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Abstract: The problem of reactive power compensation in electric distribution networks is addressed
in this research paper from the point of view of the combinatorial optimization using a new discrete-
continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution
space, a discrete-continuous codification of the solution vector is proposed, where the discrete part
determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and
the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main
advantage of such codification is that the mixed-integer nonlinear programming model (MINLP)
that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution
networks only requires a classical power flow method to evaluate the objective function, which
implies that it can be implemented in any programming language. The objective function is the total
costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition,
to include the impact of the daily load variations, the active and reactive power demand curves are
included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses
demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared
with the MINLP solvers available in the GAMS software. All the simulations are implemented in
MATLAB software using its programming environment.

Keywords: discrete-continuous vortex search algorithm; radial distribution networks; distribution
static compensators; annual operational costs minimization; reactive power compensation; daily
active and reactive demand curves

1. Introduction

Around the world, electric distribution networks are the channels through which
electricity is supplied to millions of end-users at medium- and low-voltage levels [1]. These
grids are constantly submitted to increments in the load consumption each year. Therefore,
these networks must be prepared to receive new users and guarantee the quality, reliability
and security of the public service [2,3]. Due to the operational voltages, i.e., typically
between 10 kV and 15 kV for the Colombian medium-voltage distribution grids, these
electrical networks experience higher energy losses as compared to the transmission and
sub-transmission systems [4]. In the Colombian context the power system has energy losses
of about 1.5% to 2.0% in terms of the total energy transmitted. In the medium-voltage grids
energy losses can vary from 5% to 18%, and the lowest losses are found in networks of
the grid operators who invested to improve the quality of their grids [5]. The difference
between energy losses is principally caused by the radial topology which is typically
adopted while building the distribution networks to minimize investment costs. This
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topology is in contrast with the strong meshed structures that are found in power systems.
The main problem with the radial topology of the electric distribution grids is the high
percentages of energy losses caused by the electricity distribution tasks [6]. To reduce the
energy losses in the distribution service, the Utilities can use various methodologies, such
as (i) grid reconfiguration [7], (ii) optimal location of shunt capacitors [8] and (iii) optimal
location of dispersed power generation plants [9]. These approaches can achieve different
levels of reduction of energy losses. Of these methodologies, distributed generation is the
best option for energy loss reduction. However, its initial installation costs can be very
high as compared to the reconfiguration and shunt capacitor approaches. However, the
main problem of the capacitor banks is that they inject only in fixed steps of reactive power
(discrete nature of the capacitive compensation with shunt capacitors), while the daily
active and reactive power demands along the electric distribution grids are highly variables
and continuous [10]. Recognizing the power saving that can be achieved with reactive
power compensation with shunt devices, in recent decades, compensators based on power
electronics have gained taken importance in distribution levels due to their versatility and
capacity to vary the reactive power injections as a function of the demand behavior. These
devices are the distribution static compensators (D-STATCOMs) [11], which have, among
others, such advantages as: (i) high reliability, (ii) low operative costs, and (iii) long useful
life (typically 5 to 15 years).

The literature on this specific topic has reported several approaches regarding the
use of D-STATCOMs for dynamic reactive power compensation at medium-voltage levels.
Some of these approaches are presented below. The authors of [11] presented the complete
of determining the optimal placement and sizing of D-STATCOMs using analytical and
heuristic optimization methods. Also, they presented some objective classical functions
used for improving the grid performance, such as voltage stability and power loss indices.
In [6] the authors proposed a multi-objective particle swarm optimizer to locate and size
D-STATCOMs considering the simultaneous reconfiguration of the electrical network. As
objective functions are considered the minimizing the active power losses, the voltage
stability index and the loadability factor of the distribution lines, the main characteristic of
this approach is that the optimization process is made only during the peak load condition,
which is not considered a proper scenario due to possible over-sizing of the compensator
devices, since the active and reactive power consumptions are variable inputs. The authors
in [12] presented a heuristic cost-based approach to evaluate the impact of the optimal
placement and sizing of D-STATCOMs in isolated power systems for automatic voltage
support. However, the model considers the unique nodal representation of the power
system, which oversimplifies the real behavior of the power system. The authors of [7]
presented a fuzzy multi-objective approach based on the ant colony optimization algorithm
to solve the simultaneous reconfiguration and optimal allocation (sizing and siting) of
photo-voltaic sources and D-STATCOMs in the distribution system. The goal of the authors
was to minimize the grid losses, improve the voltage profiles and increase in the feeder load
balancing. Numerical results were tested in the IEEE 33-bus test feeder. A heuristic method
based on voltage and power losses indices was proposed in [13] to locate and size D-
STATCOMs in radial electric distribution networks. Numerical validations of this heuristic
approach were made in the IEEE 33-bus test feeder. However, the authors consider only
the peak load condition in their analysis. In [14] the authors presented the implementation
of a genetic algorithm to locate and size D-STATCOMs in distribution systems using the
optimal power flow tool available in the DigSILENT software. The main advantage of
this approach is that it is tested in a real distribution grid. However, the authors do not
present any cost analysis. In [15] the authors analyze the problem of the optimal location
of D-STATCOMs considering simultaneous grid reconfiguration to reduce the amount of
active power losses. The solution of the problem is derived using the differential evolution
algorithm. However, the authors only consider the peak load condition in their analysis.
Additional works that have addressed the problem of the optimal siting and sizing of
D-STATCOMs with meta-heuristic techniques are listed in Table 1.
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Table 1. Meta-heuristic approaches applied to the optimal location and sizing of D-STATCOMs in
electric distribution networks.

