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Abstract: This paper deals with the problem of the optimal placement and sizing of distributed
generators (DGs) in alternating current (AC) distribution networks by proposing a hybrid master–
slave optimization procedure. In the master stage, the discrete version of the sine–cosine algorithm
(SCA) determines the optimal location of the DGs, i.e., the nodes where these must be located, by
using an integer codification. In the slave stage, the problem of the optimal sizing of the DGs is solved
through the implementation of the second-order cone programming (SOCP) equivalent model to
obtain solutions for the resulting optimal power flow problem. As the main advantage, the proposed
approach allows converting the original mixed-integer nonlinear programming formulation into a
mixed-integer SOCP equivalent. That is, each combination of nodes provided by the master level SCA
algorithm to locate distributed generators brings an optimal solution in terms of its sizing; since SOCP
is a convex optimization model that ensures the global optimum finding. Numerical validations of
the proposed hybrid SCA-SOCP to optimal placement and sizing of DGs in AC distribution networks
show its capacity to find global optimal solutions. Some classical distribution networks (33 and
69 nodes) were tested, and some comparisons were made using reported results from literature.
In addition, simulation cases with unity and variable power factor are made, including the possibility
of locating photovoltaic sources considering daily load and generation curves. All the simulations
were carried out in the MATLAB software using the CVX optimization tool.

Keywords: distributed generation; mixed-integer nonlinear programming; optimal power flow;
second-cone programming; discrete-sine cosine algorithm; metaheuristic optimization

1. Introduction

Electrical distribution networks are entrusted with providing electricity services to
the end users in medium- and low-voltage level in rural or urban areas [1]. These grids
are typically operated with a radial configuration to reduce investment, maintenance and
operative costs [2]. However, the radial configuration produces higher power losses in
contrast to meshed configurations; also, the nodal voltage rapidly worsens, as the nodes are
far from the substation [3]. To mitigate these higher power losses, the literature proposes
multiple approaches to know: (i) optimal placement of shunt capacitors [4], (ii) optimal
reconfiguration of the distribution grid [5], (iii) optimal selection/substitution of the calibers
of the conductors [6,7], (iv) optimal placement and sizing distributed generators [8–10],
among others. Each one of these approaches allow dealing with power losses minimization;
nevertheless, the most effective approach for dealing with this power loss corresponds
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to the optimal placement and sizing of DGs since reductions higher than 50% have been
reported for this methodology [11].

The optimal placement and sizing of DGs in electric distribution networks is a complex
and large-scale mixed-integer nonlinear programming (MINLP) problem. This MINLP
structure of the optimization problem complicates the possibility of finding the global
optimal solution due to the non-convexity shape of the solution space [12]. For this reason,
in this research, we propose a combination of a metaheuristic approach with a second-order
cone programming (SOCP) formulation to address this problem with excellent numerical
performance as will be presented in the results section.

Due to the importance of having mathematical optimization in distribution systems
analysis, here, we propose a new hybrid optimization approach based on the discrete
version of the sine–cosine algorithm, i.e., (DSCA) added to the SOCP formulation to solve
the exact mixed-integer nonlinear programming (MINLP) formulation of the problem of
the optimal location and sizing of DGs in AC distribution networks [13]. This hybrid
optimization approach called DSCA-SOCP is motivated by the following facts: (i) the
exact MINLP structure makes it impossible to find the global optimal solution for this
problem with the current optimization approaches even using metaheuristic; this situation
occurs since the studied problem contains binary variables regarding the placement of
the DGs and the continuous part associated with their sizing, which is formulated as
an optimal power flow problem being non-convex due to the presence of trigonometric
functions in its formulation where it is not possible to ensure global solution with non-
convex methods [14,15]. The union of both problems (integer and nonlinear continuous)
increases the possibility of branch and bound methods or metaheuristics to be stuck in
local optimal solutions [16]; and (ii) the conventional metaheuristic approaches to solve the
MINLP problem deals with the optimal power flow problems using controlled random
procedures [8], which are inadequate approaches (they do not guarantee the global optimal
solution); in opposition, the convex optimization allows to find it with duality zero gap [17].

Based on the aforementioned problems with conventional metaheuristic approaches,
we propose a hybrid DSCA-SOCP programming to solve the studied problem using a
master–slave optimization strategy, where the master stage is entrusted with determining
the subset of nodes where DGs will be located, and the slave stage solves the resulting
optimal power flow problem to determine their optimal sizes. The main advantage of the
proposed approach is that the SOCP programming ensures the global optimal solution for
each nodal combination provided by the DSCA [18], which implies that if the best subset
of nodes is identified by the master stage, the global optimal solution for the problem of
the optimal placement and sizing of DGs in AC distribution networks will be guaranteed
(this will be confirmed in the results section) [19].

The problem of the optimal placement and sizing of distributed generation in AC
distribution networks to minimize active power losses in all the branches of the grid
has been largely studied in the last two decades [20]. Most of the proposed approaches
in literature work with master–slave algorithms based on metaheuristic optimization
techniques [8]. Some of the recent approaches in this field of study are listed in Table 1.

The common denominator of these approaches is that these references work with
hybrid master–slave optimization approaches to solve the exact MINLP model in two
stages, i.e., a discrete part of the algorithm is entrusted with determining the location of the
DGs and the continuous part deals with the dimensioning problem via optimal power flow
analysis [21]. However, no evidence about the combination of the convex optimization
approach for the continuous part and the discrete sine–cosine algorithm for the integer part
has been found after the revision of the state-of-the-art, and this gap has been exploited in
this paper as an opportunity of research.
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Table 1. Recent optimization methods for optimal placement and sizing distributed generators (DGs) in alternating current
(AC) distribution networks.

