Mostrar el registro sencillo del ítem

dc.contributor.authorSalas-Navarro, Katherinne
dc.contributor.authorBustamante-Salazar, Angélica
dc.contributor.authorRomero-Lambrano, Teresa
dc.contributor.authorOspina Mateus, Holman
dc.contributor.authorAcevedo-Chedid, Jaime
dc.contributor.authorSankar Sana, Shib
dc.coverage.spatialColombia, Bolivar (cartagena)
dc.date.accessioned2024-11-15T21:17:44Z
dc.date.available2024-11-15T21:17:44Z
dc.date.issued2024-09-11
dc.date.submitted2024-11-15
dc.identifier.citationSalas-Navarro, K., Bustamante-Salazar, A., Romero-Lambrano, T. et al. A discrete-event simulation model with a collaborative and lean logistic approach application to a dairy industry. OPSEARCH (2024). https://doi.org/10.1007/s12597-024-00863-0spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12767
dc.description.abstractThe research introduces a discrete-event simulation model that focuses on implementing a collaborative and lean logistic approach to enhance productivity and competitiveness within a supply chain. The model aims to improve processes in the supply chain by establishing more sustainable methods in production, transportation, and marketing activities. Additionally, a discrete-event simulation model has been created to represent a dairy supply chain and assess performance across various areas such as production activities, transportation, distribution, information systems, and indicators. The model utilizes Arena Simulation Software to depict processes, raw materials, suppliers, manufacturers, resources, products, and customers. It has been developed and validated through statistical comparison with real-world data. Furthermore, the current performance analysis has been computed, and scenarios have been defined to enhance infrastructure utilization, production capacity, collaboration, and lean logistic approaches. The study includes a case study of the dairy industry in Colombia to validate the model. The results indicate that collaborating with suppliers and implementing a new production line have significant benefits in strengthening the dairy sector, leading to improved production planning, the adoption of new technologies, increased incomes, and enhanced competitiveness in the industry.spa
dc.format.extent39
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceOPSEARCHspa
dc.titleA discrete-event simulation model with a collaborative and lean logistic approach application to a dairy industryspa
dc.title.alternativeA discrete-event simulation model with a collaborative and lean logistic approach application to a dairy industryspa
dcterms.bibliographicCitationDania, W.A.P., Xing, K., Amer, Y.: Collaboration behavioural factors for sustainable agri-food supply chains: a systematic review. J. Clean. Prod. 186, 851–864 (2018). https://doi.org/10.1016/j.jclepro.2018.03.148spa
dcterms.bibliographicCitationSalas-Navarro, K., Maiguel-Mejía, H., Acevedo-Chedid, J.: Inventory Management Methodology to determine the levels of integration and collaboration in supply chain. Ingeniare 25(2), 326–337 (2017). https://doi.org/10.4067/S0718-33052017000200326spa
dcterms.bibliographicCitationMittal, A., Krejci, C.C.: A hybrid simulation modeling framework for regional food hubs. J. Simul. 13(1), 28–43 (2019). https://doi.org/10.1057/s41273-017-0063-zspa
dcterms.bibliographicCitationSundar, R., Balaji, A.N., Satheesh Kumar, R.M.: A review on lean manufacturing implementation techniques. Proced. Eng. 97, 1875–1885 (2014). https://doi.org/10.1016/j.proeng.2014.12.341spa
dcterms.bibliographicCitationWahab, A.N.A., Mukhtar, M., Sulaiman, R.: A conceptual model of lean manufacturing dimensions. Proced. Technol. 11, 1292–1298 (2013). https://doi.org/10.1016/j.protcy.2013.12.327spa
dcterms.bibliographicCitationYuan, Y., Viet, N., Behdani, B.: The impact of information sharing on the performance of horizontal logistics collaboration: a simulation study in an agri-food supply chain. IFAC-PapersOnLine 52(13), 2722–2727 (2019). https://doi.org/10.1016/j.ifacol.2019.11.619spa
dcterms.bibliographicCitationMourtzis, D., Papathanasiou, P., Fotia, S.: Lean rules identification and classification for manufacturing industry. Procedia CIRP 50, 198–203 (2016). https://doi.org/10.1016/j.procir.2016.04.097spa