Optimization Technique Refs.

Particle swarm optimization [6,16,17]
Genetic algorithms [14,18–20]
Cuckoo search algorithm [21–24]
Immune algorithm [25]
Harmony search algorithm [26,27]
Imperialist competitive algorithm [28]

Based on the aforementioned presentation, the main state-of-the-art contributions
of this research are as follows: (i) the application of the new version of the vortex search
algorithm with and discrete-continuous codification to solve the problem of the optimal
siting and sizing of D-STATCOMS in electric distribution networks considering daily active
and reactive power demand curves; and (ii) verification of the advantages, such as the
possibility of managing the amount of reactive power injection in D-STATCOMs, that the
dynamic reactive power compensation in electric distribution systems using D-STATCOMs
has for achieving greater reductions in the annual energy losses. It is worth mentioning
that to locate and size the D-STATCOMs in the electric distribution network is considered
an objective function for the reduction of the annual operative costs of the energy losses.
The conductors add to the investment costs associated with the installation of the D-
STATCOMS, which is subjected to the classical power balance equations that generate
a mixed-integer nonlinear programming problem (MINLP). This optimization model is
solved in this research with the help of a master–slave optimization approach in which the
master–slave relationship is based on DCVSA, which is entrusted with the optimal location
and sizing of the D-STATCOMs. The slave stage (successive approximation power flow
(SAPF) method) deals with the determination of the electrical variables to calculate the
costs of the energy losses during the daily operation.

The remainder of this research has the following structure: Section 2 presents the exact
MINLP formulation to present the problem of optimal siting and sizing of D-STATCOMs
in electric distribution networks considering the extent of reduction of the annual opera-
tional costs caused by energy losses and the cost of additional investment in the dynamic
reactive power compensators. Section 3 describes the proposed solution, i.e., master–slave
optimization approach based on the hybridization of the DCVSA and the SAPF methods.
Section 4 presents the main characteristics of the test feeders that correspond to IEEE 33-
and IEEE 69-bus, respectively. Finally, Section 6 presents the conclusions derived from this
work and some possible future works.

2. MINLP Formulation

The problem of the optimal integration of D-STATCOMs in distribution grids for
reactive power compensation can be formulated with a MINLP model where the integer
part of this model is related to the possible installation of the D-STATCOM in a small subset
of distribution buses, while the continuous part is related to the optimal sizing of these
devices. Here, we present the general MINLP using the rectangular representation of the
power balance equations.

2.1. Objective Function Formulation

The objective function of the optimization problem corresponds to the minimization
of the annual operative costs attributed to the grid energy losses added to the annualized
investment costs in D-STATCOMs. The objective function and its components are presented
in Equation (1).
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min Acost = f1 + f2, (1)

f1 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

YkmVkhVmh cos(δkh − δmh − θkm)∆h,

f2 = T
(

k1

k2

)
∑

k∈N

(
α
(

QD-STATCOM
k

)2
+ βQD-STATCOM

k + γ

)
QD-STATCOM

k ,

where Acost corresponds to the objective function value f1, which is the component of the
objective function associated with the cost of the grid energy losses, f2 is the component
of the objective function related with the annualized investments costs in D-STATCOMs,
CkWh is the average energy costs; T is a constant associated with the planning horizon
(i.e., 365 days), Ykm is the magnitude of the component of the nodal admittance matrix
associated with nodes k and m, which have an angle θkm, Vkh and Vmh are the magnitudes
of the voltage variables associated with buses k and m and the period h, with angles δkh
and δmh, respectively, ∆h is the time associated with the power flow evaluation (for this
research it is assumed to be 1 h), k1 and k2 are positive constants of annualization of the
investment costs and the life-time of the D-STATCOM, respectively, α, β and γ are positive
constants associated with variable costs of installation of the D-STATCOM with nominal
reactive power generation capacity QD-STATCOM

k . Observe thatH and N are the sets that
contain all the periods of time and all the buses of the network, respectively.

2.2. Set of Constraints

The set of constraints associated with the problem of the optimal allocation and sizing
D-STATCOMs in AC distribution networks are mainly associated with the power balance
equations and the binary constraints associated with the installation of these devices. All
the restrictions for this problem are listed below.

Pg
kh − Pd

kh = ∑
k∈N

∑
m∈N

YkmVkhVmh cos(δkh − δmh − θkm), ∀{k ∈ N & h ∈ H}, (2)

Qg
kh + QD-STATCOM

k −Qd
kh = ∑

k∈N
∑

m∈N
YkmVkhVmh sin(δkh − δmh − θkm), ∀{k ∈ N & h ∈ H}, (3)

Vmin ≤ Vkh ≤ Vmax, ∀{k ∈ N & h ∈ H}, (4)

zkQD-STATCOM
min ≤ QD-STATCOM

k ≤ zkQD-STATCOM
max , ∀{k ∈ N}, (5)

∑
k∈N

zk ≤ ND-STATCOM
available , (6)

where Pg
kh and Qg

kh are the active and reactive power injections of the generator connected
at node i in the period h, and Pd

kh.and Qd
kh are the active and reactive power consumption

in the constant power demand connected at bus i in the period of time h, Vmin and Vmax
are the lower and upper voltage bounds allowed for all nodes of the network at each
period time, QD-STATCOM

min and QD-STATCOM
max are the minimum and maximum limits of the

distribution system compensators that can be installed along the distribution grid, zk is the
binary variable associated with the allocation (zk = 1 or zk = 0) of a D-STATCOM in the
network, and ND-STATCOM

available is the maximum number of D-STATCOMs that may be installed
in the electrical distribution network.

