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Abstract 

P91 ferritic steel pipes face dual environments during boilers operation: steam-side and 

fire-side. This P91 steel assessment differs from the dual studies performed to simulate 

coal-fired boilers -oxyfuel/steam atmospheres- since the fuel source is replaced by 

natural gas. This research work includes designing a device to reproduce dual corrosion 

studies at 650 °C and testing times up to 200 h. One coupon face was exposed to 

combustion gases while the other to steam. As a main result, the duplex’s inner layer 

allowed to state that combustion gases overcome the steam oxidation rate by a factor of 

1.6. Besides, we supplied physical-chemistry information about the surface and bulk of 

oxide layers by atomic force microscopy, scanning electron microscopy, x-ray 

photoelectron spectroscopy, and x-ray diffraction analysis. Thus, our experiments aimed 

to obtain data about the P91 early degradation under the simultaneous 

72.73N2/8.30CO2/3.37O2/15.60H2O %mol and steam influence. We last for a future 

work the isolated evaluation of both environments to determine their role on the 

corrosion rate obtained in the current study. 
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1. Introduction 

The Fe-9Cr-1Mo alloy -also known as P91- belongs to the exclusive group of ferritic 

steels that have gained ground in the power generation industry due to its low 

coefficient of thermal expansion, efficient heat transfer, stress corrosion endurance, and 

thermal creep resistance up to 600 ºC [1-4]. However, some authors reported its 

premature failure outside design conditions [5], but also after being exposed to severe 

carburization-hydrogen attack [6], steam oxidation stresses, thermal conductivity drops, 

pipes blockages, and erosion problems [7,8]. 

 

In real operations, the power plant components are exposed to two different 

environments on opposite surfaces, water vapor (steam-side) and combustion gases 

(fired-side) in the case of boiler pipes. Corrosion research carried out under these 

conditions is called dual corrosion studies. These approximations allow obtaining 

estimates of the real deterioration of steels during their service, improving both the 

control and the safety of the process.  

 

In this regard, Nakagawa et al. [9,10] found that between 550 and 650 ºC, the 

deterioration velocity of  9 %Cr ferritic steels is faster than in single oxidation 

atmospheres. They argued as well about hydrogen role and diffusion. Moreover, 

Chandra and Kranzmann [11] also Mosquera-Feijoo [12] presented a closer approach to 

the boiler’s dual environment when replicated oxyfuel-steam atmospheres at 600 and 

650 ºC, respectively. Chandra and Kranzmann also proposed in their work that 
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hydrogen diffusion from steam-side to the oxyfuel-side explains why dual kinetics is 

three times faster than in the single oxyfuel mixture of gases. 

Although the dual corrosion of P91, or steels from the same family, has been addressed 

to simulate boilers working at 650 ºC, most research works have focused on boilers 

from coal-fired power plants. Therefore, the behavior of P91 steel in the dual 

environment of a gas-fired boiler -flue gas/steam- represents the novelty of our research 

study. Thus, we provide chemical results related to both corrosion sides and their early 

degradation rates. 

 

2. Experimental 

2.1 Experimental conditions 

According to our previous study [13], we introduced the molar composition 

72.73N2/8.30CO2/3.37O2/15.60H2O to simulate the fire-side stream within the furnace. 

Even though the boiler's mass flow was irreproducible, we implemented 2.15 g/h and 

11.45 g/h for the steam and combustion gases mass flow, respectively. The water mass 

flow remained the same in both streams to compare the additional effect produced by 

the oxidizing species CO2 and O2 on the combustion side. The rest of the variables 

selected were 1 atm of pressure, simulating low pressure steam boiler at 650 ºC, and 

testing times of 1, 10, 20, 50, and 200 h. 

 

2.2 Material 

The P91 steel samples used for the experimental tests were obtained by cylindrical 

machining and wire cutting from a 15 cm long and 2.5 cm thick tube provided by U.S. 

Metals, whose composition was obtained by atomic emission spectroscopy (Table 1).  
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Table 1.  Chemical composition (wt-%) of P91 steel. 

Element C Mn P S Si Cr 

% Weight 0.106 0.316 0.013 0.003 0.768 8.439 

Element V N Ni Al Nb Mo 

% Weigtht 0.024 0.015 0.271 0.006 0.008 0.989 

 

The final dimensions of the cylindrical coupons were 3 mm thick and 15 mm in 

diameter, with an exposed area of 1.33 cm
2
 per face. The different samples evaluated 

were polished with silicon carbide paper until the mirror finish and subjected to an 

ultrasonic bath with acetone to avoid the impurities contributions. 

