∑

j∈N

Gijvj,t, {∀i ∈ N& ∀t ∈ T}

(3)SoCb
i,t
= SoCb

i,t−1
− �

b
i
pb
i,t
Δt, {∀i ∈ N& ∀t ∈ T}

(4)SoCb
i,t0

= SoC
b,ini

i
, {∀i ∈ N}

(5)SoCb
i,tf

= SoC
b,fin

i
, {∀i ∈ N}

(6)p
dg,min

i,t
≤ p

dg

i,t
≤ p

dg,max

i,t
, {∀i ∈ N& ∀t ∈ T}

(7)p
b,min

i
≤ pb

i,t
≤ p

b,max

i
, {∀i ∈ N& ∀t ∈ T}

(8)vmin

i
≤ vi,t ≤ vmax

i
, {∀i ∈ N& ∀t ∈ T}

(9)SoC
b,min

i
≤ SoCb

i,t
≤ SoC

b,max

i
, {∀i ∈ N& ∀t ∈ T}
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absorbed by the batteries, and the power demand at node i during the time period t, 
respectively. SoCb

i,t
 represents the state of charge of the battery in the ith node at the 

tth time period. SoCb,ini

i
 and SoCb,fin

i
 are the initial and final desired states of charge 

of the batteries, while SoCb,min

i
 and SoCb,max

i
 are the minimum and maximum state-

of-charge bounds. pmin
i,t

 , pmax

i,t
 , pdg,min

i,t
 , and pdg,max

i,t
 are the minimum and maximum 

bounds of admissible generation for conventional and renewable generators located 
in the ith node in time period t, while pb,min

i
 and pb,max

i
 represent the minimum and 

maximum charge/discharge capabilities of  a battery connected at node i. vmin
i

 and 
vmax
i

 are the voltage regulation bounds of  the DC microgrid. Finally, �b
i
 represents 

the coefficient of charge of a battery connected at node i.

Remark 1  Note that the power generation in the conventional and distributed gen-
erators, voltages, state of charge of  the battery are contained in the set of the real 
positive numbers. However, the power injected/absorbed by the battery energy stor-
age system is positive when the battery works as a generator (discharging stage) 
and negative when the battery is working as load (charging stage). This implies that 
p
b,max

i
 and pb,min

i
 positive and negative parameters respectively.

The complete interpretation of the mathematical model defined in Eqs. (1)–(9) 
is the following: the objective function of the optimization model is defined by 
Eq. (1), and it represents the minimization of the energy losses costs of the net-
work. This objective function is selected since this becomes the technical aspect 
of power losses into an economic aspect that directly affects the utility operator 
and its efficiency indicators. Equation (2) is known in the specialized literature 
as the power balance equilibrium at each node of the network. This expression is 
the most complicating constraint in the mathematical model for the optimal coor-
dination of batteries in DC grids since this is nonlinear non-convex due to the 
product among nodal voltages. Equation (3) presents the linear relation between 
the power injected or absorbed by the batteries and their state of charges. This 
linear relation is widely accepted in literature to model the relationship between 
the energy stored in the battery and its rate of change [21, 38]. In constraints 
(4) and (5) are defined the initial (input reference) and final values (desired final 
states) of the batteries in order to ensure the correct operation in the next day 
by storing energy at the end of the current day. Box-type constraints (6) and (7) 
determine the lower and upper bounds of the distributed generation and battery 
power injection/absorption, respectively. Regulatory policies regarding voltage 
regulation bounds are defined by inequality constraint (8). The upper and lower 
voltage bounds of DC grids are typically assumed between ± 10% for medium-
voltage level and ± 5% for low-voltage level. Inequality constraint (9) determines 
the minimum and maximum bounds of the state of charge variable for batteries; 
these bounds are recommended between 10% and 90% for lithium-ion batteries 
[38].

Observe that the objective function (1) is nonlinear; nevertheless, it is con-
vex since it represents a quadratic expression as a function of the voltage vari-
ables. Taking into account that the components of the conductance matrix are 
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symmetric and positive definite, the expression becomes into a convex function 
[39]. In addition, note that model (1)–(9) is nonlinear and non-convex due to the 
power balance constraints defined in (2), since they are non-affine quadratic func-
tion due to the product between voltages [29]. The main contribution of this work 
results of proposing a quadratic equivalent convex formulation as an alternative 
to the nonlinear non-convex one by using Taylor’s series expansion method over 
the set of power balance constraints (2) by neglecting the high-order terms due 
to its small contribution to the model [40]. This reformulation is described in the 
next section.