dcterms.bibliographicCitationBhavani, G.D., Mahapatra, G.S., Kumar, A.: A sustainable two-echelon green supply chain coordination model under fuzziness incorporating carbon pricing policies. Environ. Sci. Pollut. Res. 30(38), 89197–89237 (2023). https://doi.org/10.1007/s11356-023-27724-5spa
dcterms.bibliographicCitationBhavani, G.D., Mishra, U., Mahapatra, G.S.: A case study on the impact of green investment with a pentagonal fuzzy storage capacity of two green-warehouse inventory systems under two dispatching policies. Environ., Dev. Sustain. (2023). https://doi.org/10.1007/s10668-023-04268-9spa
dcterms.bibliographicCitationCalderón, J.L., Lario, F.C.: Supply chain simulation: new applications and development areas. Inf. Tecnol. 18(1), 137–146 (2007). https://doi.org/10.4067/s0718-07642007000100018spa
dcterms.bibliographicCitationFanti, M.P., Iacobellis, G., Ukovich, W., Boschian, V., Georgoulas, G., Stylios, C.: A simulation based decision support system for logistics management. J. Comput. Sci. 10, 86–96 (2015). https://doi.org/10.1016/j.jocs.2014.10.003spa
dcterms.bibliographicCitationSalas-Navarro, K., Obredor-Baldovino, T., González-Laverde, G., & Mercado-Caruso, N.: An associativity scheme design for the supply chain of dairy cluster in the state of Atlántico of Colombia. Espacios, 39(50), (2018)spa
dcterms.bibliographicCitationSalas-Navarro, K., Romero-Montes, J.M., Acevedo-Chedid, J., Ospina-Mateus, H., Florez, W.F., Cárdenas-Barrón, L.E.: Vendor managed inventory system considering deteriorating items and probabilistic demand for a three-layer supply chain. Expert Syst. Appl. 218, 119608 (2023). https://doi.org/10.1016/j.eswa.2023.119608spa
dcterms.bibliographicCitationRamírez, J. C., & De Aguas, J. M.: Escalafón de la competitividad de los departamentos de Colombia 2015. Oficina de La CEPAL En Colombia, 107, (2015)spa
dcterms.bibliographicCitationAkhtar, P., Tse, Y.K., Khan, Z., Rao-Nicholson, R.: Data-driven and adaptive leadership contributing to sustainability: global agri-food supply chains connected with emerging markets. Int. J. Prod. Econ. 181, 392–401 (2016). https://doi.org/10.1016/j.ijpe.2015.11.013spa
dcterms.bibliographicCitationRabe, M., Clausen, U., Klueter, A., Poeting, M.: An approach for modeling collaborative route planning in supply chain simulation. Proceed.—Winter Simul. Conf. 7822264, 2228–2238 (2016)spa
dcterms.bibliographicCitationVan Der Vorst, J.G.A.J., Tromp, S.O., Van Der Zee, D.J.: Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 47(23), 6611–6631 (2009). https://doi.org/10.1080/00207540802356747spa
dcterms.bibliographicCitationHudnurkar, M., Rathod, U.: Collaborative supply chain: insights from simulation. Int. J. Syst. Assur. Eng. Manag. 3(2), 122–144 (2012)spa
dcterms.bibliographicCitationCigolini, R., Pero, M., Rossi, T., Sianesi, A.: Linking supply chain configuration to supply chain perfrmance: a discrete event simulation model. Simul. Model. Pract. Theory 40, 1–11 (2014). https://doi.org/10.1016/j.simpat.2013.08.002spa
dcterms.bibliographicCitationNeagoe, M., Hvolby, H.H., Taskhiri, M.S., Turner, P.: Using discrete-event simulation to compare congestion management initiatives at a port terminal. Simul. Modell. Pract. Theory 112, 102362 (2021). https://doi.org/10.1016/j.simpat.2021.102362spa
dcterms.bibliographicCitationGonzález-Reséndiz, J., Arredondo-Soto, K.C., Realyvásquez-Vargas, A., Híjar-Rivera, H., Carrillo-Gutiérrez, T.: Integrating simulation-based optimization for lean logistics: a case study. Appl. Sci. 8, 2448 (2018)spa
dcterms.bibliographicCitationBurgos, D., Ivanov, D.: Food retail supply chain resilience and the COVID-19 pandemic: a digital twin-based impact analysis and improvement directions. Transp. Res. Part E: Logist. Transp. Rev. 152, 102414 (2021). https://doi.org/10.1016/j.tre.2021.102412spa
dcterms.bibliographicCitationSpiker, M.L., Welling, J., Hertenstein, D., Mishra, S., Mishra, K., Hurley, K.M., Neff, R.A., Fanzo, J., Lee, B.Y.: When increasing vegetable production may worsen food availability gaps: a simulation model in India. Food Policy 116, 102416 (2023). https://doi.org/10.1016/j.foodpol.2023.102416spa