 

2.3 Experimental setup 

We used an argon stream to drag water from a bubbler at 73 °C towards the steam-side. 

The same procedure was applied to obtain the desire combustion gases, this time by 

humidifying the stream 86.2N2/9.8CO2/4.0O2 %mol. Electric heating cords assisted both 

flow lines, avoiding the condensation of steam before reaching the reactor. Lastly, the 

outer reactor, quartz tube, held the device in which the samples were inserted (see Fig. 
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1). 

Fig. 1 - Dual reactor setup. 

We built the device using 316L stainless steel due to its well-known corrosion 

resistance. Then, gold seals were used to slow down the galvanic corrosion among P91 

samples and the dual reactor’s metallic parts. Furthermore, to guarantee the desired 

temperature inside the quartz tube, a thermocouple was introduced to perform its 

calibration before the experimental tests was carried out. 

 

2.4 Characterization techniques 

We rely on the following techniques to describe the surface and bulk corrosion 

products: scanning electron microscopy (SEM) with energy dispersive spectroscopy 

(EDS), X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray 

photoelectron spectroscopy (XPS). Table 2 presents explicit information about the 

different equipment and their operational parameters. 

 

Table 2. Characterization equipment and its operational parameters. 

Technique Equipment Parameters 

SEM-EDS Quanta FEG 250, BSED-SSD, 

EDAX APOLO X 

Voltage 25 kV, high vacuum, 

and detector resolution of 126.1 

eV, Mn-K  

XRD BRUKER D8 ADVANCE 

DaVinci geometry 

Voltage 40 kV, current 40 mA, 

scan range between 10–70 °2θ, 

step size of 0.06 °2θ, and 

counting time of 1 s per step 

XPS SPECS: FOCUS 500, PHOIBOS150 

2D-DLD 

Monochromatic Al-K  x-ray 

source, the vacuum pressure of 

10
-9

 atm, instrumental 
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broadening of 0.75 eV with 

adventitious carbon peak settled 

at 284.8 eV 

AFM Multimode Nanoscope III A Scan size               

We introduced SEM-EDS to determine the morphology of the layers at the cross-

section and surface. However, it also provided data related to their elemental 

composition and corrosion rates. AFM assisted the SEM images describing the 

topography at the top of the layer. XRD provided the crystalline phases at the scale 

bulk, and XPS the oxidation states onto de oxide layer and adsorption aspects. Further, 

we compare the corrosion rate found by SEM with the discontinuous gravimetric 

analysis. 

 

3. Results and discussion 

3.1 P91 Microstructure as received 

As shown in Fig. 2, we received the P91 alloy with a ferritic microstructure after 

normalizing and tempering heat treatments. According to the Fe-Cr-C and isothermal 

transformation diagrams from Dunder et al. [14] and Durand-Charre [15], low cooling 

rates support the obtention of ferrite grains rich in carbides and carbo-nitrides. Carbides 

respond to the molecular formula M7C3 and M23C6 -M as Cr, Fe, Mn, Mo, Nb, and V- 

while carbo-nitrides to Nb, V(C, N) -this time M as Nb and V, while X as C and N- 

[16,17]. Additionally, the microstructure revealed high stability since the deposited 

grains were the smallest following the ASTM E112 grain size diagrams [18]. 
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Fig. 2 - P91 microstructure as received. 

 

3.2 P91 corrosion at room temperature (RT) 

When oxidizing P91 steel at RT, even for short periods, a rapid nucleation of iron 

oxides (FeO ∙ Fe2O3) and chromium oxides (Cr2O3) is generated, giving place to a 

nanometric layer of Fe-Cr spinel (Fig. 2 and Fig. 3). These binary mixed spinels are also 

described as Fe
+2

(Fe1-nCrn)2O4; where 0 < n < 1 denotes the mole fraction of chromite: n 

= 1 is for pure chromite, and n = 0 for magnetite [19]. 

 

The Fe oxides Fe
+2

 and Fe
+3

 were evidenced at one-broad energetic peak located at Fe 

2p3/2 ~708,8 eV -magnetite- according to Moulder’s XPS handbook [20] and the NITS 

database [21]. This scale was of few nanometers since the pure metal peak at Fe 2p3/2 

~706 eV overcame its intensity (see Fig. 3). The Fe
0
 energetic region was fitted by three 

couple of peaks -multiplets- attending to the well-accepted Fe 2p deconvolution [22]. 
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Fig. 3 - Fe 2p region from P91 oxidation at room temperature. 

