Show simple item record

Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach

dc.creatorGil-González W.
dc.creatorMontoya O.D.
dc.date.accessioned2020-03-26T16:41:24Z
dc.date.available2020-03-26T16:41:24Z
dc.date.issued2019
dc.identifier.citationGil-González W. y Montoya O.D. (2019) Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach. Ain Shams Engineering Journal; Vol. 10, Núm. 2; pp. 369-378
dc.identifier.issn20904479
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9235
dc.description.abstractThe active and reactive power conditioning using superconducting magnetic energy storage (SMES) systems for low-voltage distribution networks via feedback nonlinear control is proposed in this paper. The SMES system is interconnected to ac grid using a pulsed-width modulated current source converter (PWM-CSC). The dynamical model of the system exhibits a nonlinear structure, which is eliminated by the application of a nonlinear feedback controller based of the expected behavior of the closed-loop system. The steady state analysis under time-domain reference frame to verify the stability properties on the proposed controller is used. The general control rules allow improving different objectives. The robustness and applicability of the proposed controller is tested considering unbalance and harmonic distortion in the voltage provided by the ac grid. It is also considered the possibility to use the SMES system with the proposed controller to compensate the active power oscillations of a wind-generator system. © 2019 The Authorseng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAin Shams University
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85061840402&doi=10.1016%2fj.asej.2019.01.001&partnerID=40&md5=ee1a857e2b9dc337d1686c09e250d5c4
dc.sourceScopus2-s2.0-85061840402
dc.titleActive and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach
dcterms.bibliographicCitationFarahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: a PBC-PI approach (2018) J Energy Storage, 20, pp. 163-172
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans Power Syst, 31 (5), pp. 3369-3380
dcterms.bibliographicCitationAli, M.H., Murata, T., Tamura, J., Transient stability enhancement by fuzzy logic-controlled SMES considering coordination with optimal reclosing of circuit breakers (2008) IEEE Trans Power Syst, 23 (2), pp. 631-640
dcterms.bibliographicCitationFarahani, M., Ganjefar, S., Solving LFC problem in an interconnected power system using superconducting magnetic energy storage (2013) Physica C, 487, pp. 60-66
dcterms.bibliographicCitationShayeghi, H., Jalili, A., Shayanfar, H., A robust mixed H2/H∞ based LFC of a deregulated power system including SMES (2008) Energy Convers Manage, 49 (10), pp. 2656-2668
dcterms.bibliographicCitationHuang, X., Zhang, G., Xiao, L., Optimal location of SMES for improving power system voltage stability (2010) IEEE Trans Appl Supercond, 20 (3), pp. 1316-1319
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current Source Power Conditioning System of SMES (2008) IEEE Trans Power Del, 23 (4), pp. 2097-2104
dcterms.bibliographicCitationAli, M., Wu, B., Dougal, R., An overview of SMES applications in power and energy systems (2010) IEEE Trans Sustain Energy, 1 (1), pp. 38-47
dcterms.bibliographicCitationIbrahim, H., Ilinca, A., Perron, J., Energy storage systems – characteristics and comparisons (2008) Renew Sustain Energy Rev, 12 (5), pp. 1221-1250
dcterms.bibliographicCitationGil-González, W., Oscar Danilo, M., Passivity-based PI control of a SMES system to support power in electrical grids: a bilinear approach (2018) J Energy Storage, 18, pp. 459-466
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., SCES integration in power grids: a PBC approach under abc, αβ0 and dq0 reference frames (2018) 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), pp. 1-5. , IEEE
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales, L.F., (2018), pp. 65-70. , Nonlinear control for battery energy storage systems in power grids. In: 2018 IEEE Green Technologies Conference
dcterms.bibliographicCitationLuo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl Energy, 137, pp. 511-536
dcterms.bibliographicCitationFerreira, H.L., Garde, R., Fulli, G., Kling, W., Lopes, J.P., Characterisation of electrical energy storage technologies (2013) Energy, 53, pp. 288-298
dcterms.bibliographicCitationRehman, S., Al-Hadhrami, L.M., Alam, M.M., Pumped hydro energy storage system: a technological review (2015) Renew Sustain Energy Rev, 44, pp. 586-598
dcterms.bibliographicCitationZakeri, B., Syri, S., Electrical energy storage systems: a comparative life cycle cost analysis (2015) Renew Sustain Energy Rev, 42, pp. 569-596
dcterms.bibliographicCitationMontoya, O., Gil-González, W., Time-domain analysis for current control in single-phase distribution networks using SMES devices with PWM-CSCs (2019) Electr Power Compon Syst, pp. 1-10
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J Energy Storage, 16, pp. 250-258
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J Energy Storage, 16, pp. 259-268
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans Appl Supercond, 24 (5), pp. 1-5
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Control for EESS in three-phase microgrids under time-domain reference frame via PBC theory. IEEE Trans Circ. Syst II: Express Briefs
dcterms.bibliographicCitationGiraldo, E., Garcés, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans Power Syst, 29 (3), pp. 1446-1453
