Mostrar el registro sencillo del ítem
Revised cross-correlation and time-lag between cosmic ray intensity and solar activity using chatterjee’s correlation coefficient
dc.contributor.author | Sierra Porta, David | |
dc.date.accessioned | 2024-10-31T21:21:48Z | |
dc.date.available | 2024-10-31T21:21:48Z | |
dc.date.issued | 2024 | |
dc.date.submitted | 2024-10-31 | |
dc.identifier.citation | Revised Cross-Correlation and Time-Lag between Cosmic Ray Intensity and Solar Activity Using Chatterjee’s Correlation Coefficient. D. Sierra-Porta. Advances in Space Research (2024). | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12757 | |
dc.description.abstract | This study revisits the cross-correlation between cosmic ray intensity (CRI) and solar activity (SA) by comparing traditional Pearson correlation with Chatterjee’s correlation coefficient. Traditional analyses using Pearson correlation are useful for identifying linear relationships and time lags. However, they may not fully capture more complex interactions in the data. Chatterjee’s correlation coefficient, while sensitive to different types of relationships, including nonlinear ones, provides a complementary perspective on the temporal relationships between CRI and SA. This approach broadens our understanding of potential dependencies, offering additional insights that may not be captured through Pearson correlation alone. The findings reveal that Chatterjee’s correlation complements Pearson’s insights by providing an alternative view of the relationship between cosmic ray intensity (CRI) and solar activity (SA). The results show that Chatterjee’s correlation coefficients are, on average, approximately 45-50% smaller than Pearson’s, which could reflect different sensitivities to the underlying data structure rather than solely indicating a nonlinear component. Additionally, the time lags identified using Chatterjee’s correlation are generally shorter and more consistent across different solar cycles compared to those obtained with Pearson’s correlation, suggesting that CCC may capture temporal patterns in a distinct manner. Further analysis using Dynamic Time Warping (DTW) and Mean Absolute Percentage Error (MAPE) metrics demonstrated that, in more than half of the scenarios considered, alignment based on Chatterjee’s time lags resulted in lower errors and better alignment of the series compared to Pearson’s lags. This indicates that Chatterjee’s method is particularly effective for capturing the immediate and nuanced responses of CRI to SA changes, especially in recent solar cycles. This comprehensive approach provides broader insights into the dynamic interactions between cosmic ray intensity (CRI) and solar activity (SA), highlighting the importance of considering multiple correlation measures, including both linear and nonlinear approaches, in space weather research. The results suggest that Chatterjee’s correlation offers a complementary perspective on these interactions, providing additional details about how SA influences CRI over time, which may not be fully captured by Pearson’s correlation alone. | spa |
dc.format.extent | 11 pag. | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | * |
dc.source | Sciencedirect | spa |
dc.title | Revised cross-correlation and time-lag between cosmic ray intensity and solar activity using chatterjee’s correlation coefficient | spa |
dcterms.bibliographicCitation | Bishara, A. J., & Hittner, J. B. (2012). Testing the significance of a correlation 743 with nonnormal data: comparison of pearson, spearman, transformation, and 744 resampling approaches. Psychological methods, 17(3), 399. doi:https: 745 //doi.org/10.1037/a0028087 | spa |
