Arias, FabiánBorja, JersonRubio, Luis2023-07-212023-07-2120192023Arias, F., Borja, J., & Rubio, L. (2018). Counting integers representable as images of polynomials modulo $ n$. arXiv preprint arXiv:1812.11599.https://hdl.handle.net/20.500.12585/12340Given a polynomial f(x1,x2,…,xt) in t variables with integer coefficients and a positive integer n, let α(n) be the number of integers 0 ≤ a < n such that the polynomialcongruencef(x1,x2,…,xt) ≡ a(modn)issolvable. Wedescribeamethod that allows us to determine the function α associated with polynomials of the form c1xk1+c2xk2+···+ctxkt. Then, we apply this method to polynomials that involve sums and differences of squares, mainly to the polynomials x2 +y2, x2 −y2, and x2 +y2 +z2. © 2019, University of Waterloo. All rights reserved.15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/Counting integers representable as images of polynomials modulo nhttps://cs.uwaterloo.ca/journals/JIS/info:eu-repo/semantics/articleDiophantine Equation;Number;Linear Forms in Logarithmsinfo:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 InternacionalUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarLEMB