Mostrar el registro sencillo del ítem

dc.contributor.authorHernandez Fernandez, Joaquin
dc.contributor.authorBello-León, Elías
dc.contributor.authorMárquez, Edgar
dc.date.accessioned2024-11-14T21:26:57Z
dc.date.available2024-11-14T21:26:57Z
dc.date.issued2024-10-01
dc.date.submitted2024-11-14
dc.identifier.citationHernandez-Fernandez, J.; Bello-León, E.; Marquez, E. Computational Study on the Inhibition Mechanisms of the Ziegler-Natta Catalyst in the Propylene Polymerization Process: Part 1 Effects of Acetylene and Methylacetylene. Int. J. Mol. Sci. 2024, 25, 10585. https://doi.org/10.3390/ijms251910585spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12766
dc.description.abstractAcetylene and methylacetylene are impurities commonly found in the raw materials used for the production of polymers such as polypropylene and polyethylene. Experimental evidence indicates that both acetylene and methylacetylene can decrease the productivity of the Ziegler-Natta catalyst and alter the properties of the resulting polymer. However, there is still a lack of understanding regarding the mechanisms through which these substances affect this process. Therefore, elucidating these mechanisms is crucial to develop effective solutions to this problem. In this study, the inhibition mechanisms of the Ziegler-Natta catalyst by acetylene and methylacetylene are presented and compared with the incorporation of the first propylene monomer (chain initiation) to elucidate experimental effects. The Density Functional Theory (DFT) method was used, along with the B3LYP-D3 functional and the 6-311++G(d,p) basis set. The recorded adsorption energies were −11.10, −13.99, and −0.31 kcal mol−1, while the activation energies were 1.53, 2.83, and 28.36 kcal mol−1 for acetylene, methylacetylene, and propylene, respectively. The determined rate constants were 4.68 × 1011, 5.29 × 1011, and 2.3 × 10−8 M−1 s−1 for acetylene, methylacetylene, and propylene, respectively. Based on these values, it is concluded that inhibition reactions are more feasible than propylene insertion only if an ethylene molecule has not been previously adsorbed, as such an event reinforces propylene adsorption.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costaspa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceInternational Journal of Molecular Sciencesspa
dc.titleComputational study on the inhibition mechanisms of the ziegler-natta catalyst in the propylene polymerization process: part 1 effects of acetylene and methylacetylenespa
dcterms.bibliographicCitationMuthukumar, T.; Aravinthan, A.; Mukesh, D. Effect of environment on the degradation of starch and pro-oxidant blended polyolefins. Polym. Degrad. Stab. 2010, 95, 1988–1993. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationOrhan, Y.; Büyükgüngör, H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int. Bio-Deterior. Biodegrad. 2000, 45, 49–55. [Google Scholar]spa
dcterms.bibliographicCitationBahri-Laleh, N.; Hanifpour, A.; Mirmohammadi, S.A.; Poater, A.; Nekoomanesh-Haghighi, M.; Talarico, G.; Cavallo, L. Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog. Polym. Sci. 2018, 84, 89–114. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTaniike, T.; Terano, M. Coadsorption model for first-principle description of roles of donors in heterogeneous Ziegler-Natta propylene polymerization. J. Catal. 2012, 293, 39–50. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationTakasao, G.; Wada, T.; Thakur, A.; Chammingkwan, P.; Terano, M.; Taniike, T. Machine Learning-Aided Structure Determination for TiCl4–Capped MgCl2 Nanoplate of Heterogeneous Ziegler-Natta Catalyst. ACS Catal. 2019, 9, 2599–2609. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationCredendino, R.; Liguori, D.; Fan, Z.; Morini, G.; Cavallo, L. Toward a Unified Model Explaining Heterogeneous Ziegler-Natta Ca-talysis. ACS Catal. 2015, 5, 5431–5435. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationBaier, M.S.M.C.; Zuideveld, M.A.; Mecking, S. Post-Metallocenes in the Industrial Production of Polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler-Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler-Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Evaluation of the Reactivity of Methanol and Hydrogen Sulfide Residues with the Ziegler-Natta Catalyst during Polypropylene Synthesis and Its Effects on Polymer Properties. Polymers 2023, 15, 4061. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHuang, J.; Rempel, G. Ziegler-Natta catalysts for olefin polymerization: Mechanistic insights from metallocene systems. Prog. Polym. Sci. 1995, 20, 459–526. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationCorradini, P.; Guerra, G. Models for the Stereospecificity in Homogeneous and Heterogeneous Zie-Gler-Natta Polymerizations. Prog. Polym. Sci. 1991, 16, 239–257. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationJiang, X.; He, A. Stereospecific polymerization of olefins with supported Ziegler—Natta catalysts. Polym. Int. 2014, 63, 179–183. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationSoga, K.; Shiono, T. Ziegler-Natta catalysts for olefin polymerizations. Prog. Polym. Sci. 1997, 22, 1503–1546. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationChang, M.; Liu, X.; Nelson, P.J.; Munzing, G.R.; Gegan, T.A.; Kissin, Y.V. Ziegler-Natta catalysts for propylene polymerization: Morphology and crystal structure of a fourth-generation catalyst. J. Catal. 2006, 239, 347–353. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationAndoni, A.; Chadwick, J.C.; Milani, S.; Niemantsverdriet, H.; Thüne, P.C. Introducing a new surface science model for Ziegler-Natta catalysts: Preparation, basic characterization and testing. J. Catal. 2007, 247, 129–136. [Google Scholar]spa
dcterms.bibliographicCitationTijssen, K.C.; Blaakmeer, E.; Kentgens, A.P. Solid-state NMR studies of Ziegler-Natta and metallocene catalysts. Solid State Nucl. Magn. Reson. 2015, 68–69, 37–56. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationVittoria, A.; Meppelder, A.; Friederichs, N.; Busico, V.; Cipullo, R. Demystifying Ziegler-Natta Catalysts: The Origin of Stereoselec-tivity. ACS Catal. 2017, 7, 4509–4518. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Dimethylformamide Impurities as Propylene Polymerization Inhibitor. Polymers 2023, 15, 3806. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPiovano, A.; Zarupski, J.; Groppo, E. Disclosing the Interaction between Carbon Monoxide and Alkylated Ti3+ Species: A Direct Insight into Ziegler-Natta Catalysis. J. Phys. Chem. Lett. 2020, 11, 5632–5637. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler-Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationHernández-Fernández, J.; González-Cuello, R.; Ortega-Toro, R. Parts per Million of Propanol and Arsine as Responsible for the Poisoning of the Propylene Polymerization Reaction. Polymers 2023, 15, 3619. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationDheivamalar, S.; Sugi, L.; Ambigai, K. Density Functional Theory Study of Exohedral Carbon Atoms Effect on Electrophilicity of Nicotine: Comparative Analysis. Comput. Chem. 2016, 4, 17–31. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPetersson, G.A.; Malick, D.K.; Wilson, W.G.; Ochterski, J.W.; Montgomery, J.A.; Frisch, M.J. Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys. 1998, 109, 10570–10579. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationBurke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 2–8. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGrigorjan, A.; Gjulumjan, C.R.; Menčikova, G.N. Peculiarities of inhibition of polymerization of ethylene with Ziegler-Natta catalysts by carbon monoxide. Acta Polym. 1984, 35, 33–35. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPaghadar, B.R.; Sainani, J.B.; Samith, K.M.; Bhagavath, P. Internal donors on supported Ziegler Natta catalysts for isotactic polypropylene: A brief tutorial review. J. Polym. Res. 2021, 28, 1–19. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationYan, Y.; Wang, D.; He, S.; Ren, H.; Xu, Y. Study on the synthesis of hexene-1 catalyzed by Ziegler-Natta catalyst and polyhexene-1 applications. e-Polymers 2019, 19, 511–518. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPinyocheep, J.; Na Ayudhya, S.K.; Jongsomjit, B.; Praserthdam, P. Observation on inhibition of Ti3+ reduction by fumed silica addition in Ziegler-Natta catalyst with in situ ESR. J. Ind. Eng. Chem. 2012, 18, 1888–1892. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationKovalev, E.P.; Shalygin, A.S.; Prikhod’ko, S.A.; Adonin, N.Y.; Martyanov, O.N. Correlation between absorbed acetylene spectral cha-racteristic and nature of ionic liquids studied by in situ ATR-FTIR spectroscopy. J. Mol. Liq. 2023, 392, 123509. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGuo, X.; Cui, L.; Wang, Y.; Yi, J.; Sun, J.; Liu, Z.; Liu, B. Mechanistic Study on Effect of Electron Donors in Propylene Polymerization Using the Ziegler-Natta Catalyst. J. Phys. Chem. C 2021, 125, 8533–8542. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationBahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT study on the effect of hydrogen in ethylene and pro-pylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst. J. Organomet. Chem. 2012, 719, 74–79. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationFlores-Holguín, N.; Frau, J.; Glossman-Mitnik, D. Computational prediction of bioactivity scores and chemical reactivity properties of the parasin i therapeutic peptide of marine origin through the calculation of global and local conceptual dft des-criptors. Theor. Chem. Acc. 2019, 138, 1–9. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M. Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020, 12, 415. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMcArdle, P. Pixel calculations using Orca or GAUSSIAN for electron density automated within the Oscail package. J. Appl. Crystallogr. 2021, 54, 1535–1541. [Google Scholar]spa
dcterms.bibliographicCitationBiernacki, C.; Marbac, M.; Vandewalle, V. Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering. J. Classif. 2020, 38, 129–157. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPourebrahimi, S.; Pirooz, M.; De Visscher, A. DFT-assisted design of curcumin-based donor-π-bridge-acceptor molecular structures: Advancing non-linear optical materials and sustainable organic solar cells. J. Mol. Struct. 2024, 1316, 139079. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationPourebrahimi, S.; De Visscher, A.; Peslherbe, G.H. DFT investigation of Pt-doped CTF-1 covalent triazine frameworks for adsorption and sensing of SF6 decomposition products. Surf. Interfaces 2024, 49, 104404. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationKia, R.; Kalaghchi, A. Structural, Non-Covalent Interaction, and Natural Bond Orbital Studies on Bromido-Tricarbonyl Rhenium(I) Complexes Bearing Alkyl-Substituted 1,4-Diazabutadiene (DAB) Ligands. Crystals 2020, 10, 267. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationLi, L.; Wu, C.; Wang, Z.; Zhao, L.; Li, Z.; Sun, C.; Sun, T. Density functional theory (DFT) and natural bond orbital (NBO) study of vi-brational spectra and intramolecular hydrogen bond interaction of l-ornithine–l-aspartate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 136, 338–346. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationWeinhold, F. Natural Bond Orbital Methods. Encycl. Comput. Chem. 1998. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/0470845015.cna009 (accessed on 15 July 2024).spa