3 � Quadratic convex reformulation

The reformulation of the nonlinear non-convex model (1)–(9) into a convex one is 
possible under the following assumption:

Assumption 1  All the voltage profiles of the network are around to the unity when 
per unit representation is made considering the voltage rate of the network as the 
voltage base [41]. This implies that the linearization point of the network is assumed 
as 1.0 p.u [29].

Based on this assumption, let us define the following nonlinear continuous and 
soft function to be linearized

being x and y two continuous variables.
Now, if we applied Taylor’s series expansion for multi-variable equations as 

recommended in [29] considering the linearization point as 
(

x0, y0
)

= (1, 1) , and 
neglecting the high-order terms, then, the following expression is achieved

Figure 1 presents the percentage error between the exact function (see (10)) and the 
linearized one (see (11)) around (x0, y0) , which confirms that under Assumption 1 
the proposed linearization works well with an error lower than 1% [29].

(10)f (x, y) = xy,

(11)f (x, y) ≈ y0x + x0y − x0y0 = x + y − 1.

Fig. 1   Error behavior between 
the nonlinear and equivalent 
convex approximation of 
the product of two real and 
continuous variables around 
(x

0
, y

0
) = (1, 1)
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On the other hand, if Expression (11) is substituted into (2), considering that 
vi,t = x and vj,t = y , then the power balance equation becomes into a convex affine 
set of hyperplanes as follows

Note that when power balance equation (2) is replaced by (12) a quadratic convex 
model for economic dispatch analysis is achieved, and it has the following structure

The solution of the equivalent convex model defined by (13) can be achievable with 
any optimization package that solves quadratic programming problems, here we 
select the GAMS optimization package and the CONOPT solver to reach the solu-
tion of the exact nonlinear and convex models [9].

4 � Artificial neural networks for renewable energy generation 
forecasting

An important aspect for addressing economic dispatch problems in power systems 
with high penetration of renewable energy resources corresponds to power forecast-
ing since renewable sources are sensitive to weather changes, especially when they 
are focused on wind, and photovoltaic plants [25]. Here we employ an artificial neu-
ral network (ANN) to predict power outputs in the wind and photovoltaic sources 
with the same structure reported in [38]. We have the ANN approach to predict the 
photovoltaic and wind generation output since this is a simple and efficient method-
ology largely used in literature to make predictions. Some of the successful applica-
tions of the ANN networks are: gross domestic product forecasting [42, 43]; model 
predictive control design for greenhouse ventilation systems [44]; weather forecast-
ing [45]; greenhouse gas emissions prediction [46]; foreign-exchange-rate forecast-
ing [47]; and renewable generation forecasting [38]. Here, we adopt the structure 
recommended in [21] for photovoltaic generation prediction using ANN. The struc-
ture of this ANN is depicted in Fig. 2.

The inputs and outputs selected of the ANN selected for renewable generation 
forecasting are listed in Table 1. Training and validation processes for the ANN are 
carried out in MATLAB software employing ntstool. The following items define the 
main steps of the ANN method implemented: 

✓	� It uses two inputs are used (see Table  1) to predict solar radiation where six 
delays and 18 hidden neurons are considered. While four inputs (see Table 1) 

(12)pi,t + p
dg

i,t
+ pb

i,t
− pd

i,t
=
∑

j∈N

Gij

(

vi,t + vj,t − 1
)

.

(13)

Minimize z ∶ Equation (1),

Subject to:

pi,t + p
dg

i,t
+ pb

i,t
− pd

i,t
=
∑

j∈N

Gij

(

vi,t + vj,t − 1
)

,

Equations (3)–(9)
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are used to forecast wind speed where 12 hidden neurons and four delays are 
considered. The hidden neurons use sigmoid functions, while the output layer 
employs a linear transfer function.

✓	� It receives feedback of the estimated output, i.e., y, for considering the recent 
behavior of the weather in the current prediction.

✓	� For training, the ANN is used one-year information divided by periods of 1 h 
(8760 h/year), taking 70% for training and 30% for validation. The algorithm 
used during the training is the Levenberg-Marquardt available for the nnstart 
toolbox in MATLAB 2017a.

