Mostrar el registro sencillo del ítem
A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
dc.contributor.author | Arrechea-Castillo, Darwin Alexis | |
dc.contributor.author | Solano-Correa, Yady Tatiana | |
dc.contributor.author | Muñoz-Ordoñez, Julián Fernando | |
dc.contributor.author | Pencue-Fierro, Edgar Leonairo | |
dc.date.accessioned | 2024-09-12T14:01:02Z | |
dc.date.available | 2024-09-12T14:01:02Z | |
dc.date.issued | 2024-07-12 | |
dc.date.submitted | 2024-09-11 | |
dc.identifier.citation | D.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E. L. Pencue-Fierro, "A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10640766. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/12731 | |
dc.description.abstract | Accurate detection of clouds and shadows present in optical imagery is important in remote sensing for ensuring data quality and reliability. This study introduces a deep learning model capable of generating precise cloud and shadows masks for subsequent filtering. Unlike other works in literature, this model operates efficiently across diverse temporalities, sensors, and spatial resolutions, without the need for any relative or absolute transformation of the original data. This versatility, to date unreported in the literature, marks a significant advancement in the field. The model utilizes data from PlanetScope, Landsat and Sentinel-2 sensors and is based on a simplified convolutional neural network (CNN) architecture, LeNet, which facilitates easy training on standard computers with minimal time requirements. Despite its simplicity, the model demonstrates robustness, achieving accuracy metrics over 96% in validation data. These results show the model potential in transforming cloud and shadow detection in remote sensing, combining ease of use with high accuracy. | spa |
dc.format.extent | 4 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | spa |
dc.title | A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images | spa |
dcterms.bibliographicCitation | Z. Li, H. Shen, Q. Weng, Y. Zhang, P. Dou, and L. Zhang, “Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 89–108, 2022. | spa |
dcterms.bibliographicCitation | R. Gupta and S. J. Nanda, “Cloud detection in satellite images with classical and deep neural network approach: A review,” Multimedia Tools and Applications, vol. 81, no. 22, pp. 31847–31880, 2022. | spa |
dcterms.bibliographicCitation | A. Francis, P. Sidiropoulos, and J.-P. Muller, “Cloud- FCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning,” Remote Sensing, vol. 11, no. 19, p. 2312, 2019. | spa |
dcterms.bibliographicCitation | M. Khoshboresh-Masouleh and R. Shah-Hosseini, “A Deep Learning Method for Near-Real-Time Cloud and Cloud Shadow Segmentation from Gaofen-1 Images,” Computational Intelligence and Neuroscience, vol. 2020, p. e8811630, 2020. | spa |
dcterms.bibliographicCitation | K. Xu, K. Guan, J. Peng, Y. Luo, and S. Wang, “Deep- Mask: An algorithm for cloud and cloud shadow detection in optical satellite remote sensing images using deep residual network,” 2019. | spa |
dcterms.bibliographicCitation | H. Zhai, H. Zhang, L. Zhang, and P. Li, “Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 144, pp. 235–253, 2018. | spa |
dcterms.bibliographicCitation | D. P. Roy, H. Huang, R. Houborg, and V. S. Martins, “A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery,” Remote Sensing of Environment, vol. 264, no. 112586, p. 21, 2021. | spa |
dcterms.bibliographicCitation | Z. Li, H. Shen, Q. Cheng, Y. Liu, S. You, and Z. He, “Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors,” Isprs Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 197–212, 2019. | spa |
dcterms.bibliographicCitation | S. Mahajan and B. Fataniya, “Cloud detection methodologies: Variants and development—a review,” Complex & Intelligent Systems, vol. 6, no. 2, pp. 251–261, 2020. | spa |
dcterms.bibliographicCitation | N. Ma, L. Sun, C. Zhou, and Y. He, “Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network,” REMOTE SENSING, vol. 13, no. 16, p. 3319, 2021. | spa |
dcterms.bibliographicCitation | D. Montero, C. Aybar, M. D. Mahecha, F. Martinuzzi, M. S¨ochting, and S.Wieneke, “A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research,” Scientific Data, vol. 10, no. 1, p. 197, 2023. | spa |
dcterms.bibliographicCitation | X. Xiang, K. Li, B. Huang, and Y. Cao, “A Multi- Sensor Data-Fusion Method Based on Cloud Model and Improved Evidence Theory,” Sensors, vol. 22, no. 15, p. 5902, 2022. | spa |
dcterms.bibliographicCitation | PLANET.COM, “Planet Imagery Product Specifications,” 2022. | spa |
dcterms.bibliographicCitation | D. A. Arrechea-Castillo, Y. T. Solano-Correa, J. F. Mu˜noz-Ord´o˜nez, E. L. Pencue-Fierro, and A. Figueroa- Casas, “Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning,” Remote Sensing, vol. 15, no. 10, p. 2521, 2023. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/IGARSS53475.2024.10640766 | |
dc.subject.keywords | Cloud Detection | spa |
dc.subject.keywords | Cloud Shadow Detection | spa |
dc.subject.keywords | Deep Learning | spa |
dc.subject.keywords | Remote Sensing | spa |
dc.subject.keywords | MultiSensor | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.publisher.faculty | Ciencias Básicas | spa |
dc.type.spa | http://purl.org/coar/resource_type/c_c94f | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.