Mostrar el registro sencillo del ítem

dc.contributor.authorSierra Porta, David
dc.date.accessioned2024-10-31T21:21:48Z
dc.date.available2024-10-31T21:21:48Z
dc.date.issued2024
dc.date.submitted2024-10-31
dc.identifier.citationRevised Cross-Correlation and Time-Lag between Cosmic Ray Intensity and Solar Activity Using Chatterjee’s Correlation Coefficient. D. Sierra-Porta. Advances in Space Research (2024).spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12757
dc.description.abstractThis study revisits the cross-correlation between cosmic ray intensity (CRI) and solar activity (SA) by comparing traditional Pearson correlation with Chatterjee’s correlation coefficient. Traditional analyses using Pearson correlation are useful for identifying linear relationships and time lags. However, they may not fully capture more complex interactions in the data. Chatterjee’s correlation coefficient, while sensitive to different types of relationships, including nonlinear ones, provides a complementary perspective on the temporal relationships between CRI and SA. This approach broadens our understanding of potential dependencies, offering additional insights that may not be captured through Pearson correlation alone. The findings reveal that Chatterjee’s correlation complements Pearson’s insights by providing an alternative view of the relationship between cosmic ray intensity (CRI) and solar activity (SA). The results show that Chatterjee’s correlation coefficients are, on average, approximately 45-50% smaller than Pearson’s, which could reflect different sensitivities to the underlying data structure rather than solely indicating a nonlinear component. Additionally, the time lags identified using Chatterjee’s correlation are generally shorter and more consistent across different solar cycles compared to those obtained with Pearson’s correlation, suggesting that CCC may capture temporal patterns in a distinct manner. Further analysis using Dynamic Time Warping (DTW) and Mean Absolute Percentage Error (MAPE) metrics demonstrated that, in more than half of the scenarios considered, alignment based on Chatterjee’s time lags resulted in lower errors and better alignment of the series compared to Pearson’s lags. This indicates that Chatterjee’s method is particularly effective for capturing the immediate and nuanced responses of CRI to SA changes, especially in recent solar cycles. This comprehensive approach provides broader insights into the dynamic interactions between cosmic ray intensity (CRI) and solar activity (SA), highlighting the importance of considering multiple correlation measures, including both linear and nonlinear approaches, in space weather research. The results suggest that Chatterjee’s correlation offers a complementary perspective on these interactions, providing additional details about how SA influences CRI over time, which may not be fully captured by Pearson’s correlation alone.spa
dc.format.extent11 pag.
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSciencedirectspa
dc.titleRevised cross-correlation and time-lag between cosmic ray intensity and solar activity using chatterjee’s correlation coefficientspa
dcterms.bibliographicCitationBishara, A. J., & Hittner, J. B. (2012). Testing the significance of a correlation 743 with nonnormal data: comparison of pearson, spearman, transformation, and 744 resampling approaches. Psychological methods, 17(3), 399. doi:https: 745 //doi.org/10.1037/a0028087spa
dcterms.bibliographicCitationBinder, A. (1959). Considerations of the place of assumptions in correlational analysis. American Psychologist, 14(8), 504. doi:https://psycnet.apa.org/doi/10.1037/h0048094.spa
dcterms.bibliographicCitationBland, J. M., & Altman, D. G. (1994). Correlation, regression, and repeated data. BMJ: British Medical Journal, 308(6933), 896.spa
dcterms.bibliographicCitationBoschini, M., Della Torre, S., Gervasi, M. et al. (2018). Propagation of cos- mic rays in heliosphere: The helmod model. Advances in Space Research, 62(10), 2859–2879. doi:https://doi.org/10.1016/j.asr.2017.04.017.spa
dcterms.bibliographicCitationBreiman, L. (2001). Random forests. Machine learning, 45, 5–32. doi: https://doi.org/10.1023/A:1010933404324.spa
dcterms.bibliographicCitationChatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical Association, 116(536), 2009–2022. doi:https://doi.org/10.1080/01621459.2020.1758115spa
dcterms.bibliographicCitationDobynde, M., Harikumaran, J., Guo, J. et al. (2023). Cosmic radiation re-liability analysis for aircraft power electronics. IEEE Transactions on Transportation Electrification, 10(1), 344–352. doi:https://doi.org/ 76010.1109/TTE.2023.3278319.spa