dcterms.bibliographicCitationGarza-Reyes, J.A., Oraifige, I., Soriano-Meier, H., Forrester, P.L., Harmanto, D.: The development of a lean park homes production process using process flow and simulation methods. J. Manuf. Technol. Manag. 23(2), 178–197 (2012)spa
dcterms.bibliographicCitationAtieh, A.M., Kaylani, H., Almuhtady, A., Al-Tamimi, O.: A value stream mapping and simulation hybrid approach: application to glass industry. Int. J. Adv. Manuf. Technol. 84(5–8), 1573–1586 (2016). https://doi.org/10.1007/s00170-015-7805-8spa
dcterms.bibliographicCitationAlzubi, E., Atieh, A.M., Abu Shgair, K., Damiani, J., Sunna, S., Madi, A.: Hybrid integrations of value stream mapping, theory of constraints and simulation: application to wooden furniture industry. Processes 7(11), 816 (2019). https://doi.org/10.3390/pr7110816spa
dcterms.bibliographicCitationPattanaik, L.N.: Simulation optimization of manufacturing takt time for a leagile supply chain with a de-coupling point. Int. J. Ind. Eng. Manag. 12(2), 102–114 (2021). https://doi.org/10.24867/IJIEM-2021-2-280spa
dcterms.bibliographicCitationAfy-Shararah, M., Salonitis, K.: Integrated modeling of “soft” and “hard” variables in manufacturing. Int. J. Adv. Manuf. Technol. 122(11–12), 4259–4265 (2022). https://doi.org/10.1007/s00170-022-09872-zspa
dcterms.bibliographicCitationAbay, Y., Kaihara, T., Kokuryo, D., Fujii, N.: A discrete-event simulation study of multi-objective sales and operation planning: a case of ethiopian automotive industry. IFAC-PapersOnLine 56(2), 7826–7833 (2023). https://doi.org/10.1016/j.ifacol.2023.10.1147spa
dcterms.bibliographicCitationAbay, Y., Kaihara, T., Kokuryo, D.: A discrete-event simulation study of multi-objective sales and operation planning under demand uncertainty: a case of the ethiopian automotive industry. Int. J. Autom. Technol. 18(1), 135–145 (2024). https://doi.org/10.20965/ijat.2024.p0135spa
dcterms.bibliographicCitationMiqueo, A., Gracia-Cadarso, M., Torralba, M., Gil-Vilda, F., Yagüe-Fabra, J.A.: Multi-model in-plant logistics using milkruns for flexible assembly systems under disturbances: an industry study case. Machines 11(1), 66 (2023). https://doi.org/10.3390/machines11010066spa
dcterms.bibliographicCitationCao, M., Vonderembse, M.A., Zhang, Q., Ragu-Nathan, T.S.: Supply chain collaboration: conceptualisation and instrument development. Int. J. Prod. Res. 48(22), 6613–6635 (2010). https://doi.org/10.1080/00207540903349039spa
dcterms.bibliographicCitationMartinez, P., Ahmad, R.: Quantifying the impact of inspection processes on production lines through stochastic discrete-event simulation modeling. Modelling 2(4), 406–424 (2021). https://doi.org/10.3390/modelling2040022spa
dcterms.bibliographicCitationHaddad, Y., De Bonneval, E.G., Afy-Shararah, M., Carter, J., Artingstall, J., Salonitis, K.: Energy flexibility in aerospace manufacturing: the case of low carbon intensity production. J. Manuf. Syst. 74(May), 812–825 (2024). https://doi.org/10.1016/j.jmsy.2024.05.004spa
dcterms.bibliographicCitationBanks, J., Carson, J.S., II., Nelson, B.L., Nicol, D.M.: Discrete-event system simulation, 5th edn. Pearson Education Limited, London (2014)spa
dcterms.bibliographicCitationHerrera, O., & Becerra, L. A.: Diseño general de las etapas de simulación de procesos con énfasis en el análisis de entrada. In: Twelfth LACCEI Latin American and Caribbean Conference for Engineering and Technologye for Engineering and Technology, pp. 1–10, (2014). http://www.laccei.org/LACCEI2014-Guayaquil/RefereedPapers/RP152.pdfspa
dcterms.bibliographicCitationFedegan. (2018). Cifras de Referencia del Sector Ganadero Colombiano. www.fedegan.org.cospa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1007/s12597-024-00863-0
dc.subject.keywordsSimulation modelspa
dc.subject.keywordsSupply chain managementspa
dc.subject.keywordsCollaborationspa
dc.subject.keywordsLean logisticsspa
dc.subject.keywordsDairy industryspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Industrialspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.