2.3. Model Interpretation

The interpretation of the mathematical model (1)–(6) associated with the optimal
allocation and sizing of D-STATCOMS in distribution grids is as follows: Equation (1)
defines the objective function of the optimization problem which is defined as function
of the annual cost of grid losses in all the conductors of the networks (see the term f1)
and the annualized cost of investment in D-STATCOMs (see the term f2) . This objective
function indicates whether installing reactive power compensators is an attractive solution
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for reducing the annualized operating cost of the network caused the loss of energy in all
the conductors in the distribution grids considering daily active and reactive power curves.
Equation (2) define the active power balance at each node of the network for each period
of time, while Equation (3) is a similar expression regarding the reactive power balance,
for identifying the direct effect of the reactive power compensation with the D-STATCOM
device installed at bus k on the voltage magnitudes and angles for each period of time
h. It is worth mentioning that the injection of the reactive power in the D-STATCOM is
considered constant throughout the planning period. Inequality constraint (4) defines the
upper and lower regulation bounds of the magnitudes of the voltage in all nodes of the
network. This is a typical imposition made by the regulatory authorities in the power
sector. Inequality constraint (5) shows the integer nature of the allocation problem of
D-STATCOMs in distribution networks because the binary variable zk indicates whether or
not this device is installed or not at node k. Inequality constraint (6) limits the number of
D-STATCOMs that can be installed in the electrical distribution grid.

Remark 1. The optimization model (1)–(6) demonstrates an MINLP structure due to the presence
of binary variables associated with the allocation of the D-STATCOMs in the grid. Continuous
variables relate with active and reactive power generation and voltage magnitudes and angles, while
the nonlinear structure is defined based on the presence of trigonometric functions and products
among voltage magnitudes in the active and reactive power balance constraints.

Due to the complex MINLP structure of the optimization model (1)–(6) in this paper is
proposed is a master–slave optimization methodology to solve this mathematical model by
combining with the successive approximations of power flow (SAPF) and a meta-heuristic
optimization algorithm known in the specialized literature as the VSA. All the details of
this solution will be addressed in the next section.

3. Solution

To solve the MINLP model (1)–(6) for the optimal allocation and sizing of D-STATCOMs
in electric distribution grids, here is proposed a master–slave optimization methodology
using the VSA in the master stage and the SAPF in the slave stage. Please note that the
master stage defines the nodes where the D-STATCOMs will be installed and their optimal
sizes. For this process, this paper proposes discrete-continuous codification for the VSA.
On the other hand, the slave stage is entrusted with the determination of the daily energy
losses by solving the multi-period power flow problem. The master and slave stages are
described in the following subsections.

3.1. Slave Stage

The slave stage in the problem of the optimal allocation and sizing of D-STATCOMs
along distribution feeders can be considered to be the heart of this solution because this
stage resolves the power balance equality constraints for each period h, which is necessary
for determining the operative states of the network, i.e., the daily grid losses defined in the
term f1 of the objective function (1). To solve these equations, here we rewrite them using
its complex domain equivalent [29].

S?
sh = diag(V?

sh)[YssVsh +YsdVdh], ∀{h ∈ H}, (7)

S?
qh − Ss,?

dh = diag(V?
dh)[YdsVsh +YddVdh], ∀{h ∈ H}, (8)

where Ssh is the complex vector that contains all the apparent power generation in the slack
nodes at each period h, Vsh is the vector that contains all the voltage variables in complex
form for all the slack nodes at each period of time t, Vdh is the vector that contains all the
voltage variables in complex form for all the demand nodes at each period of time t, Yss,
Ysd, Yds and Ydd are submatrices obtained from the nodal admittance matrix that relates
slack and demand nodes, respectively, S?

qh is a complex vector that contains the variables
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associated with the reactive power generation in the D-STATCOMs, i.e., S?
qh = jQgh, S?

dh
is the vector that contains all the apparent power demands at each period h. It is worth
mentioning that x? corresponds to the conjugate value of the complex number x, and
diag(x) represents the conversion of the vector x into a diagonal matrix. Please note
that Vsh are known variables since these correspond to the voltage values in all the slack
nodes, while the Vdh are unknown variables that must be determined for each period. In
addition, if the reactive power injections in the D-STATCOMs are known (defined in the
slave optimization stage), and the demand voltages can be iteratively obtained from (8) as
follows:

Vk+1
dh = Y−1

dd

[
diag−1

(
Vk,?

dh

)[
S?

qh − Ss,?
dh

]
−YdsVsh

]
,

∀{h ∈ H}, (9)

where k is the iterative counter, such that for k = 0, plane-voltages are defined as
V0

dh = 1∠0◦ as the initial voltage condition using the per-unit representation. The re-
cursive power flow formula defined by (9) is known as the successive approximation
power flow method originally proposed in [29], where the iterations are made until the
convergence criterion is met, which is defined as follows: max

{∣∣∣∥∥∥Vk+1
dh

∥∥∥− ∥∥∥Vk
dh

∥∥∥∣∣∣} ≤ ε,
where epsilon is defined as the maximum convergence error.

