Show simple item record

Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas

dc.contributor.authorGil González, Walter
dc.contributor.authorBocanegra González, Sara Yulieth
dc.contributor.authorSerra, Federico Martin
dc.contributor.authorBueno-Lopez, Maximiliano
dc.contributor.authorMagaldi, Guillermo Luciano
dc.date.accessioned2021-02-08T14:20:43Z
dc.date.available2021-02-08T14:20:43Z
dc.date.issued2020-12-17
dc.date.submitted2021-02-05
dc.identifier.citationGil Gonzalez, W., Bocanegra, S., Serra, F., Bueno-López, M., & Magaldi, G. (2020). Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas. Transactions on Energy Systems and Engineering Applications, 1(1), 33-47. https://doi.org/10.32397/tesea.vol1.n1.3spa
dc.identifier.issn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9937
dc.description.abstractThis paper addresses the problem of sinusoidal voltage generation in linear loads using a voltage source inverter (VSI). The port-Hamiltonian structure in open-loop is used to design a passivity-based controller with proportional-integral gains (PI-PBC) in order to develop the control strategy. The main advantage of using passivity-based controllers corresponds to the possibility of guaranteeing asymptotic stability by transforming the trajectory tracking problem into a regulation control one. In addition to the PI-PBC, a linear load estimator is employed based on an integral formulation to determine the value of the equivalent conductance in the load, which reduces the number of current sensors. Numerical validations demonstrate that the sinusoidal voltage provided by the VSI to the load has a tracking error lower than $1~\%$, with harmonic distortions lower than $2.6~\%$, both for voltage and currents in the load. All the simulations were conducted in MATLAB/Simulink using the SimPowerSystems library version 2017a.spa
dc.format.extent16 páginas
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleControl Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areasspa
dcterms.bibliographicCitationAbu-Rub, H., Malinowski, M., and Al-Haddad, K., editors (2014).Power Electronics for Renewable Energy Systems,Transportation and Industrial Applications. John Wiley & Sons, Ltd. doi:10.1002/9781118755525.spa
dcterms.bibliographicCitationAvila-Becerril, S. and Espinosa-Pérez, G. (2020). Control of islanded microgrids considering power converterdynamics. International Journal of Control, (just-accepted):1–19.spa
dcterms.bibliographicCitationBueno-Lopez, M. and Garzon Lemos, S. (2017). Electrification in non-interconnected areas: Towards a new vision ofrurality in colombia.IEEE Technology and Society Magazine, 36(4):73–79.spa
dcterms.bibliographicCitationBueno-López, M., Rodríguez-Sánchez, P., and Molinas, M. (2019). Sustainable model for rural electrification projectsin non-interconnected areas in colombia. In 2019 IEEE Global Humanitarian Technology Conference (GHTC), pages 1–6.spa
dcterms.bibliographicCitationCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., and Molinas, M. (2015). Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Control Engineering Practice, 43:109–119.spa
dcterms.bibliographicCitationEllabban, O., Abu-Rub, H., and Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospectsand their enabling technology.Renewable Sustainable Energy Rev., 39:748–764. doi:10.1016/j.rser.2014.07.113.spa
dcterms.bibliographicCitationFadali, M. S. and Visioli, A. (2013).Digital control engineering: analysis and design. Academic Press.Gil-González, W., Martin Serra, F., Montoya, O. D., Ramírez, C. A., and Orozco-Henao, C. (2020). Direct powercompensation in ac distribution networks with sces systems via pi-pbc approach.Symmetry, 12(4):666.spa
dcterms.bibliographicCitationHosseini, S. K., Mehrasa, M., Taheri, S., Rezanejad, M., Pouresmaeil, E., and Catalao, J. P. S. (2016). A controltechnique for operation of single-phase converters in stand-alone operating mode. In 2016 IEEE Electrical Power andEnergy Conference (EPEC). IEEE. doi:10.1109/epec.2016.7771739.spa
dcterms.bibliographicCitationIEC, I. (2004). 62040-3: Uninterruptible power systems (ups)-part 3: Method of specifying the performance and testrequirements. Switzerland: IEC.spa
