Mostrar el registro sencillo del ítem

dc.contributor.authorArrechea-Castillo, Darwin Alexis
dc.contributor.authorSolano-Correa, Yady Tatiana
dc.contributor.authorMuñoz-Ordoñez, Julián Fernando
dc.contributor.authorPencue-Fierro, Edgar Leonairo
dc.date.accessioned2024-09-12T14:01:02Z
dc.date.available2024-09-12T14:01:02Z
dc.date.issued2024-07-12
dc.date.submitted2024-09-11
dc.identifier.citationD.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E. L. Pencue-Fierro, "A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10640766.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12731
dc.description.abstractAccurate detection of clouds and shadows present in optical imagery is important in remote sensing for ensuring data quality and reliability. This study introduces a deep learning model capable of generating precise cloud and shadows masks for subsequent filtering. Unlike other works in literature, this model operates efficiently across diverse temporalities, sensors, and spatial resolutions, without the need for any relative or absolute transformation of the original data. This versatility, to date unreported in the literature, marks a significant advancement in the field. The model utilizes data from PlanetScope, Landsat and Sentinel-2 sensors and is based on a simplified convolutional neural network (CNN) architecture, LeNet, which facilitates easy training on standard computers with minimal time requirements. Despite its simplicity, the model demonstrates robustness, achieving accuracy metrics over 96% in validation data. These results show the model potential in transforming cloud and shadow detection in remote sensing, combining ease of use with high accuracy.spa
dc.format.extent4 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE International Geoscience and Remote Sensing Symposium (IGARSS)spa
dc.titleA Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Imagesspa
dcterms.bibliographicCitationZ. Li, H. Shen, Q. Weng, Y. Zhang, P. Dou, and L. Zhang, “Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 89–108, 2022.spa
dcterms.bibliographicCitationR. Gupta and S. J. Nanda, “Cloud detection in satellite images with classical and deep neural network approach: A review,” Multimedia Tools and Applications, vol. 81, no. 22, pp. 31847–31880, 2022.spa
dcterms.bibliographicCitationA. Francis, P. Sidiropoulos, and J.-P. Muller, “Cloud- FCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning,” Remote Sensing, vol. 11, no. 19, p. 2312, 2019.spa
dcterms.bibliographicCitationM. Khoshboresh-Masouleh and R. Shah-Hosseini, “A Deep Learning Method for Near-Real-Time Cloud and Cloud Shadow Segmentation from Gaofen-1 Images,” Computational Intelligence and Neuroscience, vol. 2020, p. e8811630, 2020.spa
dcterms.bibliographicCitationK. Xu, K. Guan, J. Peng, Y. Luo, and S. Wang, “Deep- Mask: An algorithm for cloud and cloud shadow detection in optical satellite remote sensing images using deep residual network,” 2019.spa
dcterms.bibliographicCitationH. Zhai, H. Zhang, L. Zhang, and P. Li, “Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 144, pp. 235–253, 2018.spa
dcterms.bibliographicCitationD. P. Roy, H. Huang, R. Houborg, and V. S. Martins, “A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery,” Remote Sensing of Environment, vol. 264, no. 112586, p. 21, 2021.spa
dcterms.bibliographicCitationZ. Li, H. Shen, Q. Cheng, Y. Liu, S. You, and Z. He, “Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors,” Isprs Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 197–212, 2019.spa
dcterms.bibliographicCitationS. Mahajan and B. Fataniya, “Cloud detection methodologies: Variants and development—a review,” Complex & Intelligent Systems, vol. 6, no. 2, pp. 251–261, 2020.spa
dcterms.bibliographicCitationN. Ma, L. Sun, C. Zhou, and Y. He, “Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network,” REMOTE SENSING, vol. 13, no. 16, p. 3319, 2021.spa
dcterms.bibliographicCitationD. Montero, C. Aybar, M. D. Mahecha, F. Martinuzzi, M. S¨ochting, and S.Wieneke, “A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research,” Scientific Data, vol. 10, no. 1, p. 197, 2023.spa
dcterms.bibliographicCitationX. Xiang, K. Li, B. Huang, and Y. Cao, “A Multi- Sensor Data-Fusion Method Based on Cloud Model and Improved Evidence Theory,” Sensors, vol. 22, no. 15, p. 5902, 2022.spa
dcterms.bibliographicCitationPLANET.COM, “Planet Imagery Product Specifications,” 2022.spa
dcterms.bibliographicCitationD. A. Arrechea-Castillo, Y. T. Solano-Correa, J. F. Mu˜noz-Ord´o˜nez, E. L. Pencue-Fierro, and A. Figueroa- Casas, “Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning,” Remote Sensing, vol. 15, no. 10, p. 2521, 2023.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/IGARSS53475.2024.10640766
dc.subject.keywordsCloud Detectionspa
dc.subject.keywordsCloud Shadow Detectionspa
dc.subject.keywordsDeep Learningspa
dc.subject.keywordsRemote Sensingspa
dc.subject.keywordsMultiSensorspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.publisher.facultyCiencias Básicasspa
dc.type.spahttp://purl.org/coar/resource_type/c_c94fspa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.