 
Figure 3 Depicts the information employed for renewable energy generation.
The precision of the ANN network for prediction of wind power and photovoltaic 

generation was tested using a year of information (i.e., 8760 h), where 2628 h were 
used for validation. When one of these days is selected for validation, the cumulative 
error of the ANN to predict the total power output is lower than 3% in all the simula-
tion cases, which confirms its efficiency for this research. All data can be found in 
[48].

5 � Test system

The computational validation of the proposed quadratic convex approximation to 
solve the problem of optimal operation of batteries in medium-voltage distribution 
grids is made in a distribution grid with 30 nodes operated with a voltage of 13.8 kV 

x(t)

y(t)

1:6

1:6

W

W

b

+

W

b

+ y(t)

Hidden Layer with Delays Output Layer

2

1
18

1

open-loop

closed-loop

Fig. 2   ANN implemented for forecasting power output in PV sources

Table 1   Input and outputs parameters for ANN

Wind power
Inputs Output
Temperature Humidity Pressure Time Wind speed
PV power

Inputs Output
Temperature Time Solar radiation
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at the substation node [9]. The electrical configuration of this test feeder is depicted 
in Fig. 4. The total load of this test feeder is 5.85 MW, which corresponds to a typi-
cal demand value for an electric distribution network in Colombia. The parametric 
information of the conductors of this test feeder is reported in Table 2.

Fig. 3   Historic data for the 
ANN training process [9]
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The electrical parameters of the conductors of the 30-bus system are reported in 
Table 3, where the peak load consumption of the receiving nodes is reported in the 
last column.

Table 2   Type of calibers in the 
30-bus test system

Type Caliber AWG/kcmil Resistance ( Ω∕km) Max. 
current 
(A)

1 4 1.360 138
2 2 0.854 185
3 266.8 0.213 443

Table 3   Electrical information 
of the branches and demand 
nodes

Node i Node j Type of 
conductor

Length (km) pd0
j

 (kW)

1 2 1 1.75 100
1 3 3 1.25 0
3 4 1 0.75 500
4 5 1 0.25 350
5 6 1 0.40 150
3 7 1 0.50 0
7 8 1 0.45 400
7 9 1 0.80 300
3 10 3 1.85 0
10 11 1 0.75 400
11 12 1 1.00 175
12 13 1 0.40 225
10 14 3 0.85 0
14 15 3 1.70 0
15 16 1 0.52 0
16 17 1 0.15 200
16 18 1 0.42 150
14 19 2 0.28 0
19 20 2 0.35 250
19 21 2 0.45 150
21 22 2 0.75 0
22 23 2 0.26 600
22 24 2 0.34 500
22 25 2 0.17 300
18 26 2 0.85 450
26 27 1 0.42 200
15 28 1 1.40 100
28 29 1 0.75 150
23 30 1 0.82 200
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The batteries considered in this study correspond to Lithium-Ion batteries, 
with which the current advances in energy storage technologies can operate con-
tinuously between 3 to 15 years, and the extensions of the lifespan in this period 
depends on the optimal operation methodology [9]. Here, we assume that the util-
ity company has previously installed the batteries, and we are proposing a convex 
optimization model to optimize the total grid operative costs using a quadratic 
convex model. The information regarding the batteries considered in this research 
is presented in Table 4, where batteries with nominal energy storage capabilities 
of 1200, 1500, and 2000 kWh are considered.

To consult additional information regarding battery energy storage systems, 
such as installation costs, recommended maximum and minimum state of charges, 
refer to the following reports [49, 50].

Regarding the renewable generation information, Fig. 5 presents the real wind 
and generation curves which were obtained using online data for wind speed, 
pressure, solar radiation, and time for periods of 0.5 h. This information can be 
consulted in [51]. In addition, Fig. 5 presents the projected outputs with the pro-
posed ANN methodology presented in Sect. 4.

Table 4   Energy storage 
capabilities and locations

Location Energy (kWh) Charge/discharge 
time (h)

Power 
inj./abs. 
(kW)

3 1500 3 500
15 2000 5 400
22 1200 4 300

Fig. 5   Daily behavior of renew-
able generation, demand, and 
costs for the 30-bus test system: 
a real and projected photovoltaic 
generation; b real and projected 
wind generation; and c load and 
costs curves 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
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To compute the daily operative costs of the network, we consider that the cost of 
the energy is US$/kWh 0.1390 as reported in [38]. In addition, the following simu-
lation scenarios are taken into account: 

�� ∶	� A comparative study without batteries is made to demonstrate the effective-
ness of the ANN to forecast renewable generation with exact model and the 
convex proposal.