Acronym Optimization Method Reference Year

GA-PSO Genetic algorithm and particle swarm optimization [22] 2012
LSFSA Loss sensitivity factor simulated annealing [23] 2013
MINLP Mixed-integer nonlinear programming formulation [9] 2014
TBLO Teaching learning based optimization [11] 2014

QOTBLO Quasi-oppositional teaching learning based optimization [11] 2014
HSA-PABC Harmony search algorithm and particle artificial bee colony algorithm [4] 2014

RBFNN-PSO Radial basis function neural network and particle swarm optimization [24] 2015
GA-IWD Genetic algorithm and intelligent water drops [25] 2016

AHA Algorithmic heuristic approach [26] 2016
KHA Krill-herd algorithm [27] 2016

PBIL-PSO Population-Based Incremental Learning and particle swarm optimizer [8] 2018
ABCA Artificial bee colony algorithm [28] 2018

HTLBOGWO Hybrid teaching–learning based optimization-grey wolf optimizer [29] 2019
MSSA Mutated salp swarm algorithm [30] 2019

CHVSA Constructive heuristic vortex search algorithm [31] 2019
GAMS General algobraic modeling system [12] 2020

CBGA-VSA Chu and Beasley genetic algorithm and vortex search algorithm [21] 2020

Remark 1. In the revision of the state-of-the-art, only the methodologies called MINLP proposed
in [9] and GAMS presented in [12] work with the exact model of the problem by implementing
branch and bound in conjunction with interior point methods to solve the problem. However, due to
the non-convexities of the solution space, these are stuck in local optimums.

To avoid being stuck in local optimum solutions, our approach combines the efficiency
of conic programming with easily implementable metaheuristic to find the global optimal
solution of the problem using a master–slave optimization approach. The main advantage
of the SOCP is that if the combination of the nodes where DGs will be located is fixed,
the optimal sizing provided by the SOCP approach remains equal (repeatability property),
which is not ensured with conventional metaheuristics used for optimal power flow
analysis.

Based on the review of the state-of-the-art presented in the previous section, the main
contributions of our proposal can be summarized as follows:

X The reformulation of the exact mixed-integer nonlinear programming model into a
mixed-integer one by transforming its continuous, i.e., optimal power flow, into a
convex formulation via second-order cone programming.

X The presentation of the discrete version of the sine–cosine algorithm to address the
integer part of the MISOCP approach by using an integer codification that contains
the nodal numbers as decision variables.

X The hybridization of the SCA and the SOCP programming has the capability of finding
the global optimal solution with low computational effort in both test feeders studied.
Numerical results show improvements regarding classical mataheuristic methods
available in literature, including exact MINLP approaches.

It is worth mentioning that the proposed optimization approach deals with the opti-
mal placement and sizing of DGS in AC distribution networks considering the load peak
conditions by assuming that the distributed generators are fully dispatchable as recom-
mended in [9]. In addition, no considerations are made regarding the total distributed
generation since we are interested in finding the best possible reduction in the active power
losses in the distribution network without penetration limitations. Finally, we consider
the possibility of installing three distributed generators since this is the most common
assumption in literature [32]. In addition, three simulations cases are analyzed: (i) the
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optimal location and sizing of the DGs considering unity power factor, (ii) variable power
factor, and (iii) daily load and photovoltaic solar curves.

The remainder of this document is organized as follows: Section 2 presents the
exact mixed-integer nonlinear problem formulation of the optimal location and sizing of
DGs in AC distribution networks with radial structure. Section 3 presents the proposed
hybrid optimization methodology with master–slave structure, where the master slave
is entrusted with solving the location problem by implementing the discrete version of
the sine–cosine algorithm, and the slave stage is entrusted with determining the optimal
sizes of the DGs by using a SOCP formulation. Section 4 presents the main features of the
test feeders which are composed of 33 and 69 nodes, with radial structure and operated
with 12.66 kV at the substation node. Section 5 presents the numerical achievements of the
proposed optimization approach regarding the optimal location and sizing of DGs with
their corresponding analysis and discussion. Section 6 shows the main concluding remarks
as well as some possible future works derived from this research.

2. MINLP Formulation

The problem of the optimal location and sizing of distributed generation in AC distri-
bution networks can be formulated as a mixed-integer nonlinear programming (MINLP)
problem. The objective function of this problem corresponds to the minimization of the
active power losses in the distribution network, which is subjected to a set of nonlinear
constraints regarding active and reactive power balance equations, device capabilities and
voltage regulation bounds, among others. Here, we present the MINLP formulation in
the complex domain in order to simplify the proposed optimization approach that will be
presented in Section 3. The complete MINLP model is presented below.

Objective function: The objective function that represents the problem of the optimal
placement and sizing of DGs in AC distribution networks corresponds to the total power
losses caused by the current flow in all the branches of the network. This objective function
is formulated as presented in Equation (1).

min ploss = real

{
∑

i∈N
∑

j∈N
V?

i YijVj

}
, (1)

where ploss is the objective function value, Vi and Vj are the voltage values (magnitude
and angle) in the nodes i and j, respectively; Yij is the complex admittance value of the
nodal admittance matrix that relates nodes i and j. Note that N represents the set that
contains all the nodes of the network, and (·)? represents the complex conjugate operator
applied to the argument.

