Mostrar el registro sencillo del ítem
Computational study on the inhibition mechanisms of the ziegler-natta catalyst in the propylene polymerization process: part 1 effects of acetylene and methylacetylene
dc.contributor.author | Hernandez Fernandez, Joaquin | |
dc.contributor.author | Bello-León, Elías | |
dc.contributor.author | Márquez, Edgar | |
dc.date.accessioned | 2024-11-14T21:26:57Z | |
dc.date.available | 2024-11-14T21:26:57Z | |
dc.date.issued | 2024-10-01 | |
dc.date.submitted | 2024-11-14 | |
dc.identifier.citation | Hernandez-Fernandez, J.; Bello-León, E.; Marquez, E. Computational Study on the Inhibition Mechanisms of the Ziegler-Natta Catalyst in the Propylene Polymerization Process: Part 1 Effects of Acetylene and Methylacetylene. Int. J. Mol. Sci. 2024, 25, 10585. https://doi.org/10.3390/ijms251910585 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12766 | |
dc.description.abstract | Acetylene and methylacetylene are impurities commonly found in the raw materials used for the production of polymers such as polypropylene and polyethylene. Experimental evidence indicates that both acetylene and methylacetylene can decrease the productivity of the Ziegler-Natta catalyst and alter the properties of the resulting polymer. However, there is still a lack of understanding regarding the mechanisms through which these substances affect this process. Therefore, elucidating these mechanisms is crucial to develop effective solutions to this problem. In this study, the inhibition mechanisms of the Ziegler-Natta catalyst by acetylene and methylacetylene are presented and compared with the incorporation of the first propylene monomer (chain initiation) to elucidate experimental effects. The Density Functional Theory (DFT) method was used, along with the B3LYP-D3 functional and the 6-311++G(d,p) basis set. The recorded adsorption energies were −11.10, −13.99, and −0.31 kcal mol−1, while the activation energies were 1.53, 2.83, and 28.36 kcal mol−1 for acetylene, methylacetylene, and propylene, respectively. The determined rate constants were 4.68 × 1011, 5.29 × 1011, and 2.3 × 10−8 M−1 s−1 for acetylene, methylacetylene, and propylene, respectively. Based on these values, it is concluded that inhibition reactions are more feasible than propylene insertion only if an ethylene molecule has not been previously adsorbed, as such an event reinforces propylene adsorption. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costa | spa |
dc.format.extent | 22 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | International Journal of Molecular Sciences | spa |
dc.title | Computational study on the inhibition mechanisms of the ziegler-natta catalyst in the propylene polymerization process: part 1 effects of acetylene and methylacetylene | spa |
dcterms.bibliographicCitation | Muthukumar, T.; Aravinthan, A.; Mukesh, D. Effect of environment on the degradation of starch and pro-oxidant blended polyolefins. Polym. Degrad. Stab. 2010, 95, 1988–1993. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Orhan, Y.; Büyükgüngör, H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Bio-Deterior. Biodegrad. 2000, 45, 49–55. [Google Scholar] | spa |
dcterms.bibliographicCitation | Bahri-Laleh, N.; Hanifpour, A.; Mirmohammadi, S.A.; Poater, A.; Nekoomanesh-Haghighi, M.; Talarico, G.; Cavallo, L. Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog. Polym. Sci. 2018, 84, 89–114. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Taniike, T.; Terano, M. Coadsorption model for first-principle description of roles of donors in heterogeneous Ziegler-Natta propylene polymerization. J. Catal. 2012, 293, 39–50. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Takasao, G.; Wada, T.; Thakur, A.; Chammingkwan, P.; Terano, M.; Taniike, T. Machine Learning-Aided Structure Determination for TiCl4–Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst. ACS Catal. 2019, 9, 2599–2609. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Credendino, R.; Liguori, D.; Fan, Z.; Morini, G.; Cavallo, L. Toward a Unified Model Explaining Heterogeneous Ziegler-Natta Ca-talysis. ACS Catal. 2015, 5, 5431–5435. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Baier, M.S.M.C.; Zuideveld, M.A.; Mecking, S. Post-Metallocenes in the Industrial Production of Polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler-Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler-Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Evaluation of the Reactivity of Methanol and Hydrogen Sulfide Residues with the Ziegler-Natta Catalyst during Polypropylene Synthesis and Its Effects on Polymer Properties. Polymers 2023, 15, 4061. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Huang, J.; Rempel, G. Ziegler-Natta catalysts for olefin polymerization: Mechanistic insights from metallocene systems. Prog. Polym. Sci. 1995, 20, 459–526. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Corradini, P.; Guerra, G. Models for the Stereospecificity in Homogeneous and Heterogeneous Zie-Gler-Natta Polymerizations. Prog. Polym. Sci. 1991, 16, 239–257. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Jiang, X.; He, A. Stereospecific polymerization of olefins with supported Ziegler—Natta catalysts. Polym. Int. 2014, 63, 179–183. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Soga, K.; Shiono, T. Ziegler-Natta catalysts for olefin polymerizations. Prog. Polym. Sci. 1997, 22, 1503–1546. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Chang, M.; Liu, X.; Nelson, P.J.; Munzing, G.R.; Gegan, T.A.; Kissin, Y.V. Ziegler-Natta catalysts for propylene polymerization: Morphology and crystal structure of a fourth-generation catalyst. J. Catal. 2006, 239, 347–353. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Andoni, A.; Chadwick, J.C.; Milani, S.; Niemantsverdriet, H.; Thüne, P.C. Introducing a new surface science model for Ziegler-Natta catalysts: Preparation, basic characterization and testing. J. Catal. 2007, 247, 129–136. [Google Scholar] | spa |
dcterms.bibliographicCitation | Tijssen, K.C.; Blaakmeer, E.; Kentgens, A.P. Solid-state NMR studies of Ziegler-Natta and metallocene catalysts. Solid State Nucl. Magn. Reson. 2015, 68–69, 37–56. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Vittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler-Natta Catalysts: The Origin of Stereoselec-tivity. ACS Catal. 2017, 7, 4509–4518. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Dimethylformamide Impurities as Propylene Polymerization Inhibitor. Polymers 2023, 15, 3806. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Piovano, A.; Zarupski, J.; Groppo, E. Disclosing the Interaction between Carbon Monoxide and Alkylated Ti3+ Species: A Direct Insight into Ziegler-Natta Catalysis. J. Phys. Chem. Lett. 2020, 11, 5632–5637. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler-Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Dheivamalar, S.; Sugi, L.; Ambigai, K. Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis. Comput. Chem. 2016, 4, 17–31. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Petersson, G.A.; Malick, D.K.; Wilson, W.G.; Ochterski, J.W.; Montgomery, J.A.; Frisch, M.J. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys. 1998, 109, 10570–10579. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 2–8. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Grigorjan, A.; Gjulumjan, C.R.; Menčikova, G.N. Peculiarities of inhibition of polymerization of ethylene with Ziegler-Natta catalysts by carbon monoxide. Acta Polym. 1984, 35, 33–35. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Paghadar, B.R.; Sainani, J.B.; Samith, K.M.; Bhagavath, P. Internal donors on supported Ziegler Natta catalysts for isotactic polypropylene: A brief tutorial review. J. Polym. Res. 2021, 28, 1–19. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Yan, Y.; Wang, D.; He, S.; Ren, H.; Xu, Y. Study on the synthesis of hexene-1 catalyzed by Ziegler-Natta catalyst and polyhexene-1 applications. e-Polymers 2019, 19, 511–518. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Pinyocheep, J.; Na Ayudhya, S.K.; Jongsomjit, B.; Praserthdam, P. Observation on inhibition of Ti3+ reduction by fumed silica addition in Ziegler-Natta catalyst with in situ ESR. J. Ind. Eng. Chem. 2012, 18, 1888–1892. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Kovalev, E.P.; Shalygin, A.S.; Prikhod’ko, S.A.; Adonin, N.Y.; Martyanov, O.N. Correlation between absorbed acetylene spectral cha-racteristic and nature of ionic liquids studied by in situ ATR-FTIR spectroscopy. J. Mol. Liq. 2023, 392, 123509. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Guo, X.; Cui, L.; Wang, Y.; Yi, J.; Sun, J.; Liu, Z.; Liu, B. Mechanistic Study on Effect of Electron Donors in Propylene Polymerization Using the Ziegler-Natta Catalyst. J. Phys. Chem. C 2021, 125, 8533–8542. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT study on the effect of hydrogen in ethylene and pro-pylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst. J. Organomet. Chem. 2012, 719, 74–79. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Flores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Computational prediction of bioactivity scores and chemical reactivity properties of the parasin i therapeutic peptide of marine origin through the calculation of global and local conceptual dft des-criptors. Theor. Chem. Acc. 2019, 138, 1–9. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M. Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020, 12, 415. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | McArdle, P. Pixel calculations using Orca or GAUSSIAN for electron density automated within the Oscail package. J. Appl. Crystallogr. 2021, 54, 1535–1541. [Google Scholar] | spa |