�� ∶	� The batteries are set with initial and final state of charges (see Eqs. (4) and 
(5)) of 50% ; in addition, along the day, the state of charge can vary from 10 to 
90%.

�� ∶	� Reductions in the renewable generation from 0 to 100% are considered to 
model the impact of the weather conditions in the grid operation.

6 � Simulation results

All simulations were carried out in a desk-computer INTEL(R) Core(TM) i7-7700, 
3.60 GHz, 8 GB RAM with 64 bits Windows 10 Pro using GAMS 25.1.3 with the 
nonlinear large-scale solver CONOPT for the exact nonlinear non-convex model and 
the quadratic convex one as recommended in [9, 25].

Note that GAMS is a specialized package widely used in mathematical optimi-
zation for multiple problems as follows: optimal operation of batteries in ac and 
dc networks with nonlinear models [9, 52]; economic dispatch models in thermal 
power systems [53]; optimal location and sizing of distributed generators in ac and 
dc networks [25, 54]; multi-objective optimization of the stack of a thermoacoustic 
engine [55]; optimization of pump and valve schedules in complex large-scale water 
distribution systems [56]; and general nonlinear optimization problems [57], among 
others.

The general implementation of an optimization model in the GAMS software is 
depicted in the flow diagram presented in Fig. 6.

6.1 � Scenario 1

This simulation case evaluates the capability of the ANN to predict the renewable 
energy production of the day-ahead considering data historic of the wind and power 
sources. In addition, this simulation scenario shows the effectiveness of the pro-
posed quadratic convex model to approximate the solution of the exact nonlinear 
programming (NLP) model. Table 5 presents the comparative performance of the 
exact and quadratic convex model when real and predicted curves are analyzed.

Results in Table 5 show that: (1) the difference in the exact model for the real 
and estimated generation curves is US$/day 0.8119, and for the proposed quadratic 
convex model is about US$/day  0.7837; these values imply that the ANN allows 
reaching estimation errors lower than 1% in the daily operative costs when real and 
projected renewable generation curves are compared; which clearly confirms its effi-
ciency and robustness for renewable generation forecasting and its applicability in 
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the optimal operation of batteries in distribution networks; and (2) the difference 
between the exact and convex model for both curves are US$/day 2.3357 and US$/
day 2.3075; which imply that the estimation errors between the exact and convex 
proposal is lower than 3% in both simulation cases. This result confirms that the pro-
posed quadratic convex model is accurate to solve the optimization associated with 
the optimal operation of batteries in DC grids.

6.2 � Scenario 2

This simulation tests the effectiveness of the proposed quadratic model to oper-
ate batteries in DC networks. Here, we consider the predicted curves for the 

Start: GAMS
executionDC network data Ren. prediction

Define sets and maps

Insert scalars, tables
and parameters

Define the vari-
ables and their
type and bounds

Select the Equa-
tions names

Write the model
equations

Sol the model using
an NLP solver

Evaluation
finish?

End: Results’ analysis

Return the solutionModify parameters

no

yes

Fig. 6   Procedure to implement an optimization model in GAMS [38]

Table 5   Comparative results 
between the real and predicted 
curves using the exact and 
convex models

Model Real (US$/day) Estimated (US$/day)

Exact NLP 82.0880 81.2761
Quadratic convex 79.7523 78.9686
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renewable generation since the real curves will be only known when the day of 
analysis ends. When the exact model is solved considering batteries, the cost of 
the energy losses is US$/day 73.9415, while the solution of the convex approxi-
mation is US$/day 72.0683. These results show that the difference between mod-
els is less than 2.6% confirming the effectiveness of the proposed approximation 
with the main advantage that the solution reached is global due to the convex 
properties of the solution space.

On the other hand, Fig. 7 presents the behavior of the state of charge variable 
at each node when the exact and convex models are used to solve the problem of 
the optimal operation of batteries in DC networks.

Results in the state of charge variables of the batteries in all the nodes for the 
exact and convex model follow the same behavior (see Fig. 7). This implies from 
the operating point of view; the proposed model will provide pretty similar charg-
ing/discharging profiles compared to the exact model, with the main advantage of 
ensuring the global optimum finding of the problem (i.e., convexity properties in 
optimization). However, the most important fact of this result is that the proposed 
quadratic convex model can define the charging/discharging characteristics of the 
batteries in a real application, considering that this solution will provide essential 
grid profits in terms of reductions in the total grid energy losses costs. Note that 
the reductions regarding the base case are 9.02% for the exact optimization model 
and 9.01% when the solution provided by the convex model is set in the exact 
nonlinear, i.e., the error between both solutions is lower than 0.12%.

