Muentes Acevedo, Jeovanny de JesusRomaña Ibarra, SergioArias Cantillo, Raibel2024-02-122024-02-122023-12-102024-02-12Acevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5https://hdl.handle.net/20.500.12585/12632Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).14 páginasapplication/httpenghttp://creativecommons.org/publicdomain/zero/1.0/Density of the level sets of the metric mean dimension for homeomorphismsinfo:eu-repo/semantics/articlehttps://doi.org/10.1007/s10884-023-10344-5Mean dimensionMetric mean dimensionTopological entropyGenericityinfo:eu-repo/semantics/openAccessCC0 1.0 UniversalUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarLEMB