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CLASSICAL SIMPLE LIE 2-ALGEBRAS OF ODD TORAL
RANK AND A CONTRAGREDIENT LIE 2-ALGEBRA

OF TORAL RANK 4

CARLOS R. PAYARES GUEVARA AND FABIÁN A. ARIAS AMAYA

Abstract. After the classification of simple Lie algebras over a field of char-
acteristic p > 3, the main problem not yet solved in the theory of finite
dimensional Lie algebras is the classification of simple Lie algebras over a
field of characteristic 2. The first result for this classification problem ensures
that all finite dimensional Lie algebras of absolute toral rank 1 over an al-
gebraically closed field of characteristic 2 are soluble. Describing simple Lie
algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank
(respectively, toral rank) 3 over an algebraically closed field of characteristic 2
is still an open problem. In this paper we show that there are no classical
type simple Lie 2-algebras with toral rank odd and furthermore that the sim-
ple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4.
Additionally, we give the Cartan decomposition of G(F4,a).

Introduction

The classification of the simple Lie algebras over an algebraically closed field
of characteristic p with p ∈ {2, 3} is still an open problem. In characteristic 2,
S. Skryabin showed in [10] that all simple Lie algebras on an algebraically closed
field of characteristic 2 have absolute toral rank greater than or equal to 2 (see
also [3]). Later, A. Premet and A. Grishkov classified Lie algebras of absolute toral
rank 2. They announced in [2] (work in progress) the following result: All finite
dimensional simple Lie algebras over an algebraically closed field of characteristic 2
of absolute toral rank 2 are classical of dimension 3, 8, 14 or 26. In particular, every
finite dimensional simple Lie 2-algebra over a field of characteristic 2 of (relative)
toral rank 2 is isomorphic to A2, G2 or D4. When the absolute rank is greater
than or equal to 3 the problem of classification is still open. The main obstacle in
this problem is the lack of examples.

In this paper we calculate the toral rank of the classical simple Lie 2-algebras of
type Xl ∈ {Al, Bl, Cl, Dl, g2, f4, e6, e7, e8}, i.e., quotients of Chevalley algebras over
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a field of characteristic 2, modulo the center. As a consequence, we obtain our first
main result:
Theorem 1. There are no classical type simple Lie 2-algebras of odd toral rank.
In particular, there are no classical type simple Lie 2-algebras of toral rank 3.

V. Kac in [7] showed that for p > 3 every simple finite dimensional contragredient
Lie algebra is isomorphic to one of the simple Lie algebras of the classical type.
If p = 2, this is no longer true and the classification of simple finite dimensional
contragredient Lie algebras is still considered an open problem. In the last section
we prove that the simple contragredient Lie 2-algebra of dimension 34 constructed
by V. Kac and V. Vĕısfĕıler in [13] has toral rank 4 and we calculate the dimension
of the root spaces of this contragredient Lie algebra. More specifically, we have:
Theorem 2. The simple contragredient Lie 2-algebra of dimension 34 with Cartan
matrix

F4,a :=


0 1 0 0
a 0 1 0
0 1 0 1
0 0 1 0

,
which is denoted by G(F4,a), has toral rank 4. Furthermore, the Cartan decompo-
sition of G(F4,a) with respect to the 4-dimensional torus T (h) is

G(F4,a) = T (h)⊕
⊕
ξ∈G

gξ,

where G := 〈α, β, γ, λ〉 is an elementary abelian group of order 16 and dimK(gξ) =
2, for all ξ ∈ G.

(The two theorems above are presented later as Theorems 5.7 and 6.2, respec-
tively.)

The only classical type simple Lie 2-algebras of toral rank 4 over an algebraically
closed field of characteristic 2 are the following: sl5(K), psl6(K), sp10(K)(2), and
sp12(K)(2)/z(gl12(K)) (see Corollary 5.6). Theorem 2 gives us an example of a
non-classical simple Lie 2-algebra, which should be taken into account in future
investigations related to the problem of classifying the simple Lie 2-algebras of
toral rank 4.

In section 1 we present some basic definitions and well-known results that will
be used throughout the work. In Sections 2 and 3 we show that the linear special
Lie algebra sln+1(K) and the symplectic Lie algebra sp2m(K) over an algebraically
closed field of characteristic 2 are Lie 2-algebras, and we study the simplicity of
these algebras (Theorem 2.2 and 3.4). In section 4 we show that the orthogonal Lie
algebra on(K)(1) is not a Lie 2-algebra. In section 5 we list all classical type simple
Lie 2-algebras, we calculate their toral rank, and we conclude that there are no
classical type simple Lie 2-algebras with odd toral rank. Finally, in the last section
we show that the simple Lie 2-algebra of dimension 34 constructed by V. Kac and
V. Vĕısfĕıler in [13] has toral rank 4, and we also give the Cartan decomposition of
this algebra.
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1. Preliminaries

Throughout this paper all algebras are defined over a fixed algebraically closed
field K of characteristic 2 containing the prime field K2 and g is any Lie algebra of
finite dimension on K. We start with some basic definitions and known facts.

1.1. Simple Lie 2-algebras. The concept of Lie 2-algebra, introduced by N. Ja-
cobson (see [5]), is as follows:

Definition 1.1. A Lie 2-algebra is a pair (g, [2]) where g is a Lie algebra over K
and [2] : g→ g, a 7→ a[2] is a map (called 2-map) such that:

(1) (a+ b)[2] = a[2] + b[2] + [a, b], for all a, b ∈ g;
(2) (λa)[2] = λ2a[2], for all λ ∈ K, a ∈ g;
(3) ad(b[2]) = (ad(b))2, for all b ∈ g.

