Documents Montoya, O.D.a , Garrido, V.M.a , Gil-Gonzalez, W.b , Orozco-Henao, C.c Passivity-based control applied of a reaction wheel pendulum: An IDA-PBC approach (2019) 2019 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2019, art. no. 9057105, . DOI: 10.1109/ROPEC48299.2019.9057105 a Universidad Tecnológica de Bolívar, Programa de Ingeniería Electrica, Cartagena, Colombia b Universidad Tecnológica de Pereira, Programa de Ingeniería Electrica, Pereira, Colombia c Universidad Del Norte, Programa de Ingeniería Electrica, Barranquilla, Colombia Abstract This paper presents the development of a nonlinear controller for the reaction wheel pendulum (RWP) via an interconnection and damping assignment passivity-based control (IDA-PBC) approach. The IDA-PBC approach works with the port-Hamiltonian open-loop dynamics of the RWP to propose a nonlinear controller that preserves the Hamiltonian structure in closed-loop by guaranteeing stability properties in the sense of Lyapunov. Numerical results confirm the theoretical development presented throughout simulations in Simulink package from MATLAB. Comparison with a Lyapunov-based approach is also provided. © 2019 IEEE. Index Keywords Hamiltonians, MATLAB, Pendulums, Stability, Wheels; Hamiltonian structures, Interconnection and damping assignment, Non-linear controllers, Open loop dynamics, Passivity based control, Reaction wheel pendulum, Stability properties, Theoretical development; Controllers References Ryalat, M., Laila, D.S. A simplified IDA-PBC design for underactuated mechanical systems with applications (2016) European Journal of Control, 27, pp. 1-16. Moon, U.-C., Lee, Y., Lee, K.Y. Practical dynamic matrix control for thermal power plant coordinated control (2018) Control Eng. Pract., 71, pp. 154-163. Shajahan, M.M., Jamal, D.N., Aparna, V., Khan, M.A. Control of electric power generation of thermal power plant in TamilNadu (2018) Case Studies in Thermal Engineering, 12, pp. 728-735. Wai, R., Lee, J. Adaptive fuzzy-neural-network control for maglev transportation system (2008) IEEE Trans. Neural Netw., 19 (1), pp. 54-70. Jan Liang, X., Fang, Y., Sun, N., Lin, H. Nonlinear hierarchical control for unmanned quadrotor transportation systems (2018) IEEE Trans. Ind. Electron., 65 (4), pp. 3395-3405. April Gil-Gonźalez, W., Garces, A., Escobar, A. Passivity-based control and stability analysis for hydro-turbine governing systems (2019) Appl. Math. Modell., 68, pp. 471-486. Salim, R., Mansouri, A., Bendiabdellah, A., Chekroun, S., Touam, M. Sensorless passivity based control for induction motor via an adaptive observer (2019) ISA Transactions, 84, pp. 118-127. Murdock, D.D., Taylor, D.G. Balancing a reaction wheel pendulum with PM synchronous motor actuation (2014) IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 96-102. Oct Gil-Gonźalez, W., Montoya, O.D., Garces, A. Direct power control for vsc-hvdc systems: An application of the global tracking passivity-based pi approach (2019) Int. J. Electr. Power Energy Syst., 110, pp. 588-597. Spong, M.W., Corke, P., Lozano, R. Nonlinear control of the Reaction Wheel Pendulum (2001) Automatica, 37 (11), pp. 1845-1851. Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J. Advanced sliding mode control techniques for Inverted Pendulum: Modelling and simulation (2018) Engineering Science and Technology, An International Journal, 21 (4), pp. 753-759. Hichri, B., Fauroux, J.-C., Adouane, L., Doroftei, I., Mezouar, Y. Design of cooperative mobile robots for co-manipulation and transportation tasks (2019) Rob. Comput. Integr. Manuf., 57, pp. 412-421. Montoya, O.D., Gil-Gonźalez, W. Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov- based approach (2019) Engineering Science and Technology, An International Journal, Montoya, O.D., Raḿirez, C.A., Grisales, L.F. Global control of reaction wheel pendulum using artificial neural networks and extended linearization (2017) Scientia et Technica, 22 (20), pp. 130-140. jun Block, D.J., Ström K.J.A.., Spong, M.W. The reaction wheel pendulum (2007) Synthesis Lectures on Control and Mechatronics, 1 (1), pp. 1-105. Montoya, O.D., Grisales-Norena, L.F., Correa-Raḿirez, V.D., Giraldo-Buitrago, D. Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables (2014) Tecno Ĺogicas, 17 (32), pp. 33-46. Jun Srinivas, K., Behera, L. Swing-up control strategies for a reaction wheel pendulum (2008) Int. J. Syst. Sci., 39 (12), pp. 1165-1177. Correa-Raḿirez, V.D., Giraldo-Buitrago, D., Escobar-Mejía, A. Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme (2017) Tecno Ĺogicas, 20 (39), pp. 1-13. Aug Bapiraju, B., Srinivas, K.N., Kumar, P.P., Behera, L. On balancing control strategies for a reaction wheel pendulum (2004) Proceedings of the IEEE INDICON 2004. First India Annual Conference, pp. 199-204. Dec 2004 Fantoni, I., Lozano, R., Spong, M.W. Stabilization of the reaction wheel pendulum using an energy approach (2001) 2001 European Control Conference (ECC), pp. 2552-2557. Sep Valenzuela, J.G., Montoya, O.D., Giraldo-Buitrago, D. Local control of reaction wheel pendulum using fuzzy logic (2013) Scientia et Technica, 18 (4), pp. 623-632. Dec Gutíerrez-Oribio, D., Mercado-Uribe, A., Moreno, J.A., Fridman, L. Stabilization of the reaction wheel pendulum via a third order discontinuous integral sliding mode algorithm (2018) 2018 15th International Workshop on Variable Structure Systems (VSS), pp. 132-137. July Kundur, P. (2005) Power System Stability and Control, MCGRAW-HILL, Ed. McGraw-Hill Education-Europe Perko, L. (2013) Differential Equations and Dynamical Systems, ser, Texts in Applied Mathematics. Springer New York Lin, K.-J. Stabilization of uncertain fuzzy control systems via a new descriptor system approach (2012) Computers &Mathematics with Applications, 64 (5), pp. 1170-1178. El-Nagar, A.M., El-Bardini, M., El-Rabaie, N.M. Intelligent control for nonlinear inverted pendulum based on interval type- 2 fuzzy PD controller (2014) Alexandria Engineering Journal, 53 (1), pp. 23-32. 2-s2.0-85083549903 Document Type: Conference Paper Publication Stage: Final Source: Scopus Copyright © 2023 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.