Mostrar el registro sencillo del ítem
Three-dimensional object texturing for visible-thermal fringe projection profilometers
dc.contributor.author | Juarez-Salazar, Rigoberto | |
dc.contributor.author | Benjumea, Eberto | |
dc.contributor.author | Marrugo, Andres G | |
dc.contributor.author | Diaz-Ramirez, Victor H | |
dc.date.accessioned | 2024-11-14T21:04:35Z | |
dc.date.available | 2024-11-14T21:04:35Z | |
dc.date.issued | 2024-09-30 | |
dc.date.submitted | 2024-11-14 | |
dc.identifier.citation | Rigoberto Juarez-Salazar, Eberto Benjumea, Andres G. Marrugo, and Victor H. Diaz-Ramirez "Three-dimensional object texturing for visible-thermal fringe projection profilometers", Proc. SPIE 13136, Optics and Photonics for Information Processing XVIII, 131360E (30 September 2024); https://doi.org/10.1117/12.3028321 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12763 | |
dc.description.abstract | Conventional fringe projection profilometers utilize cameras and projectors in the visible spectrum. Nevertheless, some applications require profilometers with a complementary thermal camera for the infrared spectrum. Since the point cloud is computed from pixel correspondences between the visible camera-projector pair, the texture in the visible spectrum is obtained by direct association of color from each image pixel to its corresponding point in the cloud. Unfortunately, the texture from the thermal camera is not straightforward because of the inexistence of pixel-point correspondences. In this paper, a simple interpolation-based method for determining the texture of the reconstructed objects is proposed. The theoretical principles are reviewed, and an experimental verification is conducted using a visible-thermal fringe projection profilometer. This work provides a helpful framework for three-dimensional data fusion for advanced multi-modal profilometers. | spa |
dc.format.extent | 5 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Proc. SPIE 13136, Optics and Photonics for Information Processing XVIII, 131360E | spa |
dc.title | Three-dimensional object texturing for visible-thermal fringe projection profilometers | spa |
dcterms.bibliographicCitation | Muyshondt, P. G., der Jeught, S. V., and Dirckx, J. J., “A calibrated 3d dual-barrel otoendoscope based on fringe-projection profilometry,” Optics and Lasers in Engineering 149, 106795 (2022) | spa |
dcterms.bibliographicCitation | Geng, J., “Structured-light 3d surface imaging: a tutorial,” Adv. Opt. Photon. 3(2), 128–160 (2011). | spa |
dcterms.bibliographicCitation | Ring, E., “The historical development of temperature measurement in medicine,” Infrared Physics & Technology 49(3), 297–301 (2007) | spa |
dcterms.bibliographicCitation | Juarez-Salazar, R., Zheng, J., and Diaz-Ramirez, V. H., “Distorted pinhole camera modeling and calibration,” Applied Optics 59(36), 11310–11318 (2020) | spa |
dcterms.bibliographicCitation | Juarez-Salazar, R. and Diaz-Ramirez, V. H., “Operator-based homogeneous coordinates: application in camera document scanning,” Optical Engineering 56(7), 070801 (2017). | spa |
dcterms.bibliographicCitation | Zhang, S., [High-Speed 3D Imaging with Digital Fringe Projection Techniques ], CRC Press, Boca Raton (2016) | spa |
dcterms.bibliographicCitation | Juarez-Salazar, R., Giron, A., Zheng, J., and Diaz-Ramirez, V. H., “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Applied Optics 58, 4828–4834 (jun 2019). | spa |
dcterms.bibliographicCitation | ] Juarez-Salazar, R., Rodriguez-Reveles, G. A., Esquivel-Hernandez, S., and Diaz-Ramirez, V. H., “Threedimensional spatial point computation in fringe projection profilometry,” Optics and Lasers in Engineering 164, 107482 (May 2023). | spa |
dcterms.bibliographicCitation | Hamming, R., [Numerical methods for scientists and engineers ], Dover Publications (2012). | spa |
dcterms.bibliographicCitation | Chapra, S. C., [Applied numerical methods with MATLAB for engineers and scientists ], McGraw-Hill (2018) | spa |
dcterms.bibliographicCitation | Benjumea, E., Vargas, R., Juarez-Salazar, R., and Marrugo, A. G., “Toward a target-free calibration of a multimodal structured light and thermal imaging system,” Proceedings of SPIE 13038, 1303808 (2024) | spa |
dcterms.bibliographicCitation | Juarez-Salazar, R., “3D Fringe Data Test: Thermal Texturing.” User Fringe Pattern Data Base (Accessed: August, 2024) http://rjuarezs.com/s_3dfringe.html (August 2024). | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | 10.1117/12.3028321 | |
dc.subject.keywords | Thermal imaging | spa |
dc.subject.keywords | Optical profilometry | spa |
dc.subject.keywords | Fringe projection | spa |
dc.subject.keywords | Distorted pinhole model | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ingeniería | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.