If the center z(g) of g is zero and a 2-map [2] : g→ g exists, it is unique. A Lie
2-algebra (g, [2]) is called a simple Lie 2-algebra if g is a simple Lie algebra on K.

Example 1.2. Let A be an associative algebra and let Lie(A) be the Lie algebra
with bracket [x, y] = xy − yx for x, y ∈ Lie(A) associated with A. Then, Lie(A)
is a Lie 2-algebra with a[2] := a2. In particular, Lie(End(V )) := gl(V ) is a Lie
2-algebra, where End(V ) is the associative algebra of K-endomorphisms on V .

Example 1.3. Let b : V × V → K be a bilinear form and consider the subset
g(V, b) of gl(V ) defined by

g(V, b) := {f ∈ gl(V ) : b(f(u), v) + b(u, f(v)) = 0 for all u, v ∈ V }.

It is easy to prove that (g(V, b), [2]) is a Lie subalgebra of (gl(V ), [2]). Moreover,
for f ∈ gl(V ) and v, w ∈ V , we have

b(f [2](v), w) = b(f(f(v)), w) = b(f(v), f(w)) = b(v, f(f(w))) = b(v, f [2](w)).

So, (g(V, b), [2]) is a Lie 2-subalgebra of (g(V ), [2]).
For our purposes, it will be useful to have the matricial version of g(V, b). Given

A ∈ gln(K), we consider

g(A) = {X ∈ gln(K) : XTA = AX}.

Let Θ = {v1, v2, . . . , vn} be a basis of V and assume that A ∈ gln(K) is the
Gram matrix of b with respect to the basis Θ, that is,

aij = b(vi, vj), 1 ≤ i, j ≤ n.

Then, the Lie isomorphism TΘ : gl(V ) → gln(K) (which sends every f ∈ gl(V ) to
its matrix TΘ(f) relative to Θ) maps g(V, b) onto g(A).

Two matrices A,B ∈ gln(K) are said to be congruent if there is S ∈ GLn(K)
such that

STAS = B.

In this case, the map g(A)→ g(B) given by X 7→ S−1XS is a Lie 2-isomorphism.
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1.2. Maximal tori and toral rank.

Definition 1.4. Let (g, [2]) be a Lie 2-algebra. An element t ∈ g is said to be a
toral element if t[2] = t. A 2-subalgebra t of (g, [2]) is called toral (or a torus of g)
if the 2-mapping is invertible on t.

Any toral subalgebra of g is abelian and admits a basis consisting of toral el-
ements (see e.g. [5, Theorem 13, p. 192]). A torus t of g is called maximal if the
inclusion t ⊆ t′ with t′ toral implies t′ = t.

Let (g, [2]) be a simple Lie 2-algebra over an algebraically closed field K and let
h be a Cartan subalgebra. The set of toroidal elements in h generates a torus. We
denote this torus by the symbol T (h). The torus T (h) is maximal in (g, [2]) (see
[1, Lemma 4]).

Definition 1.5 (See [12]). The toral rank of a Lie 2-algebra (g, [2]) is
MT (g) := max{dimK(t) : t is a torus in g}.

2. The special linear Lie 2-algebra (sln+1(K), [2])

In this section we consider the Lie algebra consisting of matrices of trace zero
over K, and we study some properties concerning the simplicity of this algebra.

It is a known fact that the commutator of the Lie general algebra gln+1(K) is
a Lie subalgebra of gln+1(K). This algebra is called the special Lie algebra, and it
is denoted by sln+1(K). That is,

sln+1(K) := [gln+1(K), gln+1(K)].
It is easy to prove that

sln+1(K) = {A ∈ gln+1(K) : tr(A) = 0}.
A basis for sln+1(K) is the following:

hk := ekk + ek+1,k+1, k = 1, . . . , n; eij , i 6= j = 1, 2, . . . , n+ 1.

Let us consider the 2-map [2] : sln+1(K)→ sln+1(K) given by A[2] := A2.

Remark 2.1. The Lie 2-algebra sl2(K) is not simple, since

sl2(K)(1) = [sl2(K), sl2(K)] = span{h1}

and therefore sl2(K)(1) is a nontrivial ideal of sl2(K). In the next theorem we
consider the case where n ≥ 2.

Theorem 2.2. The special Lie algebra sln+1(K) has the following properties:
(1) (sln+1(K), [2]) is a Lie 2-algebra.
(2) If n ≥ 2 and (n+ 1) 6≡ 0 mod 2, then sln+1(K) is a simple Lie 2-algebra.
(3) psl2n(K) := sl2n(K)/z(gl2n(K)), n ≥ 2, is a simple Lie 2-algebra.

Proof. In order to prove (1), it is enough to see that sln(K) is closed by the 2-map
[2] : sln+1(K) → sln+1(K). But this is an immediate consequence of the fact that
tr(A2) = tr(A)2, for all A ∈ sln+1(K).
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Let us prove (2). Firstly, we show that if (n+ 1) 6≡ 0 mod 2, then

gln+1(K) = sln+1(K)⊕ z(gln+1(K)).