Remark 2. In the SAPF method defined by the recursive Formula (4) its convergence can be
ensured by applying the Banach fixed-point theorem as demonstrated in [29], based on the properties
of the demand admittance matrix Ydd.

To determine the value of the objective function regarding the annual costs of the
grid losses, the solution found by the SAPF method is used (suppose that the solution of

the power flow is Uh =
[
Vsh Vk+1

dh

]T
, which allows transforming the component f1 in the

objective function (1) into

f1 = CkWhT ∑
h∈H

real
{

UT
hY

?U?
h

}
. (10)

3.2. Master Stage

The master stage in the problem of the optimal allocation and sizing of D-STATCOMs
along distribution feeders can be considered to be the brain of this methodology because it
explores and exploits the solution space. Here, we proposed a new version of the VSA that
works with a hybrid codification that determines the nodes where the D-STATCOMs will
be located (integer part) and their corresponding optimal sizes (continuous part), which
constitutes a new meta-heuristic optimization approach that is an improvement over the
discrete version recently proposed in [8] and named DCVSA.

The VSA is a recently developed meta-heuristic optimization methodology for solving
nonlinear programming problems in the continuous domain by using the behavior of
the stirred fluids that generates vortical demeanors in pipes [30]. The implementation of
the VSA to solve optimization problem has the following advantages: (i) it corresponds
to a trajectory algorithm that generates its neighborhood using a Gaussian distribution,
which allows exploration of all regions of the solution space that contains potential solu-
tions [31]; (ii) it exploits the solution space around the promising regions using a variable
radius, which at each iteration reduces the size of the hyper-ellipse that contains all the
solutions [8]; and (iii) at the end of the iterative procedure, all the solutions generated
by the Gaussian distribution are placed at the same point of the optimal solution which
increases the repeatability of the algorithm at each global evaluation of the optimization
methodology [32].
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3.2.1. Proposed Hybrid Discrete-Continuous Codification

To explore the solution space, the VSA uses a codification to organize the decision
variables. Here we propose a combined codification that contains discrete and continuous
numbers. For example, the proposed codification for the problem of the optimal placement
and sizing of D-STATCOMs in electric distribution grids, the potential solution wt

i takes
the following structure:

wt
i =

[
n, 2, · · · , k | QD-STATCOM

min , QD-STATCOM
max , · · · , q

]
, (11)

where i corresponds to the position of the potential solution and t the current iteration.
Furthermore, k represents an arbitrary node, n as the last node number, and q an aleatory
number between QD-STATCOM

min ≤ q ≤ QD-STATCOM
max . Please note that the codification vector

has a dimension 1× 2ND-STATCOM
available , where the first part, i.e., the first ND-STATCOM

available positions
contains the discrete variables associated with the nodes where the D-STATCOMs will be
placed, and the remaining components of the vector contain their optimal sizes defined
with continuous codification.

3.2.2. Generation of the Initial Solution

The set of potential solutions in the VSA is generated apart from the initial solution
that corresponds to the initial center of the hyper-ellipse that covers the total solution space
at the beginning of the process of iteration. For example, the selected center of the solution
space is µ0, suppose an optimization is defined in the d-dimensional space where d = 3,

µ0 =

{
xmin

1 + xmax
1

2
,

xmin
2 + xmax

2
2

,
xmin

3 + xmax
3

2

}
, (12)

where xmin
j and xmax

j represents the lower and upper bounds of the decision variables.

3.2.3. Generation of the Candidate Solutions

The generation of the set containing the candidate (potential) solutions
Ct

i (x) = wt
i = {x1, x2, ..., xd}, being i, the subindex associated with the i-th individual

within the population is built using a Gaussian distribution as reported in [30], which takes
the following structure:

wt
i = p

(
ζt

i , µt, v
)
=
(
(2π)d|v |

)1/2
e

− 1
2
(ζt

i−µt)
T
(ζt

i−µt)
v


. (13)

Please note that in this distribution probability, ζt
i ∈ Rd×1 is a vector composed of

aleatory numbers, µt ∈ Rd×1 is the current center of the hyper-ellipse in the iteration t, and
v ∈ Rd×d is known as the covariance matrix. Following the recommendation in [30], this
matrix can be simplified using equal variances in the diagonal and null co-variances in its
non-diagonal elements. These characteristics of the covariance matrix are formulated as
follows (for the 3-dimensional example):

σ0 =
max

{
xmax

1 , xmax
2 , xmax

3
}
−min

{
xmin

1 , xmin
2 , xmin

3
}

2
, (14)

being the covariance matrix defined as v = σ0 Id×d, where Id×d is a diagonal identity matrix.
It is important to highlight that at the beginning of the iteration procedure the radius rt
with t = 0 as recommended by the authors of [30] must be assigned as σ0. In addition, the
variable radius of the hyper-ellipse in the VSA plays an important role, since this governs
the behavior of the vector of random variables ζt

i as ζt
i = rtrand(d), where rand(d) is an

aleatory vector with d−dimension that contains numbers between 0 and 1 generated with
a normal distribution.
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3.2.4. Bounding the Candidate Solutions

