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Abstract. A full time-direct Boundary Element Formulation for the dynamic analysis of elastic
membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the
classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the
acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic
fundamental solution is used in the boundary element formulation for the elastic membrane. The
boundary element formulation for the acoustic fluid is based on the fundamental solution of three
dimensional Poisson equation. Domain integrals related to inertial terms and those related with
distributed pressure on membrane, were treated using the Dual Reciprocity Boundary Element
Method. Fluid-structure coupling equations were established considering the continuity of the
normal acceleration of the particles and dynamic pressure at fluid-structure interfaces. The time
integration is carried out using the Newmark method. Results obtained shows the accuracy and
efficiency of the proposed boundary element formulation.

1. Introduction

Acoustic problems in real life applications involve considerations of structural and acoustic part
together and thus calls for a coupled vibroacoustic treatment rather a pure acoustic approach.
Thus, whenever an elastic structure is in contact with a fluid, the structural vibrations and the
acoustic pressure field in the fluid are influenced by the mutual vibro-acoustic coupling interaction
[1].

The analysis of fluid-structure coupled systems is a challenging and complex task. In general,
the use of experimentation or numerical methods represent the two uniques alternatives to obtain
approximate solutions for these kind of problems. However, numerical methods based on domain
discretization requires refined meshes for high frequency problems, since the length of the elements
should be proportional to the size of the wavelength. This means a more time-consuming model.

The boundary element method (BEM) is a modern numerical technique which has enjoyed
increasing popularity over the last two decades, and is now an established alternative to traditional
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computational methods of engineering analysis [2, 3]. The main advantage of the BEM is its unique
ability to provide a complete solution in terms of boundary values only, with substantial savings in
modelling effort.

Since consolidation of the boundary element method (BEM) as reliable numerical method for
structural and fluid analysis, linear vibrations of structures coupled with an internal fluid has been
carried out using hybrid BEM-FEM formulations. In these formulations BEM is used to model the
fluid media and the FEM to model the structural response [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17]. The main advantage of such formulations lies in a substantial reduction in the number of
the degrees of freedom in the discretization of the fluid domain. However, in this formulations is
necessary to discretize the entirely structure due to the use of the FEM.

Few BEM-BEM coupled formulations for fluid structure-interaction has been published [18, 19,
20, 21, 22, 23]. However, despite the fact that the BEM has been used for dynamic analysis of
membrane structures and for analyses of acoustic fluids, to the best of authors knowledge, these
formulations do not have been used for the fluid-structure interaction problem analysis using a full
boundary element formulation for such purpose.

In this work, a new full boundary element formulation for the transient dynamic analysis of
acoustic fluids coupled to elastic membranes is presented. Membranes are modeled using a boundary
element formulation based on the linear elastic membrane theory under small deflection. The
acoustic fluid is modeled using a boundary element formulation for the three-dimensional acoustic
wave equation. Fluid-structure coupling equations were established considering the continuity of
the normal acceleration of the particles at fluid-structure interfaces. Domain integrals on both,
fluid and structure equations, were treated using the Dual Reciprocity Boundary Element Method.
The developed formulation was used to study the linear vibration response of elastic membranes
coupled to acoustic fluids.

2. Structure subjected to a fluid pressure loading
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Figure 1. Fluid-structure interaction problem

Consider a partially opened cavity Ωf with ridig walls and a flexible elastic membrane Ωs with
mass density ρs and thickness h (see figure 1). Cavity contains an homogeneous and isotropic
acoustic fluid with mass density ρf . The membrane vibrations and the acoustic pressure field
in the fluid are influenced by the mutual vibro-acoustic coupling interaction. In this work, the
vibro-acoustic coupling interaction is modeled using an eulerian formulation where the acoustic
response is described by the pressure, while the membrane response is described by the transversal
displacement field.
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2.1. Acoustic wave equation

nfΩf

Γp
f

Γq
f

ρf , cf

x2x1

x3

q = ρf (∂p/∂nf )

dΓq
f

Figure 2. Acoustic fluid domain

The dynamic pressure of an ideal inviscid fluid under small perturbations in a spatial region Ωf

confined by the boundary surface Γf = Γpf ∪ Γqf , is governed by the wave equation (see figure 2)

[24]:

p,αα =
1

c2
f

p̈ (1)

In this equation p is the fluid pressure, c2
f = κ/ρf stands for wave propagation velocity, κ is the

bulk modulus. Above equation can be modified to include the effect of presence of an acoustic
source. Double dot represents a second time derivative. Indicial notation is used throughout this
work. Greek indices vary from 1 to 2 and Roman indices from 1 to 3. The boundary and initial
conditions for equation (1) in the time interval [0, t∗] are:

p(x, t) = p̂(x, t), x ∈ Γpf , t ∈ [0, t∗]

q(x, t) = nfi p,i = q̂(x, t), x ∈ Γqf , t ∈ [0, t∗]

p(x, 0) = p̂0(x), ṗ(x, 0) = ˆ̇p0(x), x ∈ Ωf (2)

where nfi are the components of the outward normal vector nf at boundary. and t denotes time.