dcterms.bibliographicCitation | Biernacki, C.; Marbac, M.; Vandewalle, V. Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering. J. Classif. 2020, 38, 129–157. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Pourebrahimi, S.; Pirooz, M.; De Visscher, A. DFT-assisted design of curcumin-based donor-π-bridge-acceptor molecular structures: Advancing non-linear optical materials and sustainable organic solar cells. J. Mol. Struct. 2024, 1316, 139079. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Pourebrahimi, S.; De Visscher, A.; Peslherbe, G.H. DFT investigation of Pt-doped CTF-1 covalent triazine frameworks for adsorption and sensing of SF6 decomposition products. Surf. Interfaces 2024, 49, 104404. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Kia, R.; Kalaghchi, A. Structural, Non-Covalent Interaction, and Natural Bond Orbital Studies on Bromido-Tricarbonyl Rhenium(I) Complexes Bearing Alkyl-Substituted 1,4-Diazabutadiene (DAB) Ligands. Crystals 2020, 10, 267. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Li, L.; Wu, C.; Wang, Z.; Zhao, L.; Li, Z.; Sun, C.; Sun, T. Density functional theory (DFT) and natural bond orbital (NBO) study of vi-brational spectra and intramolecular hydrogen bond interaction of l-ornithine–l-aspartate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 338–346. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Weinhold, F. Natural Bond Orbital Methods. Encycl. Comput. Chem. 1998. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/0470845015.cna009 (accessed on 15 July 2024). | spa |
dcterms.bibliographicCitation | Zhang, Q.; Zheng, F.; Fartaria, R.; Latino, D.A.R.S.; Qu, X.; Campos, T.; Zhao, T.; Aires-De-Sousa, J. A QSPR approach for the fast estimation of DFT/NBO partial atomic charges. Chemom. Intell. Lab. Syst. 2014, 134, 158–163. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Osman, O.I. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes. Int. J. Mol. Sci. 2017, 18, 239. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Mohammadi, Z.; Moradi, G.; Teimoury, H. Ziegler Natta catalyst by precipitation of soluble precursor in different synthesis conditions. J Organomet Chem. 2023, 991, 122675. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Glendening, E.D.; Hiatt, D.M.; Weinhold, F. Natural Bond Orbital Analysis of Chemical Structure, Spectroscopy, and Reactivity: How it Works. Compr. Comput. Chem. 2024, 2, 406–421. [Google Scholar] | spa |
dcterms.bibliographicCitation | Fang, J.; Zhang, Y.; Wang, Y.; Li, Y.; Li, H.; Li, C. The molecular design and experimental study on the catalytic cleavage of linkages in lignin with binuclear ionic liquid. J. Mol. Liq. 2020, 308, 113128. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Golovkin, A.; Davlyatshin, D.; Serebrennikova, A.; Serebrennikov, L. Acetylene associates (C2H2)n (n = 2–4). IR-spectra in argon matrixes and quantum-chemical calculations. J. Mol. Struct. 2013, 1049, 392–399. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Kondo, S.; Koga, Y. Infrared absorption intensities of methyl acetylene. J. Chem. Phys. 1978, 69, 4022–4031. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | D’Amore, M.; Takasao, G.; Chikuma, H.; Wada, T.; Taniike, T.; Pascale, F.; Ferrari, A.M. Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT. J. Phys. Chem. C 2021, 125, 20048–20058. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Sung, K.; Toon, G.C.; Drouin, B.J.; Mantz, A.W.; Smith, M.A.H. FT-IR measurements of cold propene (C3H6) cross-sections at temperatures between 150 and 299 K. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 119–132. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Ghosh, A.K.; Kydd, R.A. A Fourier-Transform Infrared Spectral Study of Propene Reactions on Acidic Zeolites. J. Catal. 1986, 100, 185–195. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Hernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Study of the Chemical Activities of Carbon Monoxide, Carbon Dioxide, and Oxygen Traces as Critical Inhibitors of Polypropylene Synthesis. Polymers 2024, 16, 605. [Google Scholar] [CrossRef] [PubMed] | spa |
dcterms.bibliographicCitation | Schwarz, J.F.; Holtrichter-Rößmann, T.; Liedtke, C.G.; Diddens, D.; Paulik, C. Modified Magnesium Alkyls for Ziegler-Natta Catalysts. Catalysts 2022, 12, 973. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Benalia, A.; Boukaoud, A.; Amrani, R.; Krid, A. A B3LYP-D3 computational study of electronic, structural and torsional dynamic properties of mono-substituted naphthalenes: The effect of the nature and position of substituent. J. Mol. Model. 2024, 30, 1–15. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Fushimi, M.; Damma, D. The Role of External Donors in Ziegler-Natta Catalysts through Nudged Elastic Band Simulations on Realistic-Scale Models Employing a Universal Neural Network Potential. J. Phys. Chem. C 2024, 128, 6646–6657. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Ramirez-Balderrama, K.; Orrantia-Borunda, E.; Flores-Holguin, N. Calculation of global and local reactivity descriptors of carbodiimides, a DFT study. J. Theor. Comput. Chem. 2017, 16, 1750019. [Google Scholar] [CrossRef] | spa |
dcterms.bibliographicCitation | Vijayaraj, R.; Subramanian, V.; Chattaraj, P.K. Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J. Chem. Theory Comput. 2009, 5, 2744–2753. [Google Scholar] [CrossRef] [PubMed] | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.3390/ijms251910585 | |
dc.subject.keywords | Theoretical study | spa |
dc.subject.keywords | Inhibition mechanisms | spa |
dc.subject.keywords | Aliphatic alkynes | spa |
dc.subject.keywords | Propylene polymerization | spa |
dc.subject.keywords | Ziegler-Natta catalyst | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.