Indeed, if A ∈ gln+1(K) and tr(A) = λ, then

A =
(
A− λ

n+ 1In+1

)
+ λ

n+ 1In+1,

where
(
A− λ

n+1In+1
)
∈ sln+1(K) and λ

n+1In+1 ∈ z(gln+1(K)). If A ∈ sln+1(K) ∩
z(gln+1(K)), then A = λIn+1 and tr(A) = (n + 1)λ = 0. Since n + 1 is not a
multiple of 2, we have λ = 0. Therefore, sln+1(K) ∩ z(gln+1(K)) = {0}. Now, let
I be an ideal of sln+1(K). Then

[gln(K), I] = [sln+1(K)⊕ z(gln+1(K)), I]
= [sln+1(K), I] + [z(gln+1(K)), I]
⊆ I + 0 = I.

Therefore, I is also an ideal of gln(K). However, the only ideals of gln(K) contained
in sln+1(K) are {0} and sln+1(K) (see [6]). Then, I = {0} or I = sln+1(K). Hence,
sln+1(K) is a simple Lie 2-algebra.

We now prove (3). If (n + 1) ≡ 0 mod 2, then z(gln+1(K)) ⊆ sln+1(K) is an
ideal of sln+1(K). Therefore, sln+1(K)/z(gln+1(K)) is a Lie 2-algebra with 2-map
given by

(x+ z(gln+1(K)))[2] := x[2] + z(gln+1(K)), for all x ∈ sln+1(K).

Now, if J is another ideal of sln+1(K)/z(gln+1(K)), then J = I/z(gln+1(K)), where
I is an ideal of sln+1(K) and z(gln+1(K)) ⊆ I. Suppose that I 6= z(gln+1(K)).
Then, by direct computations, we find that ekl ∈ I, with k 6= l, and by using the
identities

[ekl, elk] := ekk + ell, k 6= l;
[ek+1,l, el,k+1] := ek+1,k+1 + ell, k 6= l,

we obtain hk := ek,k+ek+1,k+1 ∈ I for all k = 1, 2, . . . , n. Therefore, I = sln+1(K),
and sln+1(K)/z(gln+1(K)) is a simple Lie 2-algebra. �

Recall some well-known facts about quadratic forms over an algebraically closed
field of characteristic 2 and their corresponding Lie algebras. Let V be an n-
dimensional vector space over K, and let b : V × V → K be a non-degenerate
symmetric bilinear form. This means that b(x, y) = b(y, x), for all x, y ∈ V , and
b(x, V ) = 0 implies x = 0. A non-degenerate symmetric bilinear form b is called
symplectic if b(x, x) = 0 for all x ∈ V . Otherwise, it is called an orthogonal bilinear
form.

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



128 C. R. PAYARES GUEVARA AND F. A. ARIAS AMAYA

3. Lie 2-algebras (g(V, b), [2]) with b a symplectic bilinear form

In this section we study the simplicity of Lie 2-algebras which preserve a bilinear
symplectic form over K.

Let b : V × V → K be a symplectic bilinear form. From Example 1.3, we have
that g(V, b) is a Lie 2-algebra. We denote this algebra by sp(V, b), and call it the
symplectic Lie 2-algebra. In [8, Theorem 19] it is shown that the dimension of V is
even, that is, n = 2m, and there exists a basis β of V in which b has Gram matrix

J2m :=
(

0 Im
−Im 0

)
.

The Lie 2-algebra sp(V, b) is isomorphic to the Lie 2-algebra

sp2m(K) := g(J2m) =
{(

a b
c aT

)
: a, b, c ∈ glm(K), with b, c symmetric

}
,

which has dimension 2m2 +m and a basis consisting of the following elements:
di := eii + em+i,m+i, 1 ≤ i ≤ m;
aij := eij + em+j,m+i, 1 ≤ i, j ≤ m, i 6= j;
bij := ei,j+m + ej,i+m, 1 ≤ i < j ≤ m, i 6= j;
bi := ei,i+m, 1 ≤ i ≤ m;
cij := ei+m,j + ej+m,i, 1 ≤ i < j ≤ m, i 6= j;
ci := ei+m,i, 1 ≤ i ≤ m.

The Lie bracket of sp2m(K) is given in Table 1, where the elements of the
diagonal are results of the 2-map in the elements of their rows and corresponding
columns.

di aij bij cij bi ci

di di aij bij cij 0 0
aij aij 0 0 0 0 aij

bij bij 0 0 di + dj 0 aij

cij cij 0 di + dj 0 aij 0
bi 0 0 0 aij 0 di

ci 0 cij aij 0 di 0
Table 1. The Lie 2-algebra sp2m(K).

We now calculate the derived algebras of sp2m(K), and then we show that the
second derived algebra is a simple Lie 2-algebra whenever 2 does not divide m and
m ≥ 3.

Remark 3.1. For m = 1, we have sp2(K) = span{d1, b12, c21} = sl2(K). Then
sp2(K)(1) = span{h1} = z(gl2(K)) and sp2(K)(2) = {0},
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and for m = 2, we have sp4(K) = span{d1, d2, a12, a21, b12, b1, b2, c12, c1, c2}. By
direct computations, we obtain

sp4(K)(1) = span{d1, d2, a12, a21, b12, c12},

sp4(K)(2) = span{d1 + d2, a12, a21, b12, c12},

sp4(K)(3) = z(gl4(K)),

sp4(K)(4) = {0}.
Therefore, if m = 1, 2, then sp2m(K) is a solvable Lie 2-algebra.

Lemma 3.2. If m ≥ 3, then

(1) sp2m(K)(1) =
{(

a b
c aT

)
: b, c ∈ Altm(K), a ∈ glm(K)

}
,

(2) sp2m(K)(2) =
{(

a b
c aT

)
: b, c ∈ Altm(K), tr(a) = 0

}
,

(3) sp2m(K)(3) = sp2m(K)(2),
where Altm(K) is the set of alternating (m×m)-matrices with entries in K.