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J Energy Storage, 17, pp. 261-271
dcterms.bibliographicCitationOrtega, A., Milano, F., (2016), pp. 1-7. , Comparison of different control strategies for energy storage devices. In: 2016 Power Systems Computation Conference (PSCC)
dcterms.bibliographicCitationLiu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans Energy Convers, 19 (4), pp. 774-782
dcterms.bibliographicCitationTan, Y.L., Wang, Y., (1998), 1, pp. 171-176. , Stability enhancement using SMES and robust nonlinear control. In: Energy Management and Power Delivery, 1998. Proceedings of EMPD ’98. 1998 International Conference on vol.1. doi:
dcterms.bibliographicCitationVachirasricirikul, S., Ngamroo, I., (2014), pp. 1-4. , Improved H2/H∞ control-based robust PI controller design of SMES for suppression of power fluctuation in microgrid. In: 2014 International Electrical Engineering Congress (IEECON)
dcterms.bibliographicCitationLu, Q., Sun, Y., Mei, S., (2013) Nonlinear control systems and power system dynamics, 10. , Springer Science & Business Media
dcterms.bibliographicCitationYi, H., Zhuo, F., Wang, F., Wang, Z., A digital hysteresis current controller for three-level neural-point-clamped inverter with mixed-levels and prediction-based sampling (2016) IEEE Trans Power Electron, 31 (5), pp. 3945-3957
dcterms.bibliographicCitationFlores-Bahamonde, F., Valderrama-Blavi, H., Bosque-Moncusi, J.M., García, G., Martínez-Salamero, L., Using the sliding-mode control approach for analysis and design of the boost inverter (2016) IET Power Electron, 9 (8), pp. 1625-1634
dcterms.bibliographicCitationTao, C.W., Wang, C.M., Chang, C.W., A design of a dc-ac inverter using a modified ZVS-PWM auxiliary commutation pole and a DSP-based PID-like fuzzy control (2016) IEEE Trans Ind Electron, 63 (1), pp. 397-405
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., (2017), pp. 145-150. , Supervisory LMI-based state-feedback control for current source power conditioning of SMES. In: 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171
dcterms.bibliographicCitationKiaei, I., Lotfifard, S., Tube-based model predictive control of energy storage systems for enhancing transient stability of power systems (2018) IEEE Trans Smart Grid, 9 (6), pp. 6438-6447
dcterms.bibliographicCitationNguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for Eddy current losses reduction (2016) IEEE Trans Appl Supercond, 26 (4), pp. 1-5
dcterms.bibliographicCitationHou, R., Song, H., Nguyen, T.-T., Qu, Y., Kim, H.-M., Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy (2017) Energies, 10 (5), p. 671
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., (2017), pp. 89-95. , IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC. In: 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)
dcterms.bibliographicCitationMontoya, O., Gil-González, W., Serra, F., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans Circuits Syst II, 65 (12), pp. 2003-2007
dcterms.bibliographicCitationYe, Y., Kazerani, M., Quintana, V.H., Current-source converter based STATCOM: modeling and control (2005) IEEE Trans Power Deliv, 20 (2), pp. 795-800
dcterms.bibliographicCitationFuchs, F.W., Kloenne, A., DC link and dynamic performance features of IPEMC (2004)
dcterms.bibliographicCitationMonteiro, V., Pinto, J., Exposto, B., Afonso, J.L., Comprehensive comparison of a current-source and a voltage-source converter for three-phase ev fast battery chargers (2015) 2015 9th International Conference on Compatibility and Power Electronics (CPE), pp. 173-178. , IEEE
dcterms.bibliographicCitationDeben Singh, M., Mehta, R.K., Singh, A.K., Integrated fuzzy-PI controlled current source converter based D-STATCOM (2016) Cogent Eng, 3 (1), p. 1138921
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans Power Electron, 32 (3), pp. 1894-1907
dcterms.bibliographicCitationPham, D.H., Hunter, G., Li, L., Zhu, J., (2015), pp. 1-6. , Advanced microgrid power control through grid-connected inverters. In: 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
dcterms.bibliographicCitationKhalil, H., Nonlinear systems (2002), 3rd ed. Prentice-Hall New Jersey
dcterms.bibliographicCitationRashid, M.H., Power electronics handbook-devices, circuits, and applications (2011), Elsevier
dcterms.bibliographicCitationChapman, S., (2005), Electric machinery fundamentals. Electric machinery fundamentals. McGraw-Hill Companies. Incorporated
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.asej.2019.01.001
dc.subject.keywordsActive and reactive power compensation
dc.subject.keywordsClosed loop systems
dc.subject.keywordsElectric energy storage
dc.subject.keywordsMagnetic storage
dc.subject.keywordsNonlinear feedback
dc.subject.keywordsReactive power
dc.subject.keywordsStability
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsTime domain analysis
dc.subject.keywordsVoltage distribution measurement
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsLow voltage distribution network
dc.subject.keywordsNonlinear feedback controllers
dc.subject.keywordsNonlinear structure
dc.subject.keywordsStability properties
dc.subject.keywordsSteady-state analysis
dc.subject.keywordsSuperconducting magnetic energy storage system
dc.subject.keywordsWind generator systems
dc.subject.keywordsControllers
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia ( COLCIENCIAS ), by calling contest 727-2015 .
dc.type.spaArtículo
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/