When the Gaussian distribution (13) is applied to generate each candidate solution wt
i

there exists the real possibility that it lies outside its bounds, which implies that a procedure
for revision is needed to revise every variable inside wt

i to ensure that it meets fulfill its
lower and upper bounds [8]. The rule to revise the upper and lower bounds is presented
below.

wt
i =

{
wt

i xmin ≤ x ≤ xmax

xmin +
(
xmax − xmin)rand otherwise

(15)

where rand corresponds to a random number between 0 and 1 generated with a normal
distribution structure.

Remark 3. The main modification in the proposed DCVSA is that the first Navailable components
of the potential solution wt

i are rounded to guarantee that these have an integer structure, which is
associated with the nodes where the D-STATCOMs will be installed.

3.2.5. Selection of the New Center of the Hyper-Ellipse

The evaluative process of the VSA to explore promising regions of the solution space
is defined by the location of the center of the hyper-ellipse, i.e., µt+1, which must be
selected as the best solution in the current population. The best solution corresponds to
the minimum value of the fitness function found after evaluating all individuals in Ct

i (x),
i.e., µt+1 = wt

i,best. The following fitness function is employed to solve the problem of the
optimal placement and sizing of D-STATCOMs in electric distribution grids. The fitness
function corresponds with an adaptation of the original objective function to deal with
possible lack of feasible solutions in the solution space.

A f = Acost + β ∑
h∈H

∑
k∈N

[
max{0, Vkh −Vmax}+
max{0, Vmin −Vkh}

]
, (16)

where β is known as the penalization factor that enlarges the effect of a voltage violation
for each node at each period. Please note that wt

i,best = mini,t

{
A f
(
wt

i
)}

.

Remark 4. The remaining constraints in the optimization model (1)–(6) are guaranteed by the
application of the SAPF in (9) and the generation of the variables in the VSA procedure. In addition,
if the voltage regulation bounds are met, then the fitness function A f takes the same value as the
objective function.

3.2.6. Reduction of the Hyper-Ellipse Radius

The radius in the VSA represents a variable that balances the exploration and ex-
ploitation of the solution space during the iterative procedure. The original VSA approach
proposed in [30] recommends the implementation of the incomplete Gamma function to
continuously reduce the radius of the hyper-ellipse; however, to simplify the implementa-
tion of this algorithm in any programming environment, an exponential adaptation is used
in this research for the radius variation reported in [32] and as defined in (17).

rt+1 = σ0

(
1− t

tmax

)
e(−γ1

t
tmax ), (17)

where γ1 is an adjustable parameter that governs the speed of reduction of the radius. This
parameter has been used heuristically in previous literature as 6 [8] because it emulates
incomplete Gamma function with 95% of similarity. Please note that tmax is the maximum
number of iterations performed in the optimization process.
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3.2.7. Stopping Conditions

The optimization process followed by the proposed DCVSA ends when one of the
following criteria is meet:

X If the maximum number of iteration, i.e., tmax is attained, then, the optimal solution
found by the DCVSA corresponds to the current center of the hyper-ellipse.

X If after τmax, consecutive iterations the center of the hyper-ellipse remains constant,
then the optimal solution reached by the DCVSA is the current center of the hyper-
ellipse.

3.2.8. Algorithmic Implementation of the DCVSA

The implementation of the master optimization stage based on the new discrete-
continuous version of the VSA is presented in Algorithm 1, which follows the structure
proposed in [8].

Algorithm 1: Schematic implementation of the DCVSA to optimal allocation
and sizing of D-STATCOMs in electric distribution networks.

Data: Read the information of the AC distribution network to feed the
optimization model (1)–(6).

Select the initial radius of the hyper-ellipse r0 and its initial center µ0.;
Generate the potential solutions w0

i using (13);
Revise the upper and lower bounds for each w0

i employing (15);
Solve the SAPF problem using the recursive Formula (9) for each w0

i ;
Determine the value of the fitness function for each w0

i , i.e., A f
(
w0

i
)

using (16);

Determine the best current solution, i.e., w0
i,best = mini,t

{
A f
(
w0

i
)}

;

for t = 1 : tmax do
Update the center of the hyper-ellipse µt = wt−1

i,best;
Determine the new radius of the hyper-ellipse rt with (17);
Generate the new potential solutions wt

i using (13);
Revise the upper and lower bounds for each wt

i employing (15);
Solve the SAPF problem using the recursive Formula (9) for each wt

i ;
Determine the value of the fitness function for each wt

i , i.e., A f
(
wt

i
)

using (16);

Determine the best current solution, i.e., wt
i,best = mini,t

{
A f
(
wt

i
)}

;

if τ ≥ τmax then
Reports as the solution of the problem µt;
break;

end
end
Result: Return the optimal solution found

4. Electric Distribution Test Feeders

The evaluation of the proposed MINLP model and the DCVSA to solve the problem
of the optimal location and sizing of D-STATCOMs in electric distribution grids is made in
two classical and well-known distribution test feeders composed of 33 and 69 buses with
radial structure, which will be denominated in this research as the IEEE 33-bus and the
IEEE 69-bus, respectively. Both electrical distribution networks are operated with 12.66 kV
at the substation node located at bus 1. The schematic connection between nodes in these
test feeders are depicted in Figure 1.
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Figure 1. Nodal connections of the test feeder (a) IEEE 33-bus (b) IEEE 69-bus.

