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Abstract. Accurate endothelial cell density with specular microscopy is essential for correct
clinical assessment of the cornea. Commercial specular microscopes incorporate automated cell
segmentation methods to estimate cell density. However, these methods are prone to false cell
detections in pathological corneas. This project aims to obtain a reliable automated cell density
from specular microscopy images of both healthy and pathological corneas with convolutional
neural networks. Convolutional neural networks require labeled datasets. Thus, we developed
custom software for producing a curated dataset of labeled ground-truth images and cell density
maps. In this paper, we implemented a fully convolutional regression network to predict the
cell density map from the input microscopy image. Encouraging preliminary results show the
potential of the method. This approach may pave the way for dealing with the variability of
corneal endothelial cell images.

1. Introduction
Automated cell density (CD) estimation in in-vivo specular microscopy images is a challenging
task [1], especially in situations where conventional single-cell segmentation methods fail due
to pathological conditions that affect the cornea, like in the case of cornea guttata [2]. The
specular microscope is used to assess the corneal endothelial cells (CEC) of a patient’s cornea.
The microscope software automatically obtains the cell segmentation, the cell numbers, and the
cell sizes. Often, inaccurate segmentations are obtained, especially in pathological corneas [3],
as the one shown in Figure 1(a). The automatic segmentation can usually be modified with
editing tools in the microscope, for instance, to draw or remove cells. However, removing
erroneous detections may lead to over- or under-estimation of cell parameters, such as CD, cell
size, among others.
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The goal of this project is to obtain reliable automated CD and morphological values from
specular microscopy images of both healthy and pathological corneas with a supervised learning
algorithm [4]. These algorithms require labeled datasets that are difficult to obtain in these
scenarios. For this reason, we developed custom software that allows the examiner to manually
modify the endothelial cell segmentation of images obtained with a Topcon SP-3000P specular
microscope to obtain a curated database of images. In this paper, we show preliminary results of
the ground-truth dataset generation and a prototype implementation using a fully convolutional
regression network (FCRN) [5] with CEC images from porcine eyes [6].

(a) (b)

Figure 1. (a) Original automatic segmenta-
tion of a pathological cornea obtained from
the specular microscope software. The red
arrows indicate regions of inaccurate cell seg-
mentation. (b) The ophthalmologist selected
the pathological regions shown in black with
the developed software.

1.1. Background
The problem of automated CD estimation in specular microscopy has been studied using
different methods. For instance, Ruggeri, et al., [1] proposed to use a 2D discrete Fourier
transform (DFT) technique to obtain the spatial frequency of CEC images to obtain an
estimation of the CD. Alternatively, other works are based on cell segmentation and morphology
analysis [2, 7–12]. Several authors analyze both cell morphology and guttae morphology in
corneas with pathologies [2,12]. These methods must detect precisely the cell contour to generate
a proper segmentation. However, they can fail in the pathological corneas, where the images
typically have low quality.

More recently, several authors have begun using convolutional neural networks (CNNs) for
the cell counting task. In reference [12], the authors assess the performance of U-Net (a
neural network for biomedical image segmentation) in healthy and pathological CEC images with
different image qualities. In references [5,13], the authors used two fully convolutional regression
networks (FCRNs) to regress a cell spatial density map in microscopy images, where the integral
on a region of interest (ROI) results in the number of cells in that region. In other words, the cell
counting problem is cast as a supervised learning problem that tries to learn a mapping between
an image I(x) and a density map D(x), denoted as F : I(x) → D(x)(I ∈ Rm×n,D∈Rm×n

) for
a m × n pixel image. This approach has been used for counting objects [14], such as cells in
microscopy images [5] or people in surveillance videos of crowded scenes [15]. Here we adopt the
same approach.

2. Method
The objective is to create a curated database of CEC images for developing an automated cell
counting system based on CNNs. The considered approach [5] requires the generation of cell
density maps from ground-truth data. We used a Topcon SP-3000P specular microscope. Its
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software exports a two-channel tagged image file format (TIFF) file that contains the CEC
image and the calculated segmentation. An expert ophthalmologist used the developed software
called segmentation corrector to import the TIFF file and make the necessary corrections to
the segmentation to obtain real data for a correct assessment of the patient’s cornea. In the
following, we explain the segmentation correction stage and the generation of cell density maps.

2.1. Segmentation correction
We implemented our software using the Python-based Tkinter library to design the GUI shown
in Figure 2. This software features several tools to modify the segmentation manually. When
the segmentation is modified, the user can see the recalculated parameters and save the new
segmentation.