Proof. To prove (1), we set g1 :=
{(

a b
c aT

)
: b, c ∈ Altm(K)

}
. By direct cal-

culations, we show that sp2m(K)(1) ⊆ g1. Now, we show that g1 ⊆ sp2m(K)(1).
Given a = (xij) ∈ glm(K), we have(

a 0
0 aT

)
=

m∑
i=1

xii [bi, ci] +
m∑
i 6=j

xij [bi, cij ] ∈ sp2m(K)(1).

Let us consider the linear map ϕ : glm(K) → Altm(K) given by a 7→ a + aT .
Since Ker(ϕ) = {a ∈ glm(K) : a is symmetric} and

dimK(Im(ϕ)) = m2 − m(m+ 1)
2 = m(m− 1)

2 = dimK(Altm(K)),

we conclude that Im(ϕ) = Altm(K). That is, ϕ is a surjective map. Then, given
b ∈ Altm(K) there exists a ∈ glm(K) such that a+ aT = b. Hence,(

0 b
0 0

)
=
(

0 a+ aT

0 0

)
=
[(

a 0
0 aT

)
,

(
0 I
0 0

)]
∈ sp2m(K)(1).

Similarly, we prove that
(

0 0
c 0

)
∈ sp2m(K)(1). Therefore, g1 ⊆ sp2m(K)(1).

To prove (2), let g2 =
{(

a b
c aT

)
: b, c ∈ Altm(K), tr(a) = 0

}
. We will prove

that sp2m(K)(2) = g2. From the description of sp2m(K)(1) in (1), we deduce that
the Lie algebra sp2m(K)(1) is generated by aij , bij , cij , and di for 1 ≤ i, j ≤ m.
Therefore, sp2m(K)(2) = [sp2m(K)(1), sp2m(K)(1)] is generated by aij , bij , cij ,
and di + dj for 1 ≤ i, j ≤ m. Since all of these elements belong to g2, we conclude
that sp2m(K)(2) ⊆ g2. The other inclusion is established reasoning as in the proof
of (1).
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Finally, we prove (3). In the proof of (2), it is shown that sp2m(K)(2) is generated
by di + dj for 1 ≤ i, j ≤ m. Therefore,

sp2m(K)(3) = span{[x, y] : x, y ∈ {aij , bij , cij , di + dj : 1 ≤ i, j ≤ m}}.
From Table 1, we conclude that

sp2m(K)(3) = span{aij , bij , cij , di + dj : 1 ≤ i, j ≤ m} = sp2m(K)(2). �

Lemma 3.3. Let I be a nontrivial ideal of sp2m(K)(2). Then cij , bij /∈ I, for all
i, j.

Proof. Let 1 ≤ i 6= j ≤ n be fixed. If cij ∈ I, then for all k 6= j the relations
[cij , bij ] = di + dj , [di + dj , aik] = aik, [di + dj , cik] = cik, and [di + dj , bik] = bik
imply that aik, bik, di + dk belong to I for all 1 ≤ k ≤ m. Since I is an ideal of
sp2m(K)(2), for all l, k with l 6= k we have that [ail, cik] = clk, [bil, cik] = alk, and
[di+dl, blk] = blk belong to I. Therefore, I = sp2m(K)(2), which is a contradiction.
Similarly, if we suppose that bij ∈ I, we arrive at a contradiction. Hence, cij , bij /∈ I
for all i, j. �

Theorem 3.4. Let b : V × V → K be a symplectic bilinear form and let sp(V, b)
be the sympletic Lie algebra associated to b. Suppose that dimK(V ) = n > 4. Then

(1) (sp(V, b)(2), 2) is a Lie 2-algebra.
(2) If 4 | n, then sp(V, b)(2)/z(gl(V )) is simple.
(3) If 4 - n, then sp(V, b)(2) is simple.

Proof. The proof of (1) is completely based on the definition of the algebra Altm(K),
so we omit it. Let us prove (2). If 4 | 2m, then z(gl2m(K)) ⊆ sp2m(K)(2)

is an ideal of sp2m(K)(2). Let J be an ideal of sp2m(K)(2)/z(gl2m(K)); then
J = I/z(gl2m(K)), where I is an ideal of sp2m(K)(2) and z(gl2m(K)) ⊆ I. Suppose
that I 6= sp2m(K)(2). By Lemma 3.3, we have cij , bij /∈ I; therefore, given α ∈ I
there exists a = (aij) ∈ gm(K) with tr(a) = 0 such that

α =
(
a 0
0 aT

)
.

Now, since I is an ideal of sp2m(K)(2), we get

[α,X] ∈ I, for all X ∈ sp2m(K)(2).

In particular, for

X =
(

0 b
0 0

)
,

where b := eij + eji ∈ Altm(K), we have aij = 0 for i 6= j and aii = a11 for all i.
Then α = aiiI2m ∈ z(gl2m(K)). Hence, I = z(gl2m(K)) and sp2m(K)2/z(gl2m(K))
is simple.

To complete the proof, we prove (3). Let I be an ideal of sp2m(K)(2), I 6=
sp2m(K)(2). Reasoning as in the proof of item (2), we get a = λIm with m odd.
As tr(a) = 0, we have λ = 0. Then α = 0 and I = {0}. Therefore, sp2m(K)(2) is
simple. �
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4. Lie 2-algebras (g(V, b), [2]) with b an orthogonal bilinear form

In this section we show that the Lie algebra which preserves the orthogonal
linear form over K is not a Lie 2-subalgebra of gln(K).

Suppose that b : V × V → K is an orthogonal bilinear form, and let o(V, b) be
the Lie 2-algebra associated to b.

In [8, Theorem 20] it is shown that there exists a basis β of V in which b has
Gram matrix D = diag(d1, d2, . . . , dn), where 0 6= di ∈ K for all i; therefore, the
matricial algebra g(D) corresponding to the Lie 2-algebra o(V, b) is given by

g(D) := {A ∈ gln(K) : diaij = djaji, 1 ≤ i, j ≤ n}.
Since K is an algebraically closed field, we have that K2 = K, that is, every element
of K is a square. This fact implies that we can take the diagonal matrix D as the
identity matrix In. So,

on(K) := g(In) = {A ∈ gln(K) : A is symmetric}
is a Lie 2-algebra with basis {eii} ∪ {ēij := eij + eji}, 1 ≤ i < j ≤ n, and whose
Lie bracket is given by

[ēii, ēij ] = ēij , 1 ≤ i < j ≤ n.
[ēii, ēkk] = 0, i 6= k.

[ēij , ēkl] = δikējl + δilēkj + δjkēil + δjlēik, for all i < j, k < l.

Moreover, ē2
ij = eii + ejj , and dimK(on(K)) = n(n+1)

2 .

Lemma 4.1. on(K)(1) = Altn(K) and dimK(on(K)(1)) = n(n−1)
2 .

Proof. Based on the definition of on(K) it is very easy to prove that on(K)(1) ⊆
Altn(K). Now, the matrices ēij := eij + eji, where 1 ≤ i < j ≤ n, form a basis of
Altn(K), and ēij = [ēik, ēkj ] ∈ on(K)(1) for all i, j, Then, on(K)(1) = Altn(K) and
dimK(on(K)(1)) = dimK(on(K))− n = n(n−1)

2 . �

Remark 4.2. A direct calculation shows that ē2
ij = eii + ejj , for i 6= j. Then,

ē2
ij /∈ on(K)(1). Therefore, on(K)(1) is not a Lie 2-algebra with respect to the

2-map [2] : on(K)→ on(K) defined by a 7→ a2.

5. Classical type simple Lie 2-algebras and their toral rank

W. Killing and E. Cartan showed that all simple Lie algebras over an alge-
braically closed field of characteristic zero is isomorphic to one of the classical Lie
algebras An (n ≥ 1), Bn (n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4), or to the exceptional Lie
algebras g2, f4, e6, e7, e8 (see [5]). But in characteristic 2, it seems that many new
phenomena arise; for instance, these algebras are not necessarily simple, or some
of them are isomorphic, and therefore, the classification of simple Lie algebras in
characteristic 2 will differ from the classification of such algebras in characteristics 0
and p ≥ 5. In this section, we calculate the toral rank of the simple Lie 2-algebra
of the classical type and we conclude that there are no classical type simple Lie
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2-algebras of odd toral rank. In particular, there are no classical type simple Lie
2-algebras of toral rank 3.

Definition 5.1. Given an irreducible root system of type Xl and its corresponding
Chevalley algebra g(Xl,K) over the field K, the quotient

g(Xl,K) := g(Xl,K)/z(g(Xl,K)),

where z(g(Xl,K)) is the center of g(Xl,K), is usually called the classical Lie algebra
of type Xl.

Remark 5.2. This definition is exactly the same as Steinberg’s [11], but Steinberg
excluded some types of characteristic 2 and 3.

The simplicity of the classical type Lie algebras in characteristic 2 has been
determined by Hogeweij in [4], as indicated in the following proposition.

Proposition 5.3. Suppose that Xl is a Lie algebra which is not of type A1, Bl,
Cl, or f4. Then g(Xl,K) is a simple Lie 2-algebra.

We can summarize Proposition 5.3, Theorem 2.2, and Theorem 3.4 in the fol-
lowing corollary.

Corollary 5.4. The classical type simple Lie 2-algebras are:
(1) Type Al:

g(Al,K) ' sll+1(K), if 2 - (l + 1), l > 1;

g(Al,K) ' psll+1(K), if 2 | (l + 1), l > 1.

(2) Type Dl:

g(Dl,K) ' sp2l(K)(2), if l is odd;

g(Dl,K) ' sp2l(K)(2)/z(gl2l(K)), if l is even.

(3) Type g2:

g(g2,K) = g(g2,K).

(4) Type e6:

g(e6,K) = g(e6,K).

(5) Type e7:

g(e7,K).

(6) Type e8:

g(e8,K) = g(e8,K).

Theorem 5.5. Let g be a classical type simple Lie 2-algebra and let h be a Cartan
subalgebra of g. Then

MT (g) = dimK(h).
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Proof. Let g be a classical type simple Lie 2-algebra. Then from Corollary 5.4 it
follows that g = g(Xl,K) with Xl 6= A1, Bl, Cl, f4. Hence, any quotient of the form

h(Xl,K) = h(Xl,K)/z(g(Xl,K)),
where h(Xl,K) is a Cartan subalgebra of the Chevalley K-algebra g(Xl,K), is a
Cartan subalgebra of g. Since h(Xl,K) = span{hi ⊗ 1 : hi ∈ hXl

} and hXl
is

the subalgebra of diagonal matrices of sll+1(K), we obtain (hi ⊗ 1)[2] = hi ⊗ 1,
for each hi ∈ hXl

. Thus, the equality ([hi ⊗ 1])[2] = [hi ⊗ 1] modulo z(g(Xl,K))
implies that h(Xl,K) ⊆ T (h(Xl,K)), and as T (h(Xl,K)) ⊆ h(Xl,K), we have
that h(Xl,K) = T (h(Xl,K)). Since any pair of Cartan Lie subalgebras of a finite-
dimensional classical type Lie algebra g over K are conjugate (see [9]), there exists
an automorphism σ ∈ Aut(g) such that h = σ(h(Xl,K)). Then, from [1, Lemma 5]
we obtain

T (h) = σ(T (h(Xl,K))) = σ(h(Xl,K)) = h.