dcterms.bibliographicCitationZhang, Q.; Zheng, F.; Fartaria, R.; Latino, D.A.R.S.; Qu, X.; Campos, T.; Zhao, T.; Aires-De-Sousa, J. A QSPR approach for the fast estimation of DFT/NBO partial atomic charges. Chemom. Intell. Lab. Syst. 2014, 134, 158–163. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationOsman, O.I. DFT Study of the Structure, Reactivity, Natural Bond Orbital and Hyperpolarizability of Thiazole Azo Dyes. Int. J. Mol. Sci. 2017, 18, 239. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationMohammadi, Z.; Moradi, G.; Teimoury, H. Ziegler Natta catalyst by precipitation of soluble precursor in different synthesis conditions. J Organomet Chem. 2023, 991, 122675. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGlendening, E.D.; Hiatt, D.M.; Weinhold, F. Natural Bond Orbital Analysis of Chemical Structure, Spectroscopy, and Reactivity: How it Works. Compr. Comput. Chem. 2024, 2, 406–421. [Google Scholar]spa
dcterms.bibliographicCitationFang, J.; Zhang, Y.; Wang, Y.; Li, Y.; Li, H.; Li, C. The molecular design and experimental study on the catalytic cleavage of linkages in lignin with binuclear ionic liquid. J. Mol. Liq. 2020, 308, 113128. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGolovkin, A.; Davlyatshin, D.; Serebrennikova, A.; Serebrennikov, L. Acetylene associates (C2H2)n (n = 2–4). IR-spectra in argon matrixes and quantum-chemical calculations. J. Mol. Struct. 2013, 1049, 392–399. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationKondo, S.; Koga, Y. Infrared absorption intensities of methyl acetylene. J. Chem. Phys. 1978, 69, 4022–4031. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationD’Amore, M.; Takasao, G.; Chikuma, H.; Wada, T.; Taniike, T.; Pascale, F.; Ferrari, A.M. Spectroscopic Fingerprints of MgCl2/TiCl4 Nanoclusters Determined by Machine Learning and DFT. J. Phys. Chem. C 2021, 125, 20048–20058. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationSung, K.; Toon, G.C.; Drouin, B.J.; Mantz, A.W.; Smith, M.A.H. FT-IR measurements of cold propene (C3H6) cross-sections at temperatures between 150 and 299 K. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 119–132. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationGhosh, A.K.; Kydd, R.A. A Fourier-Transform Infrared Spectral Study of Propene Reactions on Acidic Zeolites. J. Catal. 1986, 100, 185–195. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationHernández-Fernández, J.; Puello-Polo, E.; Marquez, E. Study of the Chemical Activities of Carbon Monoxide, Carbon Dioxide, and Oxygen Traces as Critical Inhibitors of Polypropylene Synthesis. Polymers 2024, 16, 605. [Google Scholar] [CrossRef] [PubMed]spa
dcterms.bibliographicCitationSchwarz, J.F.; Holtrichter-Rößmann, T.; Liedtke, C.G.; Diddens, D.; Paulik, C. Modified Magnesium Alkyls for Ziegler-Natta Catalysts. Catalysts 2022, 12, 973. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationBenalia, A.; Boukaoud, A.; Amrani, R.; Krid, A. A B3LYP-D3 computational study of electronic, structural and torsional dynamic properties of mono-substituted naphthalenes: The effect of the nature and position of substituent. J. Mol. Model. 2024, 30, 1–15. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationFushimi, M.; Damma, D. The Role of External Donors in Ziegler-Natta Catalysts through Nudged Elastic Band Simulations on Realistic-Scale Models Employing a Universal Neural Network Potential. J. Phys. Chem. C 2024, 128, 6646–6657. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationRamirez-Balderrama, K.; Orrantia-Borunda, E.; Flores-Holguin, N. Calculation of global and local reactivity descriptors of carbodiimides, a DFT study. J. Theor. Comput. Chem. 2017, 16, 1750019. [Google Scholar] [CrossRef]spa
dcterms.bibliographicCitationVijayaraj, R.; Subramanian, V.; Chattaraj, P.K. Comparison of global reactivity descriptors calculated using various density functionals: A QSAR perspective. J. Chem. Theory Comput. 2009, 5, 2744–2753. [Google Scholar] [CrossRef] [PubMed]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/ijms251910585
dc.subject.keywordsTheoretical studyspa
dc.subject.keywordsInhibition mechanismsspa
dc.subject.keywordsAliphatic alkynesspa
dc.subject.keywordsPropylene polymerizationspa
dc.subject.keywordsZiegler-Natta catalystspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.