Show simple item record

A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms

dc.creatorGarcés A.
dc.creatorMontoya O.-D.
dc.identifier.citationJournal of Control, Automation and Electrical Systems; Vol. 30, Núm. 5; pp. 794-801
dc.description.abstractThe power flow equations in DC microgrids are nonlinear due to the presence of constant power terminals. In this context, a rigorous demonstration of the convergence and uniqueness of the solution for Newton’s method is required. This problem is particularly important in islanded microgrids, where the power flow method determines the equilibrium point, which in turn is used for other analyses such as stability, optimal operation, and reliability. In this paper, we present a new concept associated with power flow equations, namely the potential function of the power flow. This function allows transforming the power flow problem into an optimization model and uses convex analysis for determining its convergence and the uniqueness of the solution. Being a scalar function, the potential of the power flow can give valuable geometrical insights on the problem. In addition, the optimization approach can be used to solve the power flow problem considering inequality constraints. Simulation results demonstrate the applicability of this approach in practice. © 2019, Brazilian Society for Automatics--SBA.eng
dc.format.mediumRecurso electrónico
dc.publisherSpringer New York LLC
dc.titleA Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
dcterms.bibliographicCitationAbdali, A., Noroozian, R., Mazlumi, K., Simultaneous control and protection schemes for DC multi microgrids systems (2019) International Journal of Electrical Power & Energy Systems, 104, pp. 230-245
dcterms.bibliographicCitationBoyd, S., Vandenberghe, L., (2004) Convex optimization, , Cambridge University Press, New York, NY
dcterms.bibliographicCitationCai, H., Xiang, J., Wei, W., Chen, M.Z.Q., V-dp/dv droop control for PV sources in DC microgrids (2018) IEEE Transactions on Power Electronics, 33 (9), pp. 7708-7720
dcterms.bibliographicCitationCapitanescu, F., Critical review of recent advances and further developments needed in AC optimal power flow (2016) Electric Power Systems Research, 136, pp. 57-68
dcterms.bibliographicCitationDastgeer, F., Gelani, H.E., Anees, H.M., Paracha, Z.J., Kalam, A., Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future (2019) International Journal of Electrical Power & Energy Systems, 104, pp. 89-100
dcterms.bibliographicCitationDe Persis, C., Weitenberg, E.R., Dörfler, F., A power consensus algorithm for DC microgrids (2018) Automatica, 89, pp. 364-375
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electric Power Systems Research, 119, pp. 407-417
dcterms.bibliographicCitationEriksson, R., Beerten, J., Ghandhari, M., Belmans, R., Optimizing DC voltage droop settings for AC/DC system interactions (2014) IEEE Transactions on Power Delivery, 29 (1), pp. 362-369
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153
dcterms.bibliographicCitationGarcés, A., On the convergence of Newton’s method in power flow studies for DC microgrids (2018) IEEE Transactions Power Systems, 33 (5), pp. 5770-5777
dcterms.bibliographicCitationHamad, A.A., Azzouz, M.A., El-Saadany, E.F., Multiagent supervisory control for power management in DC microgrids (2016) IEEE Transactions on Smart Grid, 7 (2), pp. 1057-1068
dcterms.bibliographicCitationHubbard, J.H., Hubbard, B.B., (1999) Vector calculus, linear algebra, and differential forms a unified approach, , Prentice Hall, Englewood Cliffs
dcterms.bibliographicCitationKitson, J., Williamson, S., Harper, P., McMahon, C., Rosenberg, G., Tierney, M., Bell, K., Gautam, B., Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities (2018) Energy, 160, pp. 142-153
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Transactions Power Systems, ,
dcterms.bibliographicCitationLoomis, L.H., Sternberg, S., (2014) Advanced calculus, , World Scientific, Singapore
dcterms.bibliographicCitationLu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, L., Wang, J., Stability enhancement based on virtual impedance for DC microgrids with constant power loads (2015) IEEE Transactions on Smart Grid, 6 (6), pp. 2770-2783
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Transactions on Circuits Systems II Express Briefs, ,
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2018) IEEE Transactions on Circuits Systems II Express Briefs, ,
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs
dcterms.bibliographicCitationNesterov, Y., Nemirovskii, A., (1994) Interior point polynomial algorithms in convex programming, 10, 1. , 1, SIAM studies applied mathematics, Philadelphia
dcterms.bibliographicCitationPatterson, B., DC, come home: DC microgrids and the birth of the “Enernet (2012) IEEE Power Energy Magazine, 10 (6), pp. 60-69
dcterms.bibliographicCitationRoy, T.K., Mahmud, M.A., Oo, A.M.T., Haque, M.E., Muttaqi, K.M., Mendis, N., Nonlinear adaptive backstepping controller design for islanded DC microgrids (2018) IEEE Transactions on Industrial Applications, 54 (3), pp. 2857-2873
dcterms.bibliographicCitationSimpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Transactions on Circuits Systems II Express Briefs, 62 (8), pp. 811-815
dcterms.bibliographicCitationStewart, J., (2008) Multivariable Calculus, , Belmont
dcterms.bibliographicCitationStott, B., Jardim, J., Alsac, O., Dc power flow revisited (2009) IEEE Transactions on Power Systems, 24 (3), pp. 1290-1300
dcterms.bibliographicCitationTah, A., Das, D., An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected DC microgrids (2016) IEEE Transactions on Sustainable Energy, 7 (3), pp. 1194-1204
dc.subject.keywordsConvex optimization
dc.subject.keywordsDC microgrids
dc.subject.keywordsGradient systems
dc.subject.keywordsPower flow analysis
dc.subject.keywordsConstraint theory
dc.subject.keywordsConvex optimization
dc.subject.keywordsNonlinear equations
dc.subject.keywordsGradient systems
dc.subject.keywordsInequality constraint
dc.subject.keywordsMicro grid
dc.subject.keywordsOptimization approach
dc.subject.keywordsOptimization modeling
dc.subject.keywordsPotential function
dc.subject.keywordsPower flow analysis
dc.subject.keywordsPower flow equations
dc.subject.keywordsElectric load flow
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as