Then any Cartan subalgebra of a simple Lie 2-algebra g of classical type is a
maximal torus in g, and hence

MT (g) = dimK(h). �

The following is a direct consequence of Theorem 5.5.

Corollary 5.6. The toral rank of the classical type simple Lie 2-algebras is:
(1) MT (Al) = l, if 2 - (l + 1), l > 1;
(2) MT (Al) = l − 1, if 2 | (l + 1), l > 1;
(3) MT (Dl) = l − 1, if l is odd, l ≥ 3;
(4) MT (Dl) = l − 2, if l is even, l ≥ 3;
(5) MT (g2) = 2;
(6) MT (e6) = 6;
(7) MT (e7) = 6;
(8) MT (e8) = 8.

From this corollary, the next result follows.

Theorem 5.7. There are no classical type simple Lie 2-algebras of odd toral rank.

6. A (contragredient) simple Lie 2-algebra of dimension 34
and toral rank 4

In this section we show that the contragredient Lie 2-algebra G(F4,a) constructed
by V. Kac and V. Vĕısfĕıler (see [13]) has toral rank 4, and we obtain the Cartan
decomposition of this algebra.

Definition 6.1. Given an (n×n)-matrix A = (aij) with elements in K, we denote
by G̃(A) the Lie algebra determined by the system of generators ei, fi, hi, i =
1, . . . , n, and the system of relations

[ei, fj ] = δijhj , [hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , (6.1)
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for 1 ≤ i, j ≤ n. We set deg ei = 1, deg fi = −1, and deg hi = 0, i = 1, 2, . . . , n.
Thus, the algebra G̃(A) becomes a graded Lie algebra, G̃(A) =

⊕
i∈Z G̃i. Let J(A)

be a maximal homogeneous ideal in G̃(A) such that J(A) ∩ (G̃−1 ⊕ G̃0 ⊕ G̃1) = 0.
The Lie algebra G(A) := G̃(A)/J(A) is called a contragredient Lie algebra and A
is its Cartan matrix.

In [13], V. Kac and V. Vĕısfĕıler considered the algebra

G(F4,a) := G̃(F4,a)/J(F4,a),

where

F4,a :=


0 1 0 0
a 0 1 0
0 1 0 1
0 0 1 0

,
a ∈ K \{0, 1}, and J(F4,a) is the only maximal homogeneous ideal in G̃(F4,a) such
that {

J(F4,a) ∩ span{h1, h2, h3, h4} = 0,
J(F4,a) ∩ span{ei, fj} = 0.

They proved that G(F4,a) is a simple Lie 2-algebra of dimension 34 with Cartan
matrix F4,a, with a ∈ K \{0, 1} (see [13, Proposition 3.6]). We now prove that this
Lie 2-algebra has toral rank 4 and, furthermore, we give its Cartan decomposition.

From (6.1), we conclude that

h := span{h̄i := hi + J(F4,a) : i ∈ I4}

is a Cartan subalgebra of G(Fa,4). We now explicitly describe the maximal torus
T (h) consisting of toroidal elements in h.

Since h[2]
1 ∈ span{h1, h2, h3, h4} (Cartan subalgebra of G̃(F4,a)), we have h[2]

1 =
δ1h1 + δ2h2 + δ3h3 + δ4h4, and by using the relations (6.1) we obtain

0 = [h1, [h1, e1]] = δ1[h1, e1] + δ2[h2, e1] + δ3[h3, e1] + δ4[h4, e1] = δ2ae1,

which implies that δ2 = 0. Similarly, we obtain δ2 = δ3 = δ4 = 0 and δ1 = 1. So,
h

[2]
1 = h1.

We also find h
[2]
3 = h3, h[2]

4 = h4, and h
[2]
2 = ah2 + āh4, where ā = a+ 1.

Let t2 := xh2 + yh4, with x, y ∈ K. If the equality t[2]
2 = t2 holds true, then x, y

satisfy the system of equations{
ax2 + x = 0

āx2 + y2 + y = 0,

whose solution set is {
(0, 0), (0, 1),

(
1
a
,

1
a

)
,

(
1
a
,
ā

a

)}
.
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The first two solutions give t2 = 0 and t2 = h4, respectively, and with the last two
solutions we obtain t2 = 1

a (h2 + h4) and t2 = 1
a (h2 + āh4). Since 1

a (h2 + h4) =
1
a (h2 + āh4)− h4, we have

T (h) := span{h̄1, h̄3, h̄4,
1
a (h2 + h4) + J(F4,a)}

and dimK(T (h)) = 4. This fact shows that MT (G(F4,a)) = 4.