Set of constraints: The set of constraints that intervene in the problem of the optimal
placement and sizing of DGs in AC distribution networks are described as follows:

Ss,?
i + Sdg,?

i − Sd,?
i = V?

i ∑
j∈N

YijVj, {i ∈ N}, (2)

where Ss,?
i is the apparent power generation in the slack node connected at bus i, Sdg,?

i
corresponds to the apparent power generation provided by the DG connected at node i,
and Sd,?

i represents the apparent power consumption at node i.
Expression (3) is associated to the voltage regulation bounds in all the nodes of the network.

‖Vi − 1‖ ≤ γ, ∀i ∈ N , (3)

where γ is the maximum deviation given by the regulatory policies, which is usually
between 0.05 pu and 0.10 pu. Note that in the case of the substation, Vi = 1 + j0 pu.
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The capacity of the existing and newly distributed generators is upper and lower
bounded as follows:

Ss
i ≤ Ss

i ≤ Ss
i , ∀i ∈ N , (4)

xiSgd,new ≤ Sdg
i ≤ xiSgd,new, ∀i ∈ N , (5)

where
xi ∈ {0, 1}, ∀i ∈ N , (6)

which denotes the binary variable of the problem, which has a value of 1 if a DG is installed
at node i or 0. There is a limit to the number of DGs that can be installed in the system,
which is given by (7),

∑
k∈N

xi ≤ NDGs, (7)

where NDGs is the total number of distributed generators available for installation in the
AC distribution network.

Remark 2. The structure of the optimization model (1) to (7) exhibits a nonlinear non-convex
structure with the presence of binary variables regarding the location of the DGs in a particular
node of the grid. However, the nonlinear structure of the power balance equations in (2) is the most
challenging constraint since it does not guarantee the global optimum finding even if all the binary
variable combinations are explored.

Figure 1 summarizes the main characteristics of the MINLP model that represents the
problem of the optimal placement and sizing of DGs in AC radial distribution networks.

Convex Equations
(1), (3)–(5) and (7)

xi ∈ {0, 1}
Binary

Non-convex
Equation (2)

MINLP

Figure 1. Characterization of the optimization model.

To address the nonlinear part of the optimization model described in Figure 1, we
propose the reformulation of the nonlinear part of the model (i.e., power balance equations)
into a second-order cone equivalent, while the binary part of the model is addressed
through a metaheuristic approach as is presented in the following section.

3. Proposed Hybrid Optimization Approach

To solve the problem of the optimal placement and sizing of DGs in AC distribution
networks, we propose a hybrid master–slave optimization algorithm. The master stage
employs the metaheuristic sine–cosine algorithm (SCA) to solve the binary problem, i.e., the
location of the distributed generators on the grid. In the slave stage the optimal power
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flow problem is reformulated as a second-order cone programming (SOCP) in order to
guarantee the global optimum finding for each nodal combination providing for the SCA.

3.1. Slave Stage: SOCP Approach

The SOCP approach corresponds to a branch of the convex optimization where conic
constraints allow for the reformulation of products between variables in order to trans-
form nonlinear optimization problems into convex ones [18]. In the case of the optimal
power flow analysis, the SOCP formulation permits to find the global optimal solution
with zero gap when this is compared to the exact nonlinear programming power flow
formulation [17]. Here, the SOCP formulation is presented to address the problem of the
optimal sizing of DGs supposing that their locations have been previously informed by the
master stage. To obtain the SOCP model, let us define a new auxiliary variable as follows

Vij = V?
i Vj, (8)

where if we multiply in both sides for V?
ij, we have

∥∥Vij
∥∥2

= ‖Vi‖2∥∥Vj
∥∥2, (9)

Now, if we define a new vector of U with entries vi = ‖Vi‖2, then we reach the
following result ∥∥Vij

∥∥2
= vivj, (10)

which can be rewritten as follows∣∣∣∣Vij
∣∣∣∣2 = uiuj,∣∣∣∣Vij
∣∣∣∣2 = 1

4
(
ui + uj

)2 − 1
4
(
vi − vj

)2,∣∣∣∣Vij
∣∣∣∣2 + 1

4
(
vi − vj

)2
= 1

4
(
vi + vj

)2,∣∣∣∣∣∣∣∣ 2Vij
vi − vj

∣∣∣∣∣∣∣∣ = vi + vj.

(11)

Note that Equation (11) is still a non-convex equality constraint, however, as recom-
mended in [18], this can be relaxed as a second-order constraint by replacing the equality
symbol by an inequality one as presented below:∣∣∣∣∣∣∣∣ 2Vij

vi − vj

∣∣∣∣∣∣∣∣ ≤ vi + vj. (12)

Now, to rewrite the continuous part of the studied problem, let us substitute (8) into (1)
and (2), which produces the following linear objective function and constraint, respectively.

min ploss = real

{
∑

i∈N
∑

j∈N
YijVij

}
, (13)

Ss,?
i + Sdg,?

i − Sd,?
i = ∑

j∈N
YijVij, {i ∈ N}, (14)

Remark 3. The SOCP reformulation allows reaching the global optimal solution of the optimal
power flow problem associated with the optimal sizing of the DGs, since the resulting optimization
model is essentially linear with an only conic constraint.

Note that the characteristics of the studied optimization model depicted in Figure 1
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can be redefine by eliminating the non-convex constraint based on the proposed SOCP
formulation as presented in Figure 2.

Convex Equations
(3)–(5), (7), (8)
and (12)–(14)

xi ∈ {0, 1}
Binary

MI-SOCP

Figure 2. Mixed-integer second-order cone programming (SOCP) equivalent model for the problem
of the optimal location and sizing of distributed generators in distribution networks.

Note that the SOCP approximation is given as a function of Vij and vi instead of
the voltages Vi. Notwithstanding, it is possible to recover the original voltages by the
following two-step procedure: First, the voltage magnitude is computed as Vi =

√
vi.

This value exists, and it is real since ui ≥ 0. Second, the angle of the voltages is calculated
from θij = ang(Vij) in a forward iteration, starting from θ1 = 0. Therefore, a power flow
calculation is not required after the optimization problem is solved.

3.2. Master Stage: Discrete SCA

The master stage is entrusted with solving the integer part of the optimization problem,
i.e., to define the location of all the DGs. Here, we adopt the discrete version of the sine–
cosine algorithm, which works with a reduced population by using an integer codification
to represent the optimization problem [21].

The SCA is an optimization technique that works with a population which evolves
by using trigonometric functions and variable radius in order to explore and exploit the
solution space [33]. This optimization algorithm has been employed to solve different
continuous domain problems, such as optimal power flow in power and distribution
systems [34,35], parameter estimation in photovoltaic modules [36], optimal design of
bend photonic crystal waveguides [37], and general solution of nonlinear non-convex
optimization problems [38] among others. The main aspects of the implementation of the
discrete SCA are described in the following subsections.

Initial Population

The SCA is a metaheuristic optimization technique that works with an initial popula-
tion that is evolving through the iterative procedure by sine and cosine rule. The structure
of the initial population for the proposed SCA is defined as follows

Nt =


n11 n12 · · · n1NDGs
n21 n22 · · · n2NDGs

...
...

. . .
...

nM1 nM2 · · · nMNDGs

 (15)

where t is the iterative counter, which is fixed as zero for the initial population, and M is
the number of individuals in the population. Remember that NDGs represents the number
of DGs available for installation.
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Note that each element inside of the initial population is created as follows:

nij = round(2 + rand(1)(n− 2)) (16)

where n is the total number of nodes in the AC distribution network. Observe that the
function round(·) takes the near integer part of the number and rand is a random number
between 0 and 1 generated with a normal distribution. It is worth mentioning that node 1
is not considered in the population since it corresponds to the slack node. In addition, this
codification guarantees the feasibility in the integer part of the solution space.

Remark 4. To maintain the feasibility of the solution space during the generation of the initial
population we ensure that each one of the components of the individual Nt

i is different to the
remainder components, i.e., nij 6= nik, ∀k = 1, 2, ..., NDGs, and k 6= j.

3.3. Fitness Function Evaluation

The SCA evolves through the solution space typically using a modification of the
objective function named fitness function [39]. This helps deal with possible infeasibilties
of the decision variables [40]. However, due to the continuous part for the problem is
formulated as a SOCP model; most of the constraints are directly fulfilled during the
solution procedure via interior point methods. In this sense, the structure of the fitness
function selected in this research takes the same form of the objective function. Note that
this function is evaluated for each individual in the population, i.e., ploss

(
Nt

i
)
, in order

to identify the best individual in the current population. This individual is called Nt
best.

Observe that in this research the best individual corresponds is the one who has the lower
objective function value.

3.4. Evolution of the Population

The evolution of the of the population in the SCA algorithm is governed by trigono-
metric functions with a simple evolution rule as presented in Algorithm 1. Note that this
evolution strategy takes the probability of 50% to evolve with sine or cosine trigonometric
function (see r1 parameter). In addition, r2 controls the effect of the iteration counter
in the modification of the population by presenting a linear decreasing rule; r3 allows
the evaluation of the sine or cosine function in all the points of the unitary circle, and r4
introduces the importance of the best current individual in the evolution of the individual
Nt

i to generate the next population.

3.5. Stopping Criterion

To finalize the searching procedure of the discrete version of the SCA, one of the
following two conditions must be satisfied.

X If the total iterations tmax are reached, the SCA ends its iterative search and reports
the best solution in the current population, i.e., Ntmax

best .
X If during kmax consecutive iterations the objective function does not improve, the itera-

tive search of the SCA ends, and the best solution in the current population is reported,
i.e., Nt

best .

3.6. Proposed Master–Slave Optimization Algorithm

The proposed master–slave optimization strategy to solve the problem of the optimal
location and sizing of DGs in AC distribution networks based on the hybridization of the
discrete version of the sine–cosine algorithm and the SOCP reformulation is summarized
in Algorithm 2.
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Algorithm 1: Evolution steps in the sine–cosine algorithm (SCA).
Result: Evolution of the Individuals in the Population
i = 1;
while i ≤ M do

r1 = rand, r2 = 1− 1
tmax

;
r3 = 2πrand, r4 = rand;
if r1 ≤ 1

2 then
Yi = Nt

i + r2 sin(r3)
∣∣r4Nt

best − Nt
i

∣∣;
else

Yi = Nt
i + r2 cos(r3)