The IEEE 33-bus has a total active and reactive power demand of 3715 kW and
2300 kvar with 210.9876 kW of power losses at the peak load condition; while the IEEE
69-bus has a total active and reactive power demand of 3890.7 kW and 2693.6 kvar with
224.9520 kW of power losses in the same operative scenario. All information regarding
branches and loads are reported in Tables 2 and 3 [8].

Table 2. Electrical parameters of the 33-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25
10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40
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Table 3. Electrical parameters of the 69-node test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0251 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 1.2 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0475 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3450 8 5.5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45.5 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1114 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3460 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 11 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 14 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 19.5 14 12 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 6 4 68 69 0.0047 0.0016 28 20

To evaluate the effect of the daily load variation in both test feeders the active and
reactive power curves depicted in Figure 2 are considered.
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Figure 2. Typical behavior of the active and reactive power consumption in Colombia [2].
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The information to construct the aforementioned daily active and reactive power
curves is presented in Table 4 for the sake of reproducibility of the results that will be
presented in the next section.

Table 4. Behavior of the daily active and reactive power demands.

Period Act. (pu) React. (pu) Period Act. (pu) React. (pu)

1 0.1700 0.1477 25 0.4700 0.3382
2 0.1400 0.1119 26 0.4700 0.3614
3 0.1100 0.0982 27 0.4500 0.3877
4 0.1100 0.0833 28 0.4200 0.3434
5 0.1100 0.0739 29 0.4300 0.3771
6 0.1000 0.0827 30 0.4500 0.4269
7 0.0900 0.0831 31 0.4500 0.4224
8 0.0900 0.0637 32 0.4500 0.3647
9 0.0900 0.0702 33 0.4500 0.4226

10 0.1000 0.0875 34 0.4500 0.3081
11 0.1100 0.0728 35 0.4500 0.2994
12 0.1300 0.1214 36 0.4500 0.3336
13 0.1400 0.1231 37 0.4300 0.3543
14 0.1700 0.1390 38 0.4200 0.3399
15 0.2000 0.1410 39 0.4600 0.4234
16 0.2500 0.1998 40 0.5000 0.4061
17 0.3100 0.2497 41 0.4900 0.3820
18 0.3400 0.3224 42 0.4700 0.3820
19 0.3600 0.3263 43 0.4500 0.3887
20 0.3900 0.3661 44 0.4200 0.2751
21 0.4200 0.3585 45 0.3800 0.3383
22 0.4300 0.3316 46 0.3400 0.2355
23 0.4500 0.4187 47 0.2900 0.2301
24 0.4600 0.3652 48 0.2500 0.1818

To evaluate the objective function defined in (1) the parameters reported in Table 5 are
considered. Some of these parameters have been taken from [6,33].

Table 5. Parametrization of the objective function.

Par. Value Unit Par. Value Unit

CkWh 0.1390 US$kWh T 365 Days
∆h 0.50 h α 0.30 US$/MVAr3

β −305.10 US$/MVAr2 γ 127380 US$/MVAr
k1 6/2190 1/Days k2 10 Years

It is worth mentioning that in the evaluation of the f2 component, the variable
QD-STATCOM

k is defined in MVAr [33].

5. Computational Implementation and Results

The solution of the MINLP model (1)–(6) for the optimal siting and sizing of D-
STATCOMs in electric distribution networks using the DCVSA was implemented in the
MATLAB version 2020b on a PC with an AMD Ryzen 7 3700 2.3-GHz processor and 16.0 GB
RAM, running on a 64-bit version of Microsoft Windows 10 Single language. In addition, to
compare the efficiency and robustness of the proposed optimization approach the MINLP
model was also solved in the GAMS software with BONMIN and COUENNE solvers [9].
The parameterization of the DVSA was taken from [8] and it is presented in Table 6.
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Table 6. Parametrization of the DCVSA.

Discrete-continuous vortex search algorithm

Population size:10 Iterations’ number: 1000
Population building: Gaussian Distribution

SAPF method

Iterations’ number: 1000 Convergence error: 1× 10−10

Experimental tests in each test feeder

Consecutive evaluations 100

5.1. IEEE 33-Bus

In Table 7 are listed the optimal solutions for the problem of the optimal placement
and sizing of D-STATCOMs in electric distribution networks using the GAMS optimizers
and the proposed optimization DCVSA approach.

Table 7. Optimal location and sizes of the D-STATCOMs in the IEEE 33-bus.

