Show simple item record

Herramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrange

dc.contributor.authorAnzola, Diego
dc.contributor.authorCastro, Julio
dc.contributor.authorGiral, Diego
dc.coverage.spatialColombia
dc.date.accessioned2021-08-26T13:20:38Z
dc.date.available2021-08-26T13:20:38Z
dc.date.issued2020-02-08
dc.date.submitted2021-08-24
dc.identifier.citationAnzola, D., Castro, J., & Giral, D. (2021). Herramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrange. Transactions on Energy Systems and Engineering Applications, 2(1), 1-16. https://doi.org/10.32397/tesea.vol2.n1.1spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10360
dc.description.abstractEl análisis del flujo óptimo es un problema complejo y desafiante por sus características no lineales. La inclusión de restricciones de potencia y los modelos de las líneas de transmisión hacen complejo determinar el respectivo despacho. Los multiplicadores de Lagrange son un método de optimización clásico que permite solucionar problemas de despacho económico de múltiples variables sujetas con diversas restricciones. Este articulo presenta el desarrollo de una herramienta de simulación denominada SOPF (Software Optimal Power Flow), desarrollada en Guide-Matlab y que permite analizar el problema de flujo óptimo clásico de un sistema de potencia con pérdidas y con restricciones de potencia activa, el simulador desarrollado es un herramienta académica de apoyo para los estudiantes, profesores y personas interesadas en la aplicación de algoritmos de optimización para la operación económica de sistemas eléctricos de potencia. Como métricas, el simulador determina el despacho de la potencia activa de cada generador, los costos de generación de la potencia despachada, el aporte de cada máquina, los costos incrementales y las pérdidas de acuerdo al balance de potencia. Finalmente, los resultados se presentan a través de dos casos de estudio: flujo óptimo clásico con pérdidas y sin restricciones de potencia activa y flujo óptimo clásico con pérdidas y con restricciones de potencia activa. Para ambos casos, se obtienen errores inferiores al 1 %.spa
dc.description.abstractThe optimal flow analysis is a complex and challenging problem because of its non-linear characteristics. It is difficult to determine the respective flow of active power due to the inclusion of power restrictions and models of the transmission lines. Lagrange multipliers are a classical optimization method that allows solving the economic flow of multiple variables subject to various limits. This article presents a simulation tool called SOPF (Software Optimal Power Flow) developed in Guide-Matlab. This tool analyzes the classical optimal flow problem of a power system with leaks and energetic power limitations. This simulator is an academic support tool for students, professors, and people interested in applying optimization algorithms for economic electrical power systems. The software not only determines the flow of the power of each generator, the costs of the generated flow power, the contribution of each machine, the incremental costs, and the leaks according to the power balance. Finally, the results are presented through two case studies: classic optimal flow with losses and without active power restrictions and classical optimal flow with leaks and brisk power restrictions. For both cases, errors of less than 1 % are obtained.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceTESEA 2021, Volume 2, Number 1spa
dc.titleHerramienta de simulación para el análisis de flujo óptimo clásico utilizando multiplicadores de Lagrangespa
dcterms.bibliographicCitationAlvarez-Bustos, A., Kazemtabrizi, B., Shahbazi, M., and Acha-Daza, E. (2021). Universal branch model for the solution of optimal power flows in hybrid AC/DC grids. International Journal of Electrical Power & Energy Systems, 126:106543. doi:https://doi.org/10.1016/j.ijepes.2020.106543spa
dcterms.bibliographicCitationBukhsh, W., Edmunds, C., and Bell, K. (2020). OATS: Optimisation and Analysis Toolbox for Power Systems. IEEE Transactions on Power Systems, 35(5):3552–3561. doi:10.1109/TPWRS.2020.2986081.spa
dcterms.bibliographicCitationCastro Rico, J. E., Anzola Bustos, D. A., and Giral, D. (2019). Software en Matlab para el flujo óptimo clásico parael despacho hidrotérmico. PhD thesis, Universidad Distrital Francisco José de Caldas.spa
dcterms.bibliographicCitationChaudhary, R., Sethi, S., Keshari, R., and Goel, S. (2012). A study of comparison of Network Simulator -3 and Network Simulator -2. International Journal of Computer Science and Information Technologies.spa
dcterms.bibliographicCitationChen, H., Ngan, H., and Zhang, Y. (2016). Power system optimization: large-scale complex systems approaches. John Wiley & Sons.spa
dcterms.bibliographicCitationCuffe, P. (2020). Optimization and Visualization Tools for Situational Awareness in Highly Renewable Power Systems. In 2020 6th IEEE International Energy Conference (ENERGYCon), pages 930–933. doi:10.1109/ENERGYCon48941.2020.9236524.spa
dcterms.bibliographicCitationDas, J. C. (2017). Load flow optimization and optimal power flow. Crc Press.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Garzón-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., and Rodriguez-Cabal,M.A. (2020). Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks. Transactions on Energy Systems and Engineering Applications, 1(1):13–31. doi:10.32397/tesea.vol1.n1.2.spa
dcterms.bibliographicCitationHasan, F., Kargarian, A., and Mohammadi, A. (2020). A survey on applications of machine learning for optimal power flow. In 2020 IEEE Texas Power and Energy Conference, TPEC 2020. doi:10.1109/TPEC48276.2020.9042547.spa
dcterms.bibliographicCitationIlyas, A. M., Suyuti, A., Gunadin, I. C., and Siswanto, A. (2020). Optimal Power Flow the Sulselrabar 150 KV system before and after the penetration of wind power plants considering power loss and generation costs. IOP Conference Series: Materials Science and Engineering, 850:12030. doi:10.1088/1757-899x/850/1/012030.spa
dcterms.bibliographicCitationMa, X. and Elia, N. (2019). Optimization Dynamics: A Bus-Level Distributed Approach for Optimal Power Flows. IEEE Transactions on Control of Network Systems, 6(2):642–652. doi:10.1109/TCNS.2018.2864140.spa
dcterms.bibliographicCitationMontoya, O. D. (2017). Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation. Ingeniería y Ciencia, 13(26):39–63. doi:10.17230/ingciencia.13.26.2.spa
dcterms.bibliographicCitationPinheiro, R. B. N. M., Nepomuceno, L., and Balbo, A. R. (2020). Solving large-scale reactive optimal power flow problems by a primal–dual M2BF approach. Optimization and Engineering, 21(2):485–515. doi:10.1007/s11081-019-09451-4.spa
dcterms.bibliographicCitationThurner, L., Scheidler, A., Schäfer, F., Menke, J., Dollichon, J., Meier, F., Meinecke, S., and Braun, M. (2018). Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Transactions on Power Systems, 33(6):6510–6521. doi:10.1109/TPWRS.2018.2829021.spa
dcterms.bibliographicCitationWood, A. J., Wollenberg, B. F., and Sheblé, G. B. (2013). Power generation, operation, and control. John Wiley & Sons.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doiDOI: 10.32397/tesea.vol2.n1.1
dc.subject.keywordsDespacho económicospa
dc.subject.keywordsFlujo óptimo de potenciaspa
dc.subject.keywordsMultiplicadores de Lagrangespa
dc.subject.keywordsOptimización no linealspa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Electrónicaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/