∣∣r4Nt
best − Nt

i

∣∣;
end
for j = 1 : NDGs do

if
(
Yij < 2 || Yij > n

)
then

Yij = round(2 + rand(1)(n− 2));
end
if
(
Yij < 2 || Yij > n

)
then

Yij = round(2 + rand(1)(n− 2));
end
Evaluate the objective function value for the potential individual, i.e., ploss(Yi);

end
if ploss(Yi) < ploss

(
Nt

i
)

then
Nt+1

i = Yi;
end

end

Algorithm 2: Proposed master–slave optimization approach.
Result: Optimal location and sizing of DGs
Define the AC grid parameters;
Define tmax, kmax, M and make t = 0 and k = 0;
while t ≤ tmax do

if t = 1 then
Create the initial population, i.e., Nt;
Evaluate the fitness function of each individual, i.e., ploss

(
Nt

i
)
;

Select the best current solution individual, i.e., Nt
best;

end
while i ≤ M do

Apply the evolution strategy defined in Algorithm 1 to update the current population, i.e., to obtain Nt+1
i ;

end
if Nt

best = Nt+1
best then

k = k+1;
else

k = 0;
end
if t ≥ tmax || k ≥ kmax then

Report the best solution of the current population, i.e., Nt
best and solves the SOCP for it to determine the

optimal sizes of the DGs.
end

end

Remark 5. Since the proposed hybrid SCA-SCOP depends on a metahueristic search in the master
stage, statistical evaluation is required to determine its efficiency regarding the optimal solution
finding capabilities. Here, we adopt 100 consecutive evaluations to the determine the general
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distribution of the solution findings by using maximum, minimum, mean and standard deviation
indicators [21].

4. Test Feeders

The computational validation of the proposed master–slave hybrid optimization
algorithm to the optimal location and sizing of DGs in AC distribution is made in two
classical distribution networks tests: 33 and 69 nodes. These grids works 12.66 kV at
substation. The electrical connection between nodes in these test feeders are presented in
Figures 3 and 4, respectively, while its parametric information can be consulted in [12]. It is
worth mentioning that these test feeders are considered urban distribution networks that
fed industrial users modeled as constant power consumption [8].

slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

Figure 3. Electrical connection of nodes in the 33 node test feeder.

slack

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51

52

66

67

68

69

28 29 30 31 32 33 34 35

Figure 4. Electrical connection of nodes in the 69 node test feeder.

For both test feeders we consider as recommended in [21] the possibility of locating
three distributed generators which will be sized at the peak load condition, we considered
the voltage and power base values of 12.66 kV and 1000 kW, respectively. In addition,
for the 33-node test feeder each DG was limited from 300 kW to 1200 kW, while for the
69-node test feeder these bounds were relaxed from 0 kW to 2000 kW, respectively.

5. Computational Validation

This section presents the computational validation of the proposed hybrid optimization
approach based on the discrete version of the sine–cosine algorithm and the second-order
cone programming model to deal with the problem of the optimal placement and sizing of
distributed generators in AC distribution networks. We implement the proposed solution
methodology on a personal computer AMD Ryzen 7 3700U, 2.3 GHz, 16 GB RAM with 64-bits
Windows 10 Home Single Language using the MATLAB programming environment.

To compare the proposed hybrid optimization algorithm regarding objective function
performance, we selected multiple metaheuristic optimization techniques reported in
literature. These methodologies have been listed in Table 1. In the implementation of the
proposed DSCA-SOCP approach, we have considered 50 iterations and a population of four
individuals; in addition, 100 consecutive evaluations are made to validate the efficiency of
the algorithm to reach the optimal solution and calculate the average processing time. Note
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that these parameters were found after multiple simulations that have allowed to identify
an adequate trade-off between simulation times and the quality of the final solution.

5.1. Numerical Validation Considering Unity Power Factor
5.1.1. Results in the 33-Node Test Feeder

Table 2 reports the optimal placement and sizing of the distributed generators located
in the 33-node test feeder after applying the proposed hybrid DSCA-SOCP (see last row) as
well as the comparison with the literature reports.

Table 2. Optimal location and sizing of DGs in the 33-node test feeder for the proposed and compara-
tive approaches.

Method ploss (kW) Location Node Size (MW)

GA-PSO 103.3600 {11,16,32} {0.9250,0.8630,1.2000}
LSFSA 82.0525 {6,18,30} {1.1124,0.4874,0.8679}
MINLP 72.7862 {13,24,30} {0.8000,1.0900,1.0500}
TLBO 75.5400 {10,24,31} {0.8246,1.0311,0.8862}

QOTLBO 74.1008 {12,24,29} {0.8808,1.0592,1.0714}
HSA-PABC 72.8129 {14,24,30} {0.7550,1.0730,1.0680}

GA-IWD 110.5100 {11,16,32} {1.2214,0.6833,1.2135}
AHA 72.8340 {13,24,30} {0.7920,1.0680,1.0270}
KHA 75.4116 {13,25,30} {0.8107,0.8368,0.8410}
MSSA 72.7854 {13,24,30} {0.8010,1.0910,1.0530}

CHVSA 78.4534 {6,14,31} {1.1846,0.6468,0.6881}
CBGA-VSA 72.7853 {13,24,30} {0.8018,1.0913,1.0536}

GAMS 72.8129 {14,24,30} {0.7550,1.0730,1.0680}

DSCA-SOCP 72.7853 {13,24,30} {0.8018,1.0913,1.0536}

The results in Table 2 illustrate that:

• There are three methods that finds the best optimal solution for the 33-node test feeder
which are the MSSA, the CBGA-VSA and the DSCA-SOCP, which find a final power
losses of about 72.7853 kW by installing DGs in nodes 13, 24 and 30 with power
generations of 801.8 kW, 1091.3 kW and 1053.6 kW, respectively.