dcterms.bibliographicCitation | Binder, A. (1959). Considerations of the place of assumptions in correlational analysis. American Psychologist, 14(8), 504. doi:https://psycnet.apa.org/doi/10.1037/h0048094. | spa |
dcterms.bibliographicCitation | Bland, J. M., & Altman, D. G. (1994). Correlation, regression, and repeated data. BMJ: British Medical Journal, 308(6933), 896. | spa |
dcterms.bibliographicCitation | Boschini, M., Della Torre, S., Gervasi, M. et al. (2018). Propagation of cos- mic rays in heliosphere: The helmod model. Advances in Space Research, 62(10), 2859–2879. doi:https://doi.org/10.1016/j.asr.2017.04.017. | spa |
dcterms.bibliographicCitation | Breiman, L. (2001). Random forests. Machine learning, 45, 5–32. doi: https://doi.org/10.1023/A:1010933404324. | spa |
dcterms.bibliographicCitation | Chatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical Association, 116(536), 2009–2022. doi:https://doi.org/10.1080/01621459.2020.1758115 | spa |
dcterms.bibliographicCitation | Dobynde, M., Harikumaran, J., Guo, J. et al. (2023). Cosmic radiation re-liability analysis for aircraft power electronics. IEEE Transactions on Transportation Electrification, 10(1), 344–352. doi:https://doi.org/ 76010.1109/TTE.2023.3278319. | spa |
dcterms.bibliographicCitation | Dong, M., Wang, B., Wei, J. et al. (2023). Causal identification of single-cell experimental perturbation effects with cinema-ot. Nature Methods, 20(11), 1769–1779. doi:https://doi.org/10.1038/s41592-023-02040-5. | spa |
dcterms.bibliographicCitation | Dorman, L. I. (2021). Space weather and cosmic ray effects. In Cli-mate change (pp. 711–768). Elsevier. doi:https://doi.org/10.1016/B978-0-12-821575-3.00033-5. | spa |
dcterms.bibliographicCitation | Gervasi, M., Rancoita, P., Usoskin, I. et al. (1999). Monte-carlo approach to galactic cosmic ray propagation in the heliosphere. Nuclear Physics B-Proceedings Supplements, 78(1-3), 26–31. doi:https://doi.org/10.1016/S0920-5632(99)00518-6. | spa |
dcterms.bibliographicCitation | Höeffgen, S. K., Metzger, S., & Steffens, M. (2020). Investigating the effects of cosmic rays on space electronics. Frontiers in Physics, 8, 318. doi:https: //doi.org/10.3389/fphy.2020.00318. | spa |
dcterms.bibliographicCitation | Hunter, J. S. (1986). The exponentially weighted moving average. Journal of quality technology, 18(4), 203–210. doi:https://doi.org/10.1080/ 00224065.1986.11979014. | spa |
dcterms.bibliographicCitation | Idosa, C., Giri, A., Adhikari, B. et al. (2023). Variations of cosmic ray intensity with the solar flare index, coronal index, and geomagnetic indices: Wavelet and cross correlation approaches. Physics of Plasmas, 30(8). doi:https://doi.org/10.1063/5.0157553. | spa |
dcterms.bibliographicCitation | Iskra, K., Siluszyk, M., Alania, M. et al. (2019). Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014. Solar Physics, 294(9), 115. doi:https://doi.org/10.1007/s11207-019-1509-4. | spa |
dcterms.bibliographicCitation | Jokipii, J., & Levy, E. (1977). Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophysical Journal, Part 2-Letters to the Editor, vol. 213, Apr. 15, 1977, p. L85-L88., 213, L85–L88. doi:https://doi.org/10.1086/182415. | spa |
dcterms.bibliographicCitation | Knief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior Research Methods, 53(6), 2576–2590. doi:https://doi.org/10.3758/s13428-021-01587-5. | spa |
dcterms.bibliographicCitation | Koldobskiy, S. A., Kähkönen, R., Hofer, B. et al. (2022). Time lag between cosmic-ray and solar variability: Sunspot numbers and open solar mag-netic flux. Solar Physics, 297(3), 38. doi:https://doi.org/10.1007/s11207-022-01970-1. | spa |
dcterms.bibliographicCitation | Kowalski, C. J. (1972). On the effects of non-normality on the distribution of the sample product-moment correlation coefficient. Journal of the Royal Statistical Society: Series C (Applied Statistics), 21(1), 1–12. doi:https://doi.org/10.2307/2346598. | spa |