dcterms.bibliographicCitationDong, M., Wang, B., Wei, J. et al. (2023). Causal identification of single-cell experimental perturbation effects with cinema-ot. Nature Methods, 20(11), 1769–1779. doi:https://doi.org/10.1038/s41592-023-02040-5.spa
dcterms.bibliographicCitationDorman, L. I. (2021). Space weather and cosmic ray effects. In Cli-mate change (pp. 711–768). Elsevier. doi:https://doi.org/10.1016/B978-0-12-821575-3.00033-5.spa
dcterms.bibliographicCitationGervasi, M., Rancoita, P., Usoskin, I. et al. (1999). Monte-carlo approach to galactic cosmic ray propagation in the heliosphere. Nuclear Physics B-Proceedings Supplements, 78(1-3), 26–31. doi:https://doi.org/10.1016/S0920-5632(99)00518-6.spa
dcterms.bibliographicCitationHöeffgen, S. K., Metzger, S., & Steffens, M. (2020). Investigating the effects of cosmic rays on space electronics. Frontiers in Physics, 8, 318. doi:https: //doi.org/10.3389/fphy.2020.00318.spa
dcterms.bibliographicCitationHunter, J. S. (1986). The exponentially weighted moving average. Journal of quality technology, 18(4), 203–210. doi:https://doi.org/10.1080/ 00224065.1986.11979014.spa
dcterms.bibliographicCitationIdosa, C., Giri, A., Adhikari, B. et al. (2023). Variations of cosmic ray intensity with the solar flare index, coronal index, and geomagnetic indices: Wavelet and cross correlation approaches. Physics of Plasmas, 30(8). doi:https://doi.org/10.1063/5.0157553.spa
dcterms.bibliographicCitationIskra, K., Siluszyk, M., Alania, M. et al. (2019). Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014. Solar Physics, 294(9), 115. doi:https://doi.org/10.1007/s11207-019-1509-4.spa
dcterms.bibliographicCitationJokipii, J., & Levy, E. (1977). Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophysical Journal, Part 2-Letters to the Editor, vol. 213, Apr. 15, 1977, p. L85-L88., 213, L85–L88. doi:https://doi.org/10.1086/182415.spa
dcterms.bibliographicCitationKnief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. doi:https://doi.org/10.3758/s13428-021-01587-5.spa
dcterms.bibliographicCitationKoldobskiy, S. A., Kähkönen, R., Hofer, B. et al. (2022). Time lag between cosmic-ray and solar variability: Sunspot numbers and open solar mag-netic flux. Solar Physics, 297(3), 38. doi:https://doi.org/10.1007/s11207-022-01970-1.spa
dcterms.bibliographicCitationKowalski, C. J. (1972). On the effects of non-normality on the distribution of the sample product-moment correlation coefficient. Journal of the Royal Statistical Society: Series C (Applied Statistics), 21(1), 1–12. doi:https://doi.org/10.2307/2346598.spa
dcterms.bibliographicCitationLaken, B. A., & Calogovi ˇ c, J. (2013). Composite analysis with monte carlo methods: an example with cosmic rays and clouds. Journal of Space Weather and Space Climate, 3, A29. doi:https://doi.org/10.1051/swsc/2013051.spa
dcterms.bibliographicCitationLin, Z., & Han, F. (2023). On boosting the power of chatterjee’s rank cor- relation. Biometrika, 110(2), 283–299. doi:https://doi.org/10.1093/ biomet/asac048.spa
dcterms.bibliographicCitationLucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving aver- age control schemes: properties and enhancements. Technometrics, 32(1), 1–12. doi:https://doi.org/10.1080/00401706.1990.10484583.spa
dcterms.bibliographicCitationMaghrabi, A., Aldosari, A., & Almutairi, M. (2021). Correlation analyses be- tween solar activity parameters and cosmic ray muons between 2002 and 2012 at high cutoff rigidity. Advances in Space Research, 68(7), 2941–2952. doi:https://doi.org/10.1016/j.asr.2021.05.016.spa
dcterms.bibliographicCitationMishra, A., Gupta, M., & Mishra, V. (2006). Cosmic ray intensity variations in relation with solar flare index and sunspot numbers. Solar Physics, 239,475–491. doi:https://doi.org/10.1007/s11207-006-0138-x.spa
dcterms.bibliographicCitationMishra, V., & Mishra, A. (2018). Long-term modulation of cosmic819 ray intensity and correlation analysis using solar and heliospheric pa820 rameters. Solar Physics, 293, 1–22. doi:https://doi.org/10.1007/s11207-018-1357-7.spa
dcterms.bibliographicCitationMüller, M. (2007). Dynamic time warping. Information retrieval for music and motion, (pp. 69–84). doi:https://doi.org/10.1007/978-3-540-74048-3_4.spa
dcterms.bibliographicCitationPotgieter, M. S. (2013). Solar modulation of cosmic rays. Living Reviews in So826 lar Physics, 10, 1–66. doi:https://doi.org/10.12942/lrsp-2013-3.spa
dcterms.bibliographicCitationPuth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2014). Effective use of pearson’s product–moment correlation coefficient. Animal behaviour, 93, 183–189. doi:https://doi.org/10.1016/j.anbehav.2014.05.003.spa
dcterms.bibliographicCitationSadeghi, B. (2022). Chatterjee correlation coefficient: a robust alternative for classic correlation methods in geochemical studies-(including “triplecpy”python package). Ore Geology Reviews, 146, 104954. doi:https://doi.org/10.1016/j.oregeorev.2022.104954.spa