• The maximum reduction of the power loss is achieved by the aforementioned three
methods (including our proposal) with a total reduction of about 65.50% regarding the
base case, i.e., 210.9876 kW, while the worst approach corresponds to the GA-IWD with
a reduction of about 47.62%. These results imply that all the remainder literature meth-
ods (see Table 1) have found solutions contained between these extreme solutions.

• The best solutions show that the best nodes to locate DGs are 13, 24 and 30; however,
the second-best solution reported in this table is found when node 13 is changed by
node 14 as reported by the GAMS and HSA-PABC algorithms with a small variation
regarding final power losses of about 27.60 W.

It is worth mentioning that the results in Table 2 show that some methods identify
the best optimal nodes for optimal locating DGs (see the AHA and the MINLP methods),
however, due to the non-convexities in the dimensioning stage, i.e., optimal power flow,
these methods present sub-optimal solutions since the nonlinear search approach (in some
cases continuous metaheuristics) is stuck in local optimums. This situation does not occur
at least with our proposal since each potential location for generators is optimally solved
via SOCP which guarantees the optimal finding based on its convex structure. This implies
that if we evaluate the same combination of nodes multiple times the optimal sizes of the
DGs will be equal for each one of the evaluations (optimal solution), which confirms the
efficiency of the convex optimization, i.e., SOCP, in power systems analysis.
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5.1.2. Results in the 69-Node Test Feeder

The numerical behavior of the proposed DSCA-SOCP method for the 69-node test feeder
is reported in Table 3 (see last row), where it is compared with multiple literature reports.

Table 3. Optimal location and sizing of DGs in the 69-node test feeder for the proposed and compara-
tive approaches.

Method ploss (kW) Location Node Size (MW)

GA-PSO 84.5909 {21,61,63} {0.9105,1.1926,0.8849}
LSFSA 72.1120 {18,60,65} {0.4204,1.3311,0.4298}
MINLP 69.4090 {11,17,61} {0.5300,0.3800,1.7200}
TLBO 72.4157 {15,61,63} {0.5919,0.8188,0.9003}

QOTLBO 71.6345 {18,61,63} {0.5334,1.1986,0.5672}
HTLBOGWO 71.7281 {18,61,62} {0.5330,1.0000,0.7730}

GA-IWD 80.9100 {20,61,64} {0.9115,1.3926,0.8059}
AHA 69.6669 {12,21,61} {0.4710,0.3120,1.6890}
KHA 69.5730 {12,22,61} {0.4962,0.3113,1.7354}
MSSA 69.4077 {11,18,61} {0.5260,0.3800,1.7180}

CHVSA 69.4088 {11,17,61} {0.5284,0.3794,1.7186}
GAMS 72.7900 {12,61,64} {0.8131,1.4447,0.2896}

CBGA-VSA 69.4077 {11,18,61} {0.5268,0.3801,1.7190}

DSCA-SOCP 69.4077 {11,18,61} {0.5268,0.3801,1.7190}

The numerical values in Table 3 help conclude that:

X The same three methods found in the 33-node test feeder has global optimization
capabilities, i.e., the MSSA, the CBGA-VSA and the proposed DSCA-SOCP, since
these reach the best solution for the 69-node test feeder with a final power loss of
69.4077 kW by installing the DGs in nodes 11, 18 and 61 with power injections of
526.80 kW, 380.10 kW, and 1719.00 kW, respectively.

X Some near optimal solutions are found with other approaches such as MINLP, AHA,
KHA and CHVSA since all of them provide solutions lower than 70 kW in the final
power losses. However, these methods are stuck in local optimums since, in the case
of the MINLP and the CHVSA approach, the node 18 (in the global optimal solution)
was changed for the node 17. In addition, the AHA and KHA methods identify nodes
12, 21(22) and 61 as the best possible generators location, which also implies that in
the solution of the discrete problem (i.e., master optimization stage), these are also
stuck in local optimums.

X Regarding the total improvement of the power losses, we can observe that the proposed
method allows reaching a total power loss reduction of about 69.15% (the same result for
the MSSA and the CBGA-VSA methods), while the worst behavior regarding power losses
minimization occurs for the GA-PSO with 62.40%. These extremes imply that all the other
solutions are contained on this interval with a bandwidth of about 6.75%.

5.1.3. Additional Comments

For both test feeders it is important to mention that: (i) the proposed optimization
method reaches the solution of the optimal problem of placement and sizing of DGs in AC
distribution networks in the 33-node test feeder after 350 s of simulation, and in the case
of the 69-node test feeder, this processing time was about 580 s; (ii) after 100 consecutive
evaluations in both test feeders, the proposed DSCA-SOCP approach finds with the 30%
of effectiveness in the 33-node test feeder and 20% in the case of the 69-node test system;
and (iii) the differences between the best and the worst solution in both test feeders are
about 2 kW, which implies that most of these solutions are indeed better than the current
literature solutions presented in Tables 2 and 3.

Regarding voltage profiles, it is important to highlight that the minimum voltage
regulation in the 33-node test feeder is 9.62% and in the 69-node test feeder is about 9.08%
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previous to the optimal location of the DGs; however, after solving the MISOCP model
with the proposed DSCA-SOCP approach, these regulations have improved until 3.13%
and 2.10 % (note that the best possible regulation in a distribution is 0%, which implies that
percentages close to zero are high-quality solutions). These results confirm the effectiveness
of including DGs in AC distribution networks for improving voltage profiles since these
are close to 1.00 pu in contrast to the base case.