We now find the Cartan decomposition of G(F4,a) with respect to T (h). By
definition of the ideal J(F4,a), the elements ei, fi, and hi, for 1 ≤ i ≤ 4, do not
belong to J(F4,a). Therefore, the classes ei = ei + J(F4,a), f i = fi + J(F4,a),
and hi = hi + J(F4,a), for 1 ≤ i ≤ 4, belong to a basis for G(F4,a). Now, to
complete a basis for G(F4,a), we consider the product xy := [x, y]. The products
xy, where x and y are generators of G(F4,a) and at most one of them does not
belong to {ei, fi : 1 ≤ i ≤ 4}, are members of span{hi, ei, fi : 1 ≤ i ≤ 4}. Thus, the
only products of two generators that give us new generators are eiej and fifj with
i < j. So, the elements pij = eiej +J(F4,a) and qij = fifj +J(F4,a) with i < j are
also generators of G(F4,a), which are linearly independent with eiej + J(F4,a) and
fifj + J(F4,a). Reasoning in a similar way we obtain that the elements (e1e2)e3,
(e1e2)e4, (e1e3)e4, (e2e3)e4, ((e1e2)e3)e4 modulo J(F4,a) and (f1f2)f3, (f1f2)f4,
(f1f3)f4, (f2f3)f4, ((f1f2)f3f)4 modulo J(F4,a) complete a basis for G(F4,a). We
denote this basis by Φ.

Next, we calculate the weights for each element of the basis Φ of G̃(F4,a) with
respect to

h1 :=
{
h1,

1
a (h2 + h4), h3, h4

}
,

which are:
• [e1, h1] = a11e1 = 0e1,

[e1,
1
a (h2 + h4)] = 1

a ([e1, h2] + [e1, h4]) = 1
a (ae1) = 1e1,

[e1, h3] = a31e1 = 0e1,
[e1, h4] = a41e1 = 0e1.
Then, the weight of e1 is β := (0, 1, 0, 0).

• [e2, h1] = a12e2 = 1e2,
[e2,

1
a (h2 + h4)] = 1

a ([e2, h2] + [e2, h4]) = 0e2,
[e2, h3] = a32e2 = 1e2,
[e1, h4] = a41e1 = 0e1.
Then, the weight of e2 is α+ γ := (1, 0, 1, 0).

• [e3, h1] = a13e3 = 0e3,
[e3,

1
a (h2 + h4)] = 1

a ([e3, h2] + [e3, h4]) = 0e3,
[e3, h3] = a33e3 = 0e3,
[e3, h4] = a43e3 = 1e3.
Then, the weight of e3 is λ := (0, 0, 0, 1).

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



136 C. R. PAYARES GUEVARA AND F. A. ARIAS AMAYA

• [e4, h1] = a14e4 = 0e4,
[e4,

1
a (h2 + h4)] = 1

a ([e4, h2] + [e4, h4]) = 0e4,
[e4, h3] = a34e4 = 1e4,
[e4, h4] = a44e4 = 0e4.
Then, the weight of e4 is γ := (0, 0, 1, 0).

By the similarity between the definitions of the brackets [hi, fj ] = aijfj and
[hi, ej ] = aijej , we deduce that ei and f i, for 1 ≤ i ≤ 4, have the same weight. On
the other hand, by using [gξ, gµ] ⊆ gξ+µ, we obtain that the remaining elements of
Φ have the weights given in Table 2, where we use the notation pijk = (eiej)ek +
J(F4,a), qijk = (fifj)fk + J(F4,a), p1234 = ((e1e2)e3)e4 + J(F4,a), and q1234 =
((f1f2)f3)f4 + J(F4,a).

Root space Basis Root
gβ e1, f1 β := (0, 1, 0, 0)
gα+γ e2, f2 α+ γ := (1, 0, 1, 0)
gλ e3, f3 λ := (0, 0, 0, 1)
gγ e4, f4 γ := (0, 0, 1, 0)
gα+β+γ p12, q12 α+ β + γ := (1, 1, 1, 0)
gβ+λ p13, q13 β + λ := (0, 1, 0, 1)
gβ+γ p14, q14 β + γ := (0, 1, 1, 0)
gα+γ+λ p23, q23 α+ γ + λ := (1, 0, 1, 1)
gα p24, q24 α := (1, 0, 0, 0)
gγ+λ p34, q34 γ + λ := (0, 0, 1, 1)
gα+β+γ+λ p123, q123 α+ β + γ + λ := (1, 1, 1, 1)
gα+β p124, q124 α+ β := (1, 1, 0, 0)
gβ+γ+λ p134, q134 β + γ + λ := (0, 1, 1, 1)
gα+λ p234, q234 α+ λ := (1, 0, 0, 1)
gα+β+λ p1234, q1234 α+ β + λ := (1, 1, 0, 1)

Table 2. Root spaces of G(F4,a).

Therefore, the Cartan decomposition of G(F4,a) with respect to T (h) is

G(F4,a) = T (h)⊕
⊕
ξ∈G∗

gξ,

where G∗ = G \ 0 and G := 〈α, β, γ, λ〉 is an elementary abelian group of order 16
and dimK(gξ) = 2, for all ξ ∈ G. Hence, we have the following theorem.
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Theorem 6.2. The contragredient Lie algebra G(F4,a) on K with Cartan matrix

F4,a :=


0 1 0 0
a 0 1 0
0 1 0 1
0 0 1 0


has these properties:

(1) G(F4,a) is a simple Lie 2-algebra of dimension 34;
(2) MT (G(F4,a)) = 4;
(3) The Cartan decomposition of G(F4,a) with respect to T (h) is

G(F4,a) = T (h)⊕
⊕
ξ∈G∗

gξ,

where G∗ = G \ 0 and G := 〈α, β, γ, λ〉 is an elementary abelian group of
order 16 and dimK(gξ) = 2, for all ξ ∈ G.