dcterms.bibliographicCitationSakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimiza835 tion for spoken word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43–49. doi:https://doi.org/10.1109/TASSP.1978.1163055.spa
dcterms.bibliographicCitationSchober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: ap839 propriate use and interpretation. Anesthesia & analgesia, 126(5), 1763–1768. doi:https://doi.org/10.1213/ANE.0000000000002864.spa
dcterms.bibliographicCitationSenin, P. (2008). Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Hon olulu, USA, 855(1-23), 40. URL: https://www.researchgate.net/profile/Pavel-Senin/publication/228785661_Dynamic_Time_ Warping_Algorithm_Review/links/02bfe5100f11a7929f000000/Dynamic-Time-Warping-Algorithm-Review.pdf.spa
dcterms.bibliographicCitationShi, H., Drton, M., & Han, F. (2022). On the power of chatterjee’s rank cor848 relation. Biometrika, 109(2), 317–333. doi:https://doi.org/10.1093/biomet/asab028spa
dcterms.bibliographicCitationSierra-Porta, D. (2018). Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23. Astro852 physics and Space Science, 363, 1–5. doi:https://doi.org/10.1007/s10509-018-3360-8.spa
dcterms.bibliographicCitationSierra-Porta, D. (2022). On the fractal properties of cosmic rays and sun dy namics cross-correlations. Astrophysics and Space Science, 367(12), 116. doi:https://doi.org/10.1007/s10509-022-04151-5.spa
dcterms.bibliographicCitationSierra-Porta, D., & Domínguez-Monterroza, A.-R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation anal859 ysis. Physica A: Statistical Mechanics and its Applications, 607, 128159. doi:https://doi.org/10.1016/j.physa.2022.128159.spa
dcterms.bibliographicCitationSILSO World Data Center (1964-2024). The international sunspot number. International Sunspot Number Monthly Bulletin and online catalogue,spa
dcterms.bibliographicCitationStansby, D., Green, L. M., van Driel-Gesztelyi, L. et al. (2021). Active region contributions to the solar wind over multiple solar cycles. Solar Physics, 296(8), 116. doi:https://doi.org/10.1007/s11207-021-01861-x.spa
dcterms.bibliographicCitationSullivan, J. H., Warkentin, M., & Wallace, L. (2021). So many ways for as867 sessing outliers: What really works and does it matter? Journal of Business Research, 132, 530–543. doi:https://doi.org/10.1016/j.jbusres.2021.03.066.spa
dcterms.bibliographicCitationTomassetti, N., Bertucci, B., & Fiandrini, E. (2022). Temporal evolution and rigidity dependence of the solar modulation lag of galactic cosmic rays.spa
dcterms.bibliographicCitationPhysical Review D, 106(10), 103022. doi:https://doi.org/10.1103/PhysRevD.106.103022.spa
dcterms.bibliographicCitationUsoskin, I., Koldobskiy, S., Kovaltsov, G. et al. (2020). Revised gle database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956. Astronomy & Astrophysics, 640, A17. doi:https://doi.org/10.1051/0004-6361/202038272.spa
dcterms.bibliographicCitationUsoskin, I. G., Mursula, K., Solanki, S. et al. (2004). Reconstruction of so879 lar activity for the last millennium using be data. Astronomy & Astro880 physics, 413(2), 745–751. doi:https://doi.org/10.1051/0004-6361: 20031533.spa
dcterms.bibliographicCitationUsoskin, I. G., Solanki, S. K., Krivova, N. A. et al. (2021). Solar cyclic activity over the last millennium reconstructed from annual 14c data. Astronomy & Astrophysics, 649, A141. doi:https://doi.org/10.1051/0004-6361/202140711.spa
dcterms.bibliographicCitationVentura-León, J., Peña-Calero, B. N., & Burga-León, A. (2023). The effect of normality and outliers on bivariate correlation coefficients in psychology: A monte carlo simulation. The Journal of General Psychology, 150(4), 405– 422. doi:https://doi.org/10.1080/00221309.2022.2094310.spa
dcterms.bibliographicCitationWu, C. J., Usoskin, I. G., Krivova, N. et al. (2018). Solar activity over nine mil- lennia: A consistent multi-proxy reconstruction. Astronomy & Astrophysics, 615, A93. doi:https://doi.org/10.1051/0004-6361/201731892.spa
dcterms.bibliographicCitationZheng, Y., Jun, I., Tu, W. et al. (2024). Overview, progress and next steps for our understanding of the near-earth space radiation and plasma environment: Science and applications. Advances in Space Research, . doi:https://doi.org/10.1016/j.asr.2024.05.017.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.subject.keywordsCosmic Raysspa
dc.subject.keywordsSolar Activityspa
dc.subject.keywordsCross-Correlationspa
dc.subject.keywordsChatterjee’s correlationspa
dc.subject.keywordsPearson correlationspa
dc.subject.keywordsSpace Weatherspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.