The two-channel TIFF file contains the CEC image, shown at the right side of the GUI,
and the automatic segmentation from the specular microscope overlayed on top of the CEC
image. This feature allows for easy visualization of necessary modifications in the segmentation.
The software contains four tools: to draw borders to include important information in the
segmentation, to delete the border between two regions, and also to select a region that
corresponds to guttae or cell. The tools were implemented using morphological operations.
After each modification, the software recalculates areas, number of cells, number of guttae, cell
density, guttae density, and area ratio for cells and guttae. The new segmentation can be saved
as a new TIFF image of three channels. In Figure 1(a), we show an example of an image before
being processed. The red arrows indicate regions of inaccurate cell segmentation. In Figure 1(b),
several regions were marked as guttae.

Figure 2. Graphical user interface (GUI) of the segmentation corrector
software.

2.2. Density map generation
The training and testing density maps images were generated using the corrected segmentations
and the corresponding CEC images. For this task, the segmentation must be a binary image,
and each cell is processed individually, as shown in Figure 3(a). The cell orientation is obtained
from the region bounding box, as shown in Figure 3(b). The probability density function is
created from a Gaussian function that matched the analyzed cell normalized to sum to 1, as
shown in Figure 3(c). The Gaussian function is given by Equation (1).
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f(x, y) = A exp{−(a(x− xo)2 + 2b(x− xo)(y − yo) + c(y − yo)2))} ,

a =
cos2θ

2σ2X
+
sin2θ

2σ2Y
, b = −sin2θ

4σ2X
+
sin2θ

4σ2Y
, c =

sin2θ

2σ2X
+
cos2θ

2σ2Y
, (1)

where A is a normalization constant, x and y are the coordinates of each pixel, xo and yo are
the origin coordinates, θ is the Gaussian orientation, and σX and σY are the dimensions of the
Gaussian function.

(a) (b) (c)

Figure 3. (a) A binary region corresponding to a cell. (b) Orientation obtained from
the bounding box. (c) the Gaussian probability density function used to represent the
cell in a cell density map.

3. Experiments and results

3.1. Image corpus and data curation
The software segmentation corrector was used by two expert ophthalmologists to obtain real
data from images of corneas with pathologies. In Figure 1 is shown an example of segmentation
correction, the calculated data before and after the image been corrected are shown in Table 1,
where we can see there was an overestimation of initial cell density and number of cells. The
software also shows additional information, like the number of guttae, guttae size and guttae
density, which can be used by the ophthalmologist to value the health of the patient’s cornea.

Table 1. Calculated data from the segmentation before
and after been corrected.

Original Corrected
Number of cells 119.0 110.00
Average cell size (µm) 535.9 579.72
Cell density (cells/mm2) 1866.1 1724.97
Number of guttae - 9.00
Average guttae size (µm) - 1793.66
Guttae density (guttae/mm2) - 141.13

3.2. Fully convolutional regression networks implementation
To validate if the method is efficient in corneal endothelial cell images, we implemented a FCRN
architecture based on one of the proposed in reference [5]. We have implemented this neural
network using the Python-based Keras library with a Tensor flow backend [16]. We used the
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dataset from reference [6] to generate the training and testing images. It contains CEC images
acquired from porcine eyes. Figure 4 shows one of the results obtained by the implementation
of the FCRNs. Figure 4(a) is the CEC image; Figure 4(b) shows the ground-truth density map,
where the integral over the image is 29.9979; and Figure 4(c) is the predicted density map using
the FCRN, where we obtained a result of 30.4864. A negligible difference between predicted
and ground-truth data of 0.4885 confirms the validity of the proposed approach. Nevertheless,
further validation is needed.

(a) (b) (c)

Figure 4. FCRNs implementation. (a) Corneal endothelial cell image. (b) Density map
(ground truth), integral: 29.9979. (c) Predicted density map by the FCRNs, integral:
30.4864

4. Conclusions
Reliable endothelial cell counting is difficult due to the inherent variability in corneas, both
healthy and pathological. Machine learning methods, like CNNs, provide a means to learn from
annotated data and output accurate results. To this end, we implemented custom software to
annotate corneal endothelial cell images to train a FCRN. The preliminary results show that
the proposed method may yield accurate results without requiring cell segmentation, which is
especially challenging in pathological corneas. The software annotation also produced additional
clinical data like guttae size and density that could be used in future clinical studies.
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