dcterms.bibliographicCitationMartin Serra, F., Fernández, L., Montoya, O. D., Gil-González, W., and Hernández, J. (2020). Nonlinear Voltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method. Electronics,9:847.spa
dcterms.bibliographicCitationMontoya, O. D., Garces, A., Avila-Becerril, S., Espinosa-Pérez, G., and Serra, F. M. (2019). Stability Analysisof Single-Phase Low-Voltage AC Microgrids With Constant Power Terminals. IEEE Trans. Circuits Syst. II,66(7):1212–1216.spa
dcterms.bibliographicCitationMontoya, O. D., Gil-González, W., Avila-Becerril, S., Garces, A., and Espinosa-Pérez, G. (2019a). Integración de REDs en Redes AC: una Familia de Controladores Basados en Pasividad. Revista Iberoamericana de Automática e Informática industrial, 16(2):212. doi:10.4995/riai.2018.10666.spa
dcterms.bibliographicCitationMontoya, O. D., Gil-González, W., and Garces, A. (2019b). Distributed energy resources integration in single-phasemicrogrids: An application of IDA-PBC and PI-PBC approaches.Int. J. Electr. Power Energy Syst., 112:221–231.doi:10.1016/j.ijepes.2019.04.046.spa
dcterms.bibliographicCitationNazib, A. A., Holmes, D. G., and McGrath, B. P. (2018).High Quality Voltage Regulation of Single PhaseAutonomous Microgrids Under Nonlinear Load Conditions. In2018 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5169–5176.spa
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., and Bahramirad, S. (2015). State of the Art in Research on Microgrids: A Review.IEEE Access, 3:890–925.Park, H.-W., Park, S.-J., Park, J.-G., and Kim, C.-U. (2001).A novel high-performance voltage regulator forsingle-phase AC sources.IEEE Trans. Ind. Electron., 48(3):554–562. doi:10.1109/41.925582.spa
dcterms.bibliographicCitationPerko, L. (2013).Differential equations and dynamical systems, volume 7. Springer Science & Business Media.spa
dcterms.bibliographicCitationRamirez, H., Sbarbaro, D., and Ortega, R. (2009). On the control of non-linear processes: An IDA–PBC approach.Journal of Process Control, 19(3):405–414.spa
dcterms.bibliographicCitationSerra, F. M., Doria-Cerezo, A., Angelo, C. H. D., Fernandez, L. L. M., and Bodson, M. (2020b). Complex Pole Placement Control for a Three-Phase Voltage Source Converter. In 2020 IEEE International Conference on IndustrialTechnology (ICIT). IEEE. doi:10.1109/icit45562.2020.9067255.spa
dcterms.bibliographicCitationSerra, F. M., Angelo, C. H. D., and Forchetti, D. G. (2016). IDA-PBC control of a DC-AC converter for sinusoidalthree-phase voltage generation.Int. J. Electron., 104(1):93–110. doi:10.1080/00207217.2016.1191087.spa
dcterms.bibliographicCitationSerra, F. M., De Angelo, C. H., and Forchetti, D. G. (2017). IDA-PBC control of a DC–AC converter for sinusoidalthree-phase voltage generation.International Journal of Electronics, 104(1):93–110.spa
dcterms.bibliographicCitationSerra, F. M., Doria-Cerezo, A., Angelo, C. H. D., Fernandez, L. L. M., and Bodson, M. (2020b). Complex Pole Placement Control for a Three-Phase Voltage Source Converter. In 2020 IEEE International Conference on IndustrialTechnology (ICIT). IEEE. doi:10.1109/icit45562.2020.9067255.spa
dcterms.bibliographicCitationSerra, F. M., Fernández, L. L. M., Montoya, O. D., Gil-González, W. J., and Hernández, J. C. (2020c). NonlinearVoltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method.Electronics, 9(5):847. doi:10.3390/electronics9050847.spa
dcterms.bibliographicCitationTalbi, B., Krim, F., Laib, A., and Sahli, A. (2020). Model predictive voltage control of a single-phase inverter withoutput LC filter for stand-alone renewable energy systems. Electrical Engineering. doi:10.1007/s00202-020-00936-5.spa
dcterms.bibliographicCitationYu, W. (2018). PID Control with Neural Compensation. InPID Control with Intelligent Compensation for ExoskeletonRobots, pages 81–107. Elsevier. doi:10.1016/b978-0-12-813380-4.00005-0.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doihttps://doi.org/10.32397/tesea.vol1.n1.3
dc.subject.keywordsLinear loadsspa
dc.subject.keywordsPassivity-based controspa
dc.subject.keywordsStability analysisspa
dc.subject.keywordsVoltage generationspa
dc.subject.keywordsVoltage source convertersspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Electrónicaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/