dcterms.bibliographicCitation | Laken, B. A., & Calogovi ˇ c, J. (2013). Composite analysis with monte carlo methods: an example with cosmic rays and clouds. Journal of Space Weather and Space Climate, 3, A29. doi:https://doi.org/10.1051/swsc/2013051. | spa |
dcterms.bibliographicCitation | Lin, Z., & Han, F. (2023). On boosting the power of chatterjee’s rank cor- relation. Biometrika, 110(2), 283–299. doi:https://doi.org/10.1093/ biomet/asac048. | spa |
dcterms.bibliographicCitation | Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving aver- age control schemes: properties and enhancements. Technometrics, 32(1), 1–12. doi:https://doi.org/10.1080/00401706.1990.10484583. | spa |
dcterms.bibliographicCitation | Maghrabi, A., Aldosari, A., & Almutairi, M. (2021). Correlation analyses be- tween solar activity parameters and cosmic ray muons between 2002 and 2012 at high cutoff rigidity. Advances in Space Research, 68(7), 2941–2952. doi:https://doi.org/10.1016/j.asr.2021.05.016. | spa |
dcterms.bibliographicCitation | Mishra, A., Gupta, M., & Mishra, V. (2006). Cosmic ray intensity variations in relation with solar flare index and sunspot numbers. Solar Physics, 239,475–491. doi:https://doi.org/10.1007/s11207-006-0138-x. | spa |
dcterms.bibliographicCitation | Mishra, V., & Mishra, A. (2018). Long-term modulation of cosmic819 ray intensity and correlation analysis using solar and heliospheric pa820 rameters. Solar Physics, 293, 1–22. doi:https://doi.org/10.1007/s11207-018-1357-7. | spa |
dcterms.bibliographicCitation | Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion, (pp. 69–84). doi:https://doi.org/10.1007/978-3-540-74048-3_4. | spa |
dcterms.bibliographicCitation | Potgieter, M. S. (2013). Solar modulation of cosmic rays. Living Reviews in So826 lar Physics, 10, 1–66. doi:https://doi.org/10.12942/lrsp-2013-3. | spa |
dcterms.bibliographicCitation | Puth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2014). Effective use of pearson’s product–moment correlation coefficient. Animal behaviour, 93, 183–189. doi:https://doi.org/10.1016/j.anbehav.2014.05.003. | spa |
dcterms.bibliographicCitation | Sadeghi, B. (2022). Chatterjee correlation coefficient: a robust alternative for classic correlation methods in geochemical studies-(including “triplecpy”python package). Ore Geology Reviews, 146, 104954. doi:https://doi.org/10.1016/j.oregeorev.2022.104954. | spa |
dcterms.bibliographicCitation | Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimiza835 tion for spoken word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1), 43–49. doi:https://doi.org/10.1109/TASSP.1978.1163055. | spa |
dcterms.bibliographicCitation | Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: ap839 propriate use and interpretation. Anesthesia & analgesia, 126(5), 1763–1768. doi:https://doi.org/10.1213/ANE.0000000000002864. | spa |
dcterms.bibliographicCitation | Senin, P. (2008). Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Hon olulu, USA, 855(1-23), 40. URL: https://www.researchgate.net/profile/Pavel-Senin/publication/228785661_Dynamic_Time_ Warping_Algorithm_Review/links/02bfe5100f11a7929f000000/Dynamic-Time-Warping-Algorithm-Review.pdf. | spa |
dcterms.bibliographicCitation | Shi, H., Drton, M., & Han, F. (2022). On the power of chatterjee’s rank cor848 relation. Biometrika, 109(2), 317–333. doi:https://doi.org/10.1093/biomet/asab028 | spa |
dcterms.bibliographicCitation | Sierra-Porta, D. (2018). Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23. Astro852 physics and Space Science, 363, 1–5. doi:https://doi.org/10.1007/s10509-018-3360-8. | spa |