It is worth motioning that, numerically speaking, the proposed DSCA-SOCP is equiv-
alent to the CBGA-VSA approach reported in [21]; however, note that the main difference
between both methods is associated with the continuous part of the MINLP model, i.e., the
sizing of the DGs, since our approach solves these using an exact optimization method
based on convex optimization, which implies that the sizes of the DGs are optimal; never-
theless, in the case of the VSA approach, this optimal property cannot be ensured due to
the heuristic nature of this algorithm.

5.2. Numerical Validation Considering Variable Power Factor

To verify the effectiveness of the proposed hybrid DSCA-SOCP approach to determine
the optimal location and sizing of DGs in radial distribution networks, here we consider
the possibility of installing from 1 to 3 DGs, leaving free the total amount of reactive power
injection as recommended in [9]. Tables 4 and 5 present the optimal solutions reported
in literature for the improved analytical (IA) method, the particle swarm optimization
(PSO) and the exact MINLP approach, all of which have been reported in [9] for the 33-
and 69-node test feeders.

Table 4. Optimal location and sizing of the DGs considering variable power factor capabilities in the 33-node test feeder.

Method Nodes Active Power (MW) Reactive Power (MVAr) ploss (kW)

IA 6 {2.6370} {1.6340} 68.1570
MINLP 6 {2.5580} {1.7610} 67.8540

PSO 6 {2.5570} {1.7460} 67.8570

DSCA-SOCP 6 {2.5585} {1.7614} 67.8560

IA {6, 30} {1.8000, 0.9000} {1.1150, 0.5570} 44.8400
MINLP {13, 30} {0.8190, 1.5500} {0.4340, 1.2400} 29.3100

PSO {12, 29} {0.8180, 1.6990} {0.5660, 1.1910} 39.1000

DSCA-SOCP {13, 30} {0.8457, 1.1377} {0.3988, 1.0643} 28.5040

IA {6, 14, 30} {0.9000, 0.6300, 0.9000} {0.5570, 0.3900, 0.5570} 23.0500
MINLP {13, 24, 30} {0.7660, 1.0440, 1.1460} {0.4110, 0.5520, 0.8590} 12.7400

PSO {13, 24, 30} {0.7640, 1.0680, 1.0160} {0.5350, 0.6130, 0.6910} 15.0000

DSCA-SOCP {13, 24, 30} {0.7940, 1.0700, 1.0297} {0.3734, 0.5172, 1.0115} 11.7400

Table 5. Optimal location and sizing of the DGs considering variable power factor capabilities in the 33-node test feeder.

Method Nodes Active Power (MW) Reactive Power (MVAr) ploss (kW)

IA 61 {1.8390} {1.2840} 23.2480
MINLP 61 {1.8280} {1.3000} 23.3150

PSO 61 {1.8180} {1.2500} 23.2480

DSCA-SOCP 61 {1.8285} {1.3006} 23.1460

IA {17, 61} {0.5400, 1.7990} {0.3770, 1.2563} 7.4564
MINLP {17, 61} {0.5220, 1.7350} {0.3590, 1.2380} 7.2086

PSO {17, 61} {0.5240, 1.7430} {0.3710, 1.1840} 7.4564

DSCA-SOCP {17, 61} {0.5221, 1.7347} {0.3532, 1.2385} 7.2013

IA {17, 50, 61} {0.6300, 0.9000, 0.9000} {0.3900, 0.5570, 0.5570} 5.0911
MINLP {11, 17, 61} {0.4940, 0.3790, 1.6740} {0.43540, 0.2570, 1.1950} 4.2801

PSO {18, 50, 61} {0.5078, 0.6996, 1.7351} {0.3440, 0.4740, 1.1580} 5.01911

DSCA-SOCP {11, 17, 61} {0.4944, 0.3790, 1.6744} {0.3534, 0.2515, 1.1955} 4.2682
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From results in Tables 4 and 5 it is possible to observe that:

X The exact MINLP approach and the proposed DSCA-SOCP approach identify the
same subset of nodes to locate DGs for all the simulation cases in the 33- and 69-node
test feeders.

X The inclusion of the reactive power capability of the DGs significantly improves the
total power losses minimization regarding the unity power factor case. For example,
for the case of three distributed generators, the total power loss passes from 72.7853 kW
to 11.7400 kW; while for the 69-nodes, this change is from 69.4077 kW to 4.2682 kW.

X The solution with only one generator in the 33- and 69-node test feeders shows that
the inclusion of reactive power improves the total active power losses in both systems,
when three DGs are located considering unity power factor. This situation can be
attributed to the positive effects of the moderated reactive power injections in the
voltage profile behavior of the grid [10].

It is worth mentioning that the proposed DSCA-SOCP approach allows to reach the
best optimal solutions compared to the comparative methods even if the location of the
generators is the same as can be seen in Tables 4 and 5, since this hybrid approach ensures
the optimal solution finding of the OPF problem associated with the sizing of the DGs by
using a SOCP formulation, which is not the case with the PSO and IA algorithms. However,
in the case of the MINLP approach, we can observe that the results presented by this
method in the 33- and 69-node test feeders are comparable with the proposed DSCA-SOCP
approach, and the difference in some decimals can be attributed to precision errors between
both methodologies.