Fig. 7   Behavior of the state of 
charge in the batteries: a node 3, 
b node 15, and c node 22
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6.3 � Scenario 3

In this scenario, the effect of renewable energy changes in the expected objective 
function value is tested. Here, we only present the results of the exact model by 
replacing the profile of the state of charge in batteries provided by the proposed con-
vex approach.

Results in Fig.  8 observe that: (1) the variation of renewable generation avail-
ability produces important variation in the expected costs of the energy losses. For 
example, if we compare the case with 60% of availability without batteries, the daily 
energy losses cost difference is about US$/day 24.0706. In addition, when batteries 
are added, this difference is about US$/day 23.5556; and (2) the usage of batteries 
in this test feeder allows reducing US$/day 10 for all the percentages of renewable 
energy availability; even if it is a small value, it helps with the improvement of the 
grid performance and the quality indicators for the utility company.

6.4 � Additional comments

Based on the numerical results reported in the above scenarios, the following facts 
can be highlighted: 

✓	� The comparison of the daily energy cost using real and forecasted curves of the 
renewable generation demonstrates the efficiency of the ANN to provide accu-
rate renewable generation outputs in day-ahead operation environments since 
the difference among these curves was less than 1% for the exact NLP model 
and the proposed convex formulation.

✓	� The simulation times reported by the GAMS optimization package and the 
CONOPT solver is about 900 ms for the exact model and 400 ms for the con-
vex proposal; even if these times are very short for a day-ahead operation sce-
nario, this difference can be significant when the size of the DC grid and/or 
the number of batteries and renewable generator increase. However, the main 
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characteristic of the proposed convex model corresponds to ensure the global 
optimum finding with any optimization package due to the affine characteristics 
of the Taylor-based approximation of the product among voltage variables in the 
power balance constraint; which is non-insurable for the exact NLP model.

✓	� The most important variable in the optimal operation of distribution networks 
corresponds to the availability of renewable generation since the behavior of the 
battery as a generator or demand, becomes a notable benefit of the operation of 
the network. This is explained from the perspective of enough distributed gen-
erator availability to store in the batteries, to be able to return to the grid when 
the renewable generation is reduced, i.e., at night hours in the case of solar 
generation.

✓	� In order to corroborate that the proposed convex model ensures the global opti-
mum finding, numerical simulations in the CVX tool, i.e., convex optimization 
package, with the MOSEK and SeDuMi solvers demonstrate that the solution 
provided by GAMS and the CVX solvers is identical for the proposed quadratic 
convex approximations.

7 � Conclusions and future works

This paper addressed the economic dispatch problem in DC networks with high 
penetration of renewable generation and battery energy storage systems. Using 
Taylor’s series expansion on the power balance equations, a quadratic program-
ming model was proposed to transform the exact nonlinear non-convex model 
into a convex one. Numerical results confirmed that the states of charges in the 
batteries are identical for both models and the objective function differed 3% as 
maximum due to the estimation error introduced by the linearization.

The main advantage of the proposed quadratic programming model is the 
warranty of finding the global optimum by using the interior point methods, 
which is not possible for the exact nonlinear formulation due to its intrinsic 
non-convexities.

The usage of artificial neural networks for renewable generation forecasting dem-
onstrated its efficiency since the maximum error in the objective function calcula-
tion was less than 1% for the exact and convex optimization models.

As future work, it will be possible to develop the following researches: (1) trans-
form the quadratic programming model into a mixed-integer quadratic programming 
model to solve the problem of the optimal location (reallocation) and operation of 
energy storage systems in DC networks by ensuring the global optimum finding 
with Branch and Bound methods; (2) compare different methodologies to transform 
the product between voltage variables with the proposed approach, i.e., McCormick 
envelopes or the difference between quadratic terms to determine an adequate for-
mulation to be applied to optimal power flow studies; and (3) propose hybrid algo-
rithms to locate and size renewable generators and batteries in DC distribution grids 
using the proposed quadratic optimization model to evaluate the continuous part of 
the optimization problem.
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