dcterms.bibliographicCitation | Sierra-Porta, D. (2022). On the fractal properties of cosmic rays and sun dy namics cross-correlations. Astrophysics and Space Science, 367(12), 116. doi:https://doi.org/10.1007/s10509-022-04151-5. | spa |
dcterms.bibliographicCitation | Sierra-Porta, D., & Domínguez-Monterroza, A.-R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation anal859 ysis. Physica A: Statistical Mechanics and its Applications, 607, 128159. doi:https://doi.org/10.1016/j.physa.2022.128159. | spa |
dcterms.bibliographicCitation | SILSO World Data Center (1964-2024). The international sunspot number. International Sunspot Number Monthly Bulletin and online catalogue, | spa |
dcterms.bibliographicCitation | Stansby, D., Green, L. M., van Driel-Gesztelyi, L. et al. (2021). Active region contributions to the solar wind over multiple solar cycles. Solar Physics, 296(8), 116. doi:https://doi.org/10.1007/s11207-021-01861-x. | spa |
dcterms.bibliographicCitation | Sullivan, J. H., Warkentin, M., & Wallace, L. (2021). So many ways for as867 sessing outliers: What really works and does it matter? Journal of Business Research, 132, 530–543. doi:https://doi.org/10.1016/j.jbusres.2021.03.066. | spa |
dcterms.bibliographicCitation | Tomassetti, N., Bertucci, B., & Fiandrini, E. (2022). Temporal evolution and rigidity dependence of the solar modulation lag of galactic cosmic rays. | spa |
dcterms.bibliographicCitation | Physical Review D, 106(10), 103022. doi:https://doi.org/10.1103/PhysRevD.106.103022. | spa |
dcterms.bibliographicCitation | Usoskin, I., Koldobskiy, S., Kovaltsov, G. et al. (2020). Revised gle database: Fluences of solar energetic particles as measured by the neutron-monitor network since 1956. Astronomy & Astrophysics, 640, A17. doi:https://doi.org/10.1051/0004-6361/202038272. | spa |
dcterms.bibliographicCitation | Usoskin, I. G., Mursula, K., Solanki, S. et al. (2004). Reconstruction of so879 lar activity for the last millennium using be data. Astronomy & Astro880 physics, 413(2), 745–751. doi:https://doi.org/10.1051/0004-6361: 20031533. | spa |
dcterms.bibliographicCitation | Usoskin, I. G., Solanki, S. K., Krivova, N. A. et al. (2021). Solar cyclic activity over the last millennium reconstructed from annual 14c data. Astronomy & Astrophysics, 649, A141. doi:https://doi.org/10.1051/0004-6361/202140711. | spa |
dcterms.bibliographicCitation | Ventura-León, J., Peña-Calero, B. N., & Burga-León, A. (2023). The effect of normality and outliers on bivariate correlation coefficients in psychology: A monte carlo simulation. The Journal of General Psychology, 150(4), 405– 422. doi:https://doi.org/10.1080/00221309.2022.2094310. | spa |
dcterms.bibliographicCitation | Wu, C. J., Usoskin, I. G., Krivova, N. et al. (2018). Solar activity over nine mil- lennia: A consistent multi-proxy reconstruction. Astronomy & Astrophysics, 615, A93. doi:https://doi.org/10.1051/0004-6361/201731892. | spa |
dcterms.bibliographicCitation | Zheng, Y., Jun, I., Tu, W. et al. (2024). Overview, progress and next steps for our understanding of the near-earth space radiation and plasma environment: Science and applications. Advances in Space Research, . doi:https://doi.org/10.1016/j.asr.2024.05.017. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.subject.keywords | Cosmic Rays | spa |
dc.subject.keywords | Solar Activity | spa |
dc.subject.keywords | Cross-Correlation | spa |
dc.subject.keywords | Chatterjee’s correlation | spa |
dc.subject.keywords | Pearson correlation | spa |
dc.subject.keywords | Space Weather | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | CC0 1.0 Universal | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ciencias Básicas | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_6501 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.