 

Fig. 4 shows the oxidation states Cr
0
 and Cr

+3
 at Cr 2p3/2 ~ 573.3 eV and Cr 2p3/2 ~ 

576.1 eV, respectively. The graphic suggests that the oxide intensity was more 

representative than the metal one, pointing out a strong presence of Cr2O3 within the 

oxide layer. Therefore, we settle that the Fe-Cr spinel scale is the equilibrium structure 

at RT. However, it was also clear that 9% of Cr is insufficient to avoid Fe diffusion. 

Other findings regarding the absence of metal elements such as Mn and Mo were 

associated with their lower weight amount in the received alloy. 
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Fig. 4 - Cr 2p region from P91 oxidation at room temperature. 

 

The discussion about the corrosion mechanism induced by both steam and combustion 

gases is argued independently in the section, offering a comprehensive analysis of each 

corrosive environment by comparing our results with the actual background of P91 

corrosion at high temperatures. Although, we compiled the kinetic data and the 

corrosion rates behind the same-titled section. 

3.3 Diffusion and corrosion rate 

The layers' growth responded to a parabolic kinetic law. This trend implies that oxide 

scales grew by a diffusive mechanism (see Fig. 5), where metal cations contribute 

actively to the alloy corrosion rate initially but slow-down their contribution over time 

since the transport routes become hard to goes through. Then, we used Wagner's 

expression [23] to describe this behavior in Eq.(1): 

        (1) 

Where X denotes the mass gain per unit area or the thickness of the layer, t the time, and 

   the parabolic constant. 
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Fig. 5 - Parabolic growth law followed by P91 samples under the dual environment. 

 

The corrosion rate for each corrosion side was calculated (Fig. 6) based on the 

measurements of their inner layer’s thickness and by following the NACE RP 0775 

standard [24], which fixes the onset of severe corrosion at 0.25 mm/year. The corrosion 

rate was higher on the combustion side by a factor of 1.6 due to the superior oxygen 

potential conferred by CO2 and O2. However, both deterioration velocities were found 

severe. In the long term, once the stationary state is reached, we expect smaller values 

and a more accurate P91 assessment. 
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Fig. 6 - Corrosion rate at combustion and steam sides. 

 

Further, we determined a mathematical expression to relay the parabolic kinetic 

constant from both oxide layers in Eq.(3) by rearranging Eq.(1) and Eq.(2). For 

instance, the kinetic constants obtained for each layer on the combustion side were: 

          
     and           

    , confirming the higher corrosion rate of the 

external layer, as we discuss later in Fig. 15. 

         
 

(2) 

       √        

 

(3) 

 

3.4 P91 corrosion on the steam side 

Nucleation of Cr and Fe oxides on the steam-side uncover the complete P91 sample’s 

surface after short exposure times (Fig. 7). Instead, we observed remarkable 

participation of secondary elements such as Mo and Mn. But even more outstanding for 

Mn, which demonstrated lower activation energy than Mo at 650 ºC, despite its limited 

weight amount in the alloy. 
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Fig. 7 - Surface SEM micrograph in the back-scattered electron mode after 1 h at the 

steam side. 

 

The Fe and Mn staging is often related to the limited Cr response capacity caused by its 

insufficient weight in the alloy [25]. This phenomenon is similar to the breakaway 

oxidation [26], which is nothing more than the condensation of fissures through the 

chromium oxide layer to favor fast Fe diffusion and its poorly protective oxide layers. 

This mechanism would be promoted by a direct reaction of steam molecules with the 
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metal surface because Cr oxidizes internally rather than in the form of a protective 

external scale (Fig. 8) [27]. 

 

Fig. 8 - Cross-section SEM micrograph in the back-scattered electron mode after 200 h 

at the steam side. 

 

As suggested by Quadakkers et al. [28], Fig. 8 shows a duplex structure of oxides at 650 

°C after 200 h. We support that idea since the smooth line that separates the two layers 

is observable, as much as their different morphologies, Cr amounts, and brightness 
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intensities. The inner layer is made of Fe, Cr, Mn, Mo, and O, possibly forming mixed 

spinels, while the outer layer mainly of iron oxides. Traces of Mn and Mo among the 

layers respond to their localized oxides, presented as evidence of the strong influence of 

diffusive processes. 