To verify that under the peak load condition all the voltage profiles in both test feeders
fulfill their bounds, these are depicted in Figure 5. In this picture it is possible to observe
that, in the case of the of the 33-node test feeder (see Figure 5a), when the distributed
generation with reactive power capabilities is installed in the network, all the voltages
increase and overpass 0.95 pu, which implies that the voltage regulation in this network
is about 4.20% with one and two DGs and less than 1.00% in the case of the three DGs.
In the case of the 69-bus test feeder (see Figure 5b), when distributed generators are located
considered reactive power injections, we can observe that for one DG the regulation of the
grid is about 2.00% caused by voltage drops in nodes 66 to 69, while for the two and three
DGs the voltage regulation is lower than 1.00%.

It is worth mentioning that for both test feeders, when two or three DGs are used, all
the voltage profile are very close to the substation voltage, which causes the line voltage
drops to be very small, producing low power losses as can be observed in Tables 4 and 5.

5.3. Optimal Location of Renewable Energy Sources

To observe the effectiveness and robustness of the proposed approach to deal with
renewable energy resources and variable load profiles, here, we study the problem of the
optimal location of renewable energy resources in radial distribution networks. To do so,
we consider that in the 69-node test feeder the possibility of installing three photovoltaic
distributed generators considering a daily generation and load curves. These curves are
depicted in Figure 6.

In this simulation scenario, the proposed DSCA-SOCP is compared with the large-
scale nonlinear optimization package widely known as GAMS and the MINLP solves
BONMIN, COUENNE and DICOPT. The results of this comparison is reported in Table 6.
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Figure 5. Voltage profile behavior in the 33- and 69-node test feeders when DGs with active and reactive power capabilities
are installed: (a) 33-bus test feeder and (b) 69-bus test feeder.
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Figure 6. Daily behavior of the demand and solar photovoltaic generation.

Table 6. Optimal location and sizing of the DGs considering variable power factor capabilities in the
33-node test feeder.

Method Nodes Active Power (MW) Eloss (kWh/day)

Base case — — 2666.2860
GAMS-BONMIN {27, 61, 64} {0.4366, 1.6744, 0.3253} 2046.0656

GAMS-COUENNE {12, 18, 61} {0.4990, 0.3808, 1.9254} 2030.5272
GAMS-DICOPT {11, 17, 64} {0.6900, 0.4194, 1.6626} 2074.0086

DSCA-SOCP {11, 18, 61} {0.5384, 0.4200, 1.8818} 1747.1748

The results in Table 6 demonstrate that: (i) with the location of three photovoltaic
sources the proposed approach, i.e., the DSCA-SOCP approach, reduces the daily energy
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loss per day to about 919.1112 kWh/day, i.e., 34.47%; while the best GAMS approach
using the COUENNE solver finds a reduction of 23.84%. These solutions demonstrate that
the MINLP solvers in GAMS are stuck in local optimal solution in comparison with the
optimal solution found by the DSCA-SOCP and (ii) in all the solutions reported in Table 6
nodes higher than 60 show the high power injection regarding photovoltaic penetration,
and it can be observed that these nodes are more sensitive to active power injections when
compared with the remainder of buses.

6. Conclusions and Future Works

The problem of the optimal location and sizing of DGs in AC distribution networks
was explored in this research from the point of view of the hybrid optimization by propos-
ing a master–slave optimization algorithm. The original MINLP model was rewritten as a
MISOCP problem, where the master stage was entrusted with determining the optimal
location of the DGS (i.e., discrete optimization problem), while the slave stage is entrusted
with solving the sizing problem, i.e., the optimal power flow problem. The master stage
was addressed with a new formulation of the sine–cosine algorithm in its discrete form,
while the slave stage was formulated as a SOCP problem. The main advantage of using
convex optimization for the optimal sizing of the DGs is that this approach guarantees
global optimal solution for each nodal combination provided in the master stage.

Numerical simulations demonstrate that the proposed hybrid DSCA-SOCP approach
allowed reaching the global optimal solution for both test feeders, which implies power loss
reductions to about 65.50% and 69.15% for the 33- and 69-node test feeders, respectively.
It was possible to establish that those solutions are indeed the global optimal ones for the
test feeders considered since an exhaustive approach was made, i.e., the evaluation of the
complete solution space: this has been demonstrated.

Evaluations considering active and reactive power in the distributed generation for
both test feeders demonstrates that apparent power injections improve the grid perfor-
mance by reducing grid power losses more than 90% for two or three distributed generators,
with voltage regulation lower than 1.00% in the case of installing three distributed gener-
ators. In addition, the possibility of installing photovoltaic generation considering daily
production and demand curves was tested in the 69-bus test feeder for the DSCA-SOCP
approach and MINLP solvers available in GAMS, where it was observed that the proposed
approach allows reducing daily energy losses by about 34.47%, while GAMS solvers are
stuck in local optimal solutions with reductions lower than 25%, which demonstrates the
efficiency of the proposed optimization for installing renewable energy resources in AC
distribution networks.

Regarding processing times, both test feeders have been solved using less than 600 s.
The time consumed for our approach illustrates the efficiency to solve the complex MINLP
formulation by using an MISOCP equivalent with capabilities of optimal finding after
100 consecutive evaluations.

Lastly, the following researches can be derived from this proposal: (i) the applica-
tion of the proposed MISOCP model to the problem of voltage stability improvement in
distribution networks by including renewable distribution generation; (ii) the solution of
the MISOCP model with branch and bound methods to guarantee the global optimum
finding without requiring consecutive evaluations and statistical tests; and (iii) to propose
a MISOCP formulation for the problem of the optimal location and selection of battery
energy storage systems and distributed generators in AC distribution networks, including
devices’ costs during the planning horizon.
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