Remark 6.3. The multiplication table of G(F4,a) on K is given in Table 3, where
the diagonal exhibits the elements x[2], for each x ∈ Φ. For the sake of simplicity,
we denote each class x = x+G̃(F4,a) by its canonical representative x. For instance,
we write e1 instead e1. Other notations are the following: h0 := ah1 +h2 +h3 +h4,
h12 := ah1 + h2, and h4̄ := ah1 + h2 + h3. With pī (resp., qī), we denote pi1i2i3
(resp., qi1i2i3), where 1 ≤ i1 < i2 < i3 ≤ 4 and i1, i2, and i3 are different from i.
For instance, p2̄ is used instead of p134.
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e1 e2 e3 e4 f1 f2 f3 f4 p12 p13 p14 p23 p24 p34 q12 q13 q14 q23 q24 q34 p4̄ p3̄ p2̄ p1̄ p0 q4̄ q3̄ q2̄ q1̄ q0

e1 0 p12 p13 p14 h1 0 0 0 0 0 0 p4̄ p3̄ p2̄ f2 0 0 0 0 0 0 0 0 p0 0 q23 q24 0 0 q1̄

e2 p12 0 p23 p24 0 h2 0 0 0 0 0 0 0 p1̄ af1 0 0 f3 0 0 p13 0 0 0 p2̄ aq13 aq14 0 q34 aq2̄

e3 p13 p23 0 p34 0 0 h3 0 p4̄ 0 0 0 0 0 0 0 0 f2 0 f4 0 0 0 p24 p3̄ q12 0 0 q24 q3̄

e4 p14 p24 p34 0 0 0 0 h4 p3̄ p2̄ 0 p1̄ 0 0 0 0 0 0 0 f3 p0 0 0 0 0 0 0 q13 q23 q4̄

f1 h1 0 0 0 0 q12 q13 q14 e2 0 0 0 0 0 0 0 0 q4̄ q3̄ q2̄ p23 p24 0 0 p1̄ 0 0 0 q0 0

f2 0 h2 0 0 q12 0 q23 q24 ae1 0 0 e3 0 0 0 0 0 0 0 q1̄ ap13 ap14 0 p34 ap2̄ 0 0 0 0 q2̄

f3 0 0 h3 0 q13 q23 0 q34 0 0 0 e2 0 e4 q4̄ 0 0 0 0 0 p12 0 0 p24 p3̄ 0 0 0 q24 q3̄

f4 0 0 0 h4 q14 q24 q34 0 0 0 0 0 0 e3 q3̄ q2̄ 0 q1̄ 0 0 0 0 p13 p23 p4̄ q0 0 0 0 0

p12 0 0 p4̄ p3̄ e2 ae1 0 0 0 0 0 p13 0 p0 h12 0 0 0 0 0 0 0 0 p2̄ 0 f3 0 0 0 0

p13 0 0 0 p2̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p23 p4̄ 0 0 p1̄ 0 e3 e2 0 p13 0 0 0 0 p24 0 0 0 h23 0 0 0 0 0 0 0 af1 0 0 f4 aq14

p24 p3̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p3̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p34 p2̄ p1̄ 0 0 0 0 e4 e3 p0 0 0 p24 0 0 0 0 0 0 0 h34 p3̄ 0 0 0 0 0 0 0 0 q12

q12 f2 af1 0 0 0 0 q4̄ q3̄ h12 0 0 0 0 0 0 0 0 q13 0 q0 e3 0 0 0 0 0 0 0 q2̄ 0

q13 0 0 0 0 0 0 0 q2̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q23 0 f3 f2 0 q4̄ 0 0 q1̄ 0 0 0 h23 0 0 q13 0 0 0 0 q24 ae1 0 0 e4 ap14 0 0 0 0 0

q24 0 0 0 0 q3̄ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 q24 ae1 0 0 e4 ap14 0 0 0 0 0

q34 0 0 f4 f3 q2̄ q1̄ 0 0 0 0 0 0 0 h34 q0 0 0 q24 0 0 0 0 0 0 p12 q3̄ 0 0 0 0

p4̄ 0 p13 0 p0 p23 ap13 p12 0 0 0 0 0 0 p3̄ e3 0 0 ae1 0 0 0 0 0 0 0 h4̄ 0 0 0 f4

p3̄ 0 0 0 0 p24 ap14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p2̄ 0 0 0 0 0 0 0 p13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p1̄ p0 0 p24 0 0 p34 p24 p23 p2̄ 0 0 0 0 0 0 0 0 e4 0 0 0 0 0 0 0 0 0 0 h1̄ af1

p0 0 p2̄ p3̄ 0 p1̄ ap2̄ p1̄ p4̄ 0 0 0 0 0 0 0 0 0 ap14 0 p12 0 0 0 0 0 e4 0 0 ae1 h0

q4̄ q23 aq13 q12 0 0 q13 0 q0 f3 0 0 af1 0 0 0 0 0 0 0 q3̄ h4̄ 0 0 0 e4 0 0 0 0 0

q3̄ q24 aq14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q2̄ 0 0 0 q13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q1̄ 0 q34 q24 q23 q0 0 aq24 0 0 0 f4 0 0 0 q2̄ 0 0 0 0 0 0 0 0 h1̄ ae1 0 0 0 0 0

q0 q1̄ aq2̄ q3̄ q4̄ 0 q2̄ q3̄ 0 0 0 0 aq14 0 q12 0 0 0 0 0 0 f4 0 0 af1 h0 0 0 0 0 0

Table 3. Multiplication table of G(F4,a).
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[1] S. P. Demuškin, Cartan subalgebras of the simple Lie p-algebras Wn and Sn, Sibirsk. Mat. Ž.
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