 

P91 steam oxidation has promoted multiple research works, which have aimed to 

identify the role of some adverse effects over the duplex oxide layer [29,30]. Water 

vapor tends to accelerate the depletion of Cr at the metal matrix interface and along with 

the layers due to the volatilization of iron and chromium oxides [31-34], which together 

with the high cation diffusion contribute to the release of multiple vacant sites, leading 

to the appearance of pores and gaps. In turn, those “empty spaces” respond to their mass 

transport mechanism, H2O/H2 bridges [26,35], causing pores coalescence [36], big-

gaps, microcracks, and macrocracks; increasing the inward and outward molecular 

transfer. 

 

We found a slight domain of cations diffusion over the transport of oxidant species 

along with the layers. The outer layer grew faster than the inner, as shown in Fig. 9. It is 

partially explained either by the well-adherence and less fissured inner layer, opposite to 

the weak outer layer in Fig. 10. In this regard, authors such as Martinelli et al. [36] have 

proposed that H2O/OH
*
 take advantage of the "available space" left by cations, and 

accumulated by hydrogen trapping, to stimulate the growth of internal oxides. 

Moreover, Oleksak et al. [37] proved the existence of such microchannels through the 

technique of Atom Probe Tomography at the internal oxidation zone (Fig. 11) while 

Ehlers et al. [26] confirmed the dissociation of H2O mostly at the outer layer, but also 

reaching the matrix interface.  

Jo
urn

al 
Pre-

pro
of



Fig. 9 - Thickness growing overtime at the steam side. 

 

Fig. 10 - SEM-AFM images of the oxide layers’ surface after 200 h at the steam side. 

Fig. 11 - SEM micrograph of the internal oxidation zone at the steam side after 20 h. 

The diffusion of metal cations also produces Mo, Mn, and V oxides at the top of the 
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scales associated with Mo
+6

, Mn
+2

, Mn
+4

, and V
+4

, which correspond to MoO3 at ~232 

eV, VO2 at ~516 eV, and MnO-MnO2 at ~641 eV (Fig. 12). 
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Fig. 12 - Regions identified by XPS after 200 h at the steam side: a) Mo 3d, b) Mn 2p, 

c) V 2p and d) Fe 2p. 

 

Also, we confirmed that hematite is the iron oxide in thermodynamic equilibrium with 

the oxidizing environment since it was superficially located while magnetite and 

chromite were deposited on the layers' bulk (Fig. 8, Fig. 12 (d), and Fig. 13). Therefore, 

the proposed structure of layers is the following: hematite on the outer layer, magnetite 

on the intermediate layer, and chromite, Mn, Mo, and even V oxides on the internal one 

Jo
urn

al 
Pre-

pro
of



(Fig. 12). Comparable results have been obtained before, but neither of them reporting 

superficial Mo and V oxides [29,36,38-40]. They also declaring Cr2O3 and FeO oxides 

at the internal oxidation zone [27]. These results differ from the spinel scale grown at 

RT, Fig. 3 and Fig. 4, since magnetite and chromite were displaced to the inner layer, 

which allows us to state that the P91 oxide scale is temperature dependent. 

 

Fig. 13 - XRD spectra for specimen oxidized in steam for 200 h at 650 °C. 

 

3.5 P91 corrosion on combustion side 

Adding CO2, O2, and N2 to steam disturbs the explained oxidation mechanism by 

introducing nitrides and carbides [41]. CO2 and N2 react with oxygen to produce NOx 

and COx at high temperatures. These molecules use microchannels and lattice diffusion 

through the layers to feed internal corrosion processes. The microchannels are more 
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likely to be used across the outer layer but helped by the ions’ lattice diffusion through 

the inner layer (Fig. 8). 

Equal to steam side results, after 1 h of exposure to the combustion side, we also found 

an incomplete nucleation process, but this time covering a higher area. The initial layer 

structure resulted from the Cr retention followed by a posterior Fe diffusion. Although, 

Mn and Mo cations also took advantage of the chromium retention to be quickly 

oxidized but in less quantity, proportional to their mass amount in the steel. Thus, the 

early spinel layer obtained was a cocktail of mixed oxides (Fig. 14). 

 

Fig. 14 - Surface SEM micrograph in the back-scattered electron mode after 1 h at the 

combustion side. 
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The outer layer was found thicker than the obtained on the steam side after 200 h (Fig. 

15). It is a direct consequence of the additional presence of O2 and CO2 regarding the 

single steam environment. These molecules increased the oxygen potential, favored the 

transport of species across layers, and postponing the formation of internal carbides up 

to 1000 h of exposure [25,42]. 

 

Fig. 15 - Thickness growing overtime at the combustion side. 

 

NOx and COx require morphology fissures to reach the base metal and favorable 

dissociation conditions. The first request seems to be well-covered by the high porosity 

and gaps condensed throughout the external layer (Fig. 16), while NOx and COx achieve 

the second at the scale/oxide interface, as reported by Martinelli et al. [36]. The authors 

also established this carburization mechanism, where analogous to H2, carbon gets 

trapped at the metal interface until carbide precipitation. The same idea applies to 

nitrides, becoming mass transport in a vastly competitive process. Moreover, Taylor et 
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al. [43] proved the entry of CO2 to the alloy matrix by experimentally monitoring C
16

O2 

and C
18

O2 isotopes, thus favoring the Boudouard reaction to stimulate the internal 

carburization [44]. Concerning nitridation phenomena, nitrogen atoms are steemed to be 

transported by nitrates through microchannels (Fig. 15) until the metal interface, where 

the low oxidation potential and the accumulation of nitrogen would promote the internal 

precipitation of nitrides [13,45]. 

Jo
urn

al 
Pre-

pro
of



 

Fig. 16 - Cross-section SEM micrograph in the back-scattered electron mode after 200 h 

at the combustion side. 
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Fig. 17 - SEM micrograph of the internal oxidation zone after 20 h at the combustion 

side. 

 

Likewise, we decided to neglect diffusion as the driven mechanism.  For this purpose, 

the reaction of Boudouard (Eq.5) was used to describe the release of carbon from the 

gaseous environment [44]. The Eqs.(7-8) were introduced as the thermodynamic 

support of Eqs.(4)-(5) [23] with            
      and             

      at 

650 ºC. As a result, the studied environment was decarburizing to the alloy (       

      ) [46], since               
    while        for  -phase has been reported to 

be            according to Kaya et al. [47] close to 650 °C. However, we made our 

numerical estimate based on the P91 surface carbide Cr7C3 [17,47], assuming        

  and           -%mol of Cr in the alloy- [46]. This time obtaining              

     through Eq.(6) and Eq.(9) at 650 ºC [23,44]. 
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On the other hand, we found surface carbides at  283 eV and nitrides at  387 eV (Fig. 

18). These compounds are superficially rarely reported under oxidizing environments 

[34,38,42,44,48] whereby we suggest that chemical and physical adsorption phenomena 

led to such compounds. 
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Fig. 18 – (a). N 1s and (b). C 1s regions identified by XPS at the combustion side after 

200 h at 650 ºC. 
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Namely, NO and CO2 are the molecules linked to adsorption processes due to their 

polarity and availability, though H2O is adsorbed preferably according to its larger 

dipole moment: H2O>COx>NOx [54]. Eqs.(10-11) show the global expressions 

involved, where   denotes the metal cations, letters from   to   atomic coefficients, 

   (   )         ,   (   )  , and      . Oxides such as those 

presented in Fig. 12 would be formed at 650 ºC, favored by standard Gibbs energies but 

relegated nitrides and carbides to discrete sites. Either way, they could be discomposed, 

oxidized, and volatilized. 

(   )      ( )    ( )              (10) 

(   )     ( )    ( )             (11) 

4. Conclusions and future work 

In this research work, we focused on describing the early corrosion process of P91 steel 

into the simulated dual combustion-gas/steam environment from an industrial boiler. 

The experimental conditions settled were 650 ºC, 1 atm of pressure, and exposure times 

up to 200 h. The oxide structure deposited on the alloy was found time and temperature-

dependent. Meanwhile, the outward diffusion of cations controlled the oxidation rate of 

the steel in both environments. At room temperature, the single oxide scale was made of 

spinel.  But at 650 ºC, the duplex structure gave place to surface hematite with bulk 

magnetite on the outer layer, while chromite, Mn, and Mo oxides on the inner one. Both 

corrosive environments gave place to the surface oxides: MnO2, MnO, MoO3, and VO2. 

Although the fire-side scale also introduced surface nitrides and carbides to the scale 

due to the adsorption of CO2 and NOx molecules. It allowed stating that mass-transfer 

processes are such relevant as adsorption phenomena to understand the corrosion of 

alloys at high temperatures. Additionally, the P91 corrosion rate was 1.6 faster at the 

fire-side than at the steam-side in coherence with the additional contribution of CO2 and 
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O2 gases. Finally, long-term trials, internal corrosion processes, adsorption phenomena, 

and the influence of one environment on the other are issues left for future works. 
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