Approach Location and Size Node (MVAr) Acost
(US $/Year)

Caso
base

— 112,740.90

COUENNE {16(0.0109), 17(0.0224), 18(0.2065)} 107,589.50
BONMIN {17(0.0339), 18(0.0227), 30(0.2395)} 102,447.29

DCVSA {14(0.1599), 30(0.3591), 32(0.1072)} 98,497.90

Please note that the solutions reported in Table 7 show that: (i) the best solution is
reported by the proposed DCVSA with the selection of the nodes 14, 30 and 32 to locate
the D-STATCOMs with sizes of 0.1599 MVAr, 0.3591 MVAr, and 0.1072 MVAr, respectively.
These reduce the operating cost of the electric distribution grid by about US$14243 per year
of operation, i.e., 12.63% with compared to the base case; and (ii) the GAMS solvers are
stuck in local optimal solutions. The BONMIN solver reduces the total annual grid cost by
about 9.13%, while the COUENNE achieves a reduction of only 4.57%. These problems
in the solutions reported by the GAMS solvers are clearly attributable to the nonlinear
non-convex behavior of the objective function and the power balance constraints, which
makes it impossible to combine classical branch and bound method, which, with interior
points, finds the global optimum. This is possible only in mixed-integer convex problems.

To present the effect of the optimal location on the costs of the annual energy losses,
we desegregate the investment and the operative costs associated with the installation of
the D-STATCOMs reported in Table 7. In the Figure 3 are presented the desegregated costs
for the IEEE 33-bus test system.

The behavior of the annual investment and operating costs presented in Figure 3
shows that the proposed DCVSA decides to make an inversion in D-STATCOMs that
duplicates the inversion made by the GAMS solvers. However, this behavior of the DCVSA
leads to considerable reduction in the cost of annual energy losses and helps to improve the
grid behavior significantly as compared with the GAMS solvers. In addition, if we observe
the cost of annual energy losses of the BONMIM solver, these are about US $98.67× 103,
which is itself higher than the summation of the costs reported with the proposed DCVSA
which is about US $98.50× 103—This result proves that the proposed approach is more
suitable for solving complex mixed-integer non-convex optimization problems than the
GAMS package as shown in [9].
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Figure 3. Distribution of the operative and investment costs for the comparative and proposed approach.

To demonstrate the efficiency of the proposed DCVSA we report the first six solutions
found by this approach in Table 8.

Table 8. Lists of solutions found by the proposed DCVSA in the IEEE 33-bus.

Sol. Location and Size Node (MVAr) Acost
(US $/Year) Rep.

1 {14(0.1599), 30(0.3591), 32(0.1072)} 98,497.90 36
2 {11(0.0659), 14(0.1148), 30(0.4578)} 98,564.29 22
3 {10(0.0642), 14(0.1175), 30(0.4574)} 98,565.03 10
4 {11(0.0787), 15(0.1019), 30(0.4578)} 98,567.91 8
5 {12(0.1110), 14(0.0666), 30(0.4591)} 98,569.08 2
6 {12(0.0804), 15(0.0972), 30(0.4591)} 98,570.12 4

Please note that the results in Table 8 demonstrate that: (i) after 100 consecutive
evaluations, the proposed DCVSA is found to have a 36% efficiency at finding the same
optimal solution, (ii) all the solutions in Table 8 are indeed better than the results achieved
by the GAMS optimizers in reaching the final objective function value, and (iii) it is
observed that the node 30 appears in all the solutions with sizes larger than 350 kvar, which
implies that this is the most sensitive node for the placement of D-STATCOMs in the IEEE
33-bus test system.

It is also important to mention that about processing times the proposed approach
takes about 76.85 s to solve the optimization problem with excellent numerical results in
contrast with the 6.6 s taken by the BONMIN solver that is stuck in a local solution which
is worse than all the solutions listed in Table 8.

5.2. IEEE 69-Bus

To present the effectiveness and robustness of the proposed DCVSA to solve the
problem of the optimal siting and sizing of D-STATCOMs in the IEEE 69-bus test feeder,
first six solutions reached by our proposed method are presented in Table 9. Please note
that the base case for this test feeder has an annual cost of US $119, 715.63.

Regarding the solutions reported in Table 9 it is observed that: (i) in all the solutions the
node 61 and 21 are recur, except in solution 2 where node 17 replaces node 21, which implies
that these are the most suitable nodes to locate D-STATCOMs. On the basis of maximum
reduction in the annual operating costs, node 61 with the D-STATCOM of the largest size
appears in all the simulation cases; (ii) the solutions 3 to 6 are comparable because the
differences among their annual costs are less than US $0.4100 per year of operation and
the fact that in all these node 61 node features as the location for a D-STATCOM with a
nominal rate of 0.5741 MVAr; and (iii) the proposed optimization approach for the IEEE
69-bus test system has an efficiency of the 49%, i.e., among 100 consecutive evaluations,
49 find global optimal solutions that cause the reduction of about 13.97% in the annual
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operative cost as compared to the base case when D-STATCOMs are installed at nodes 61,
61 and 64 with nominal rates of 0.0839 MVAr, 0.4601 MVAr, and 0.1139 MVAr, respectively.

Table 9. Lists of solutions found by the proposed DCVSA in the IEEE 69-bus.

Sol. Location and Size Node (MVAr) Acost
(US $/Year) Rep.

