Mostrar el registro sencillo del ítem

dc.contributor.authorJuarez-Salazar, Rigoberto
dc.contributor.authorBenjumea, Eberto
dc.contributor.authorMarrugo, Andres G
dc.contributor.authorDiaz-Ramirez, Victor H
dc.date.accessioned2024-11-14T21:04:35Z
dc.date.available2024-11-14T21:04:35Z
dc.date.issued2024-09-30
dc.date.submitted2024-11-14
dc.identifier.citationRigoberto Juarez-Salazar, Eberto Benjumea, Andres G. Marrugo, and Victor H. Diaz-Ramirez "Three-dimensional object texturing for visible-thermal fringe projection profilometers", Proc. SPIE 13136, Optics and Photonics for Information Processing XVIII, 131360E (30 September 2024); https://doi.org/10.1117/12.3028321spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12763
dc.description.abstractConventional fringe projection profilometers utilize cameras and projectors in the visible spectrum. Nevertheless, some applications require profilometers with a complementary thermal camera for the infrared spectrum. Since the point cloud is computed from pixel correspondences between the visible camera-projector pair, the texture in the visible spectrum is obtained by direct association of color from each image pixel to its corresponding point in the cloud. Unfortunately, the texture from the thermal camera is not straightforward because of the inexistence of pixel-point correspondences. In this paper, a simple interpolation-based method for determining the texture of the reconstructed objects is proposed. The theoretical principles are reviewed, and an experimental verification is conducted using a visible-thermal fringe projection profilometer. This work provides a helpful framework for three-dimensional data fusion for advanced multi-modal profilometers.spa
dc.format.extent5 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProc. SPIE 13136, Optics and Photonics for Information Processing XVIII, 131360Espa
dc.titleThree-dimensional object texturing for visible-thermal fringe projection profilometersspa
dcterms.bibliographicCitationMuyshondt, P. G., der Jeught, S. V., and Dirckx, J. J., “A calibrated 3d dual-barrel otoendoscope based on fringe-projection profilometry,” Optics and Lasers in Engineering 149, 106795 (2022)spa
dcterms.bibliographicCitationGeng, J., “Structured-light 3d surface imaging: a tutorial,” Adv. Opt. Photon. 3(2), 128–160 (2011).spa
dcterms.bibliographicCitationRing, E., “The historical development of temperature measurement in medicine,” Infrared Physics & Technology 49(3), 297–301 (2007)spa
dcterms.bibliographicCitationJuarez-Salazar, R., Zheng, J., and Diaz-Ramirez, V. H., “Distorted pinhole camera modeling and calibration,” Applied Optics 59(36), 11310–11318 (2020)spa
dcterms.bibliographicCitationJuarez-Salazar, R. and Diaz-Ramirez, V. H., “Operator-based homogeneous coordinates: application in camera document scanning,” Optical Engineering 56(7), 070801 (2017).spa
dcterms.bibliographicCitationZhang, S., [High-Speed 3D Imaging with Digital Fringe Projection Techniques ], CRC Press, Boca Raton (2016)spa
dcterms.bibliographicCitationJuarez-Salazar, R., Giron, A., Zheng, J., and Diaz-Ramirez, V. H., “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Applied Optics 58, 4828–4834 (jun 2019).spa
dcterms.bibliographicCitation] Juarez-Salazar, R., Rodriguez-Reveles, G. A., Esquivel-Hernandez, S., and Diaz-Ramirez, V. H., “Threedimensional spatial point computation in fringe projection profilometry,” Optics and Lasers in Engineering 164, 107482 (May 2023).spa
dcterms.bibliographicCitationHamming, R., [Numerical methods for scientists and engineers ], Dover Publications (2012).spa
dcterms.bibliographicCitationChapra, S. C., [Applied numerical methods with MATLAB for engineers and scientists ], McGraw-Hill (2018)spa
dcterms.bibliographicCitationBenjumea, E., Vargas, R., Juarez-Salazar, R., and Marrugo, A. G., “Toward a target-free calibration of a multimodal structured light and thermal imaging system,” Proceedings of SPIE 13038, 1303808 (2024)spa
dcterms.bibliographicCitationJuarez-Salazar, R., “3D Fringe Data Test: Thermal Texturing.” User Fringe Pattern Data Base (Accessed: August, 2024) http://rjuarezs.com/s_3dfringe.html (August 2024).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1117/12.3028321
dc.subject.keywordsThermal imagingspa
dc.subject.keywordsOptical profilometryspa
dc.subject.keywordsFringe projectionspa
dc.subject.keywordsDistorted pinhole modelspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyIngenieríaspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.