1 {21(0.0839), 61(0.4601), 64(0.1139)} 102,990.80 49
2 {17(0.0862), 61(0.4597), 64(0.1139)} 103,022.77 1
3 {21(0.0695), 26(0.0143), 61(0.5741)} 103,101.25 3
4 {21(0.0704), 27(0.0134), 61(0.5741)} 103,101.31 1
5 {21(0.0687), 25(0.0152), 61(0.5741)} 103,101.52 1
6 {22(0.0695), 26(0.0143), 61(0.5741)} 103,101.66 4

Remark 5. Comparisons with the GAMS solvers are not presented since the BONMIN and
the COUENNE failed to solve the MINLP model for the IEEE 69-bus test feeder. This further
demonstrates the efficiency and robustness of the DCVSA for addressing this complex optimization
problem from the meta-heuristic optimization point of view.

If we split the optimal solution yield by the proposed DCVSA in Table 9, then, the
required inversion in D-STATCOMs is US $8372.08 against the reduction in the costs of
the energy losses of US $25, 096.92 seen in the base case. This clearly compensates for the
required inversions in the D-STATCOMs, because it leads to a reduction of 13.97% in the
annual operating costs for the grid operator, i.e., US $16, 724.84 per year of operation.

It is also important to mention the processing times the proposed approach takes. It is
about 300.68 s to solve the optimization problem with excellent numerical results while the
GAMS solvers diverge after 2187.96 s of exploration in the solution space.

5.3. Daily Operation of the D-STATCOMs

To verify the dynamic behavior of the D-STATCOMs in the reactive power compensa-
tion in electric distribution systems considering the daily active and reactive power demand
curves presented in Figure 2, we present the D-STATCOMs’ behavior in Figure 4a,b for the
IEEE 33- and 69-buses test feeders, respectively.

From results in Figure 4 it may be noted that: (i) for the IEEE 33-bus test feeder all
the D-STATCOMs work in their nominal capacities from the periods 16 to 47, while for
the other periods, the amount of reactive power varies as a function of the total active and
reactive power demand because, for these periods (see period 1 to period 16 in Figure 2),
the total active and reactive power consumption is lower than the 50%. This implies that
excessive injections of reactive power can worsen the grid performance in terms of energy
losses; (ii) with the daily operation of the D-STATCOMs presented in Figure 4 the annual
energy costs also reduced from US $90, 527.63 to US $89, 314.22, i.e., an additional reduction
of about USD 1231.41 per year of operation; (iii) in the IEEE 69-bus test feeder the dynamic
behavior of the D-STATCOMs shows that during the periods 1 to 17 and in the last, i.e., the
47th period, the amount of the reactive power injection was lower than the nominal rates
of the D-STATCOMs. This was caused by the low demand in these periods of time (see
Figure 2); and (iv) if the D-STATCOMs are operated throughout the day at their nominal
values (see Table 9) the cost of annual energy losses is about US $94, 618.71. If, however,
these are operated with the dynamic curves presented in Figure 4b, then, the cost of annual
energy losses is about US $93027.84, i.e., an additional reduction of US $1590.87 per year
of operation.
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Figure 4. Dynamic reactive power behavior in a typical operation day for the D-STATCOMs in electric distribution networks:
(a) IEEE 33-bus, and (b) IEEE 69-bus.

It is also important to mention that the dynamic behavior of the reactive power
injections in Figure 4 in the IEEE 33- and IEEE 69-bus test feeder confirms the advantages
of using D-STATCOMs instead fixed capacitor banks because the former can vary their
reactive power injections as function of the demand demeanor, which is not possible when
fixed capacitors are installed.

6. Conclusions and Future Works

The problem of the optimal siting and sizing of D-STATCOMs in electric distribution
networks to minimize the annual operational costs of the grid caused by the energy losses
during a typical day of operation was formulated as an MINLP model in research. The
model proposed in this study incorporates of the a new version of the VSA that uses a
discrete-continuous codification (DCVSA) and the SAPF method. The DCVSA is used
for determining the optimal locations for and sizes of the D-STATCOMs and the SAPF
method entrusted determines the voltage variables to calculate the annual energy losses
of the grid and their cost. Numerical results in the IEEE 33- and IEEE 69-bus test feeders
demonstrated that the proposed hybrid optimization approach showed a better numerical
performance than the MINLP solvers BONMIN and COUENNE in the GAMS package.
With the IEEE 33-bus test feeder, the DCVSA caused an annual reduction about 12.63%,
while the BONMIN and the COUENNE solvers could bring about reductions of about
9.13% and 4.57%, respectively. With the IEEE 69-node test feeder, the reduction with
DCVSA was about 13.97% and that with the GAMS solvers was variable.

The evaluation of the dynamic reactive power compensation using the D-STATCOMs
sized and located by the proposed DCVSA approach showed that depending on the amount
of active and reactive power demands throughout the day, the reactive power injection
must be varied to achieve even greater improvement in the annual performance of the grid.
Numerical results showed that for the IEEE 33-bus and IEEE 69-bus test feeders, additional
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annual reductions of about US $1231.41 and US $1590.87 were achieved as compared to
fixed reactive power injections.

As future works, the following research topics may explore: (i) the reformulation of
the MINLP model into a mixed-integer convex model to find the global optimum with
the application of the Branch and Bound and the interior point methods; and (ii) the
simultaneous location and sizing of the renewable energy resources and D-STATCOMs
to improve the grid performance during the planning horizon, considering annual load
increments.
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