2.2. Dynamic equation of an elastic membrane

Now consider a linear elastic membrane with thickness h ocuppying the spatial domain Ωw confined

by the boundary Γs = Γws ∪ Γfs (see figure 3). An initial tension T0 is uniformly applied to
the membrane. In this work, the small deflection elastic membrane theory is considered. Thus,
differential equation describing the trasversal displacement w(x, t) of this membrane in the time
interval [0, t∗] is given by:

w,αα +
pw
T0

=
1

c2
w

ẅ (3)
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where c2
w = T0/ρs and pw(x, t) is a distributed pressure applied over the membrane. The boundary

and initial conditions for this equation are given by:

w(x, t) = ŵ(x, t), x ∈ Γws , t ∈ [0, t∗]

f(x, t) = nwi w,i = f̂(x, t), x ∈ Γfs , t ∈ [0, t∗]

w(x, 0) = ŵ(x), ẇ(x, 0) = ˆ̇w(x), x ∈ Ωs (4)

In these expressions, nwi are the components of the outward normal vector nw at boundary.

Ωs

x1

Γw
s

Γf
s

x2

x3

f = T0(∂w/∂nw)

w, T0
h

pw

nw

Figure 3. Elastic membrane domain

3. Boundary element equations

3.1. Boundary element equations for acoustic wave equation

The derivation of the integral formulation for equation (1) is based on the application of the
Boundary Element Method to the acoustic wave equation as presented in [3]. Thus, by using
the weighted residual method and making use of the Green’s identity, the following equation is
obtained:

c(x′)p(x′) +

∫
Γf

Q(x′,x)p(x)dΓf =

∫
Γf

P (x′,x)q(x)dΓf

+
1

c2
f

∫
Ωf

P (x′,X)p̈(X)dΩf (5)

In this equation, x′ and x represent collocation and field points, respectively; P (x′,x) and
Q(x′,x) are fundamentals solutions for pressure and gradient pressures for three dimensional
acoustic problems, respectively, as presented in [3]. The value of c(x′) is equal to 1

2 when x′ is
located on a smooth boundary.

In order to threat the domain integral, the Dual Reciprocity Boundary Element Method (DRM)
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is used as presented in [25]. In this way, equation (5) can be re-written as:

c(x′)p(x′) +

∫
Γf

Q(x′,x)p(x)dΓf =

∫
Γf

P (x′,x)q(x)dΓf

+
1

c2

NDRF∑
j=1

α̈j(t)

[
ciP̂ij +

∫
Γf

Q(x′,x)P̂jdΓf −
∫

Γf

P (x′,x)Q̂jdΓf

]
(6)

In this equation, NDRF represents the number of total DRM collocations points used in the fluid;
P̂j(x

′,x) and Q̂j(x
′,x) are the particular solutions to equivalent homogeneous equation (1). These

particular solutions were obtained considering the function fj(r) = 1 + rj for the approximation
of p̈(t), as presented in [25]. Coefficients α̈j are related to p̈ through: p̈ = Fijα̈j(t), where Fij is a
matrix of coefficients, obtained by taking the value of p̈(t) at different DRM points.

To discretize boundary surfaces of the acoustic medium, N boundary quadrilateral elements
were used and p(x) and q(x) were assumed to be constant over each element and equal to their
values at the mid-element node. Thus, the discretized form of equation (6) is given by:

ci(x
′)p(x′, t) +

N∑
k=1

[ ∫
Γk
Q(x′,x)dΓ

]
pk(t)−

N∑
k=1

[ ∫
Γk
P (x′,x)dΓ

]
qk(t) =

1

c2
f

NDRF∑
j=1

α̈j

[
ci(x

′)P̂ij(x
′,x) +

N∑
k=1

∫
Γk
Q(x′,x)P̂j(x

′,x)dΓ

−
N∑
k=1

∫
Γk
P (x′,x)Q̂j(x

′,x)dΓ
]

(7)

Applying this equation at each collocation point, the following linear system of equations is
obtained:

fMp̈ + fHp = fGq (8)

where fM is the fluid mass matrix, fH and fG are boundary element influence matrices; p and q
are vectors of nodal pressures and normal derivative of pressure, respectively.

3.2. Boundary element equations for an elastic membrane

The derivation of the integral formulation for equation (3) is based on the application of the BEM
to the membrane equation as presented in [3]. Thus, by using the weighted residual method, and
making use of the Green’s identity, the integral formulation for equation (3) is given by:

c(x′)w(x′, t) +

∫
Γs
T (x′,x)w(x, t)dΓs −

∫
Γs
W (x′,x)f(x, t)dΓs

= − 1

T0

∫
Ωs
W (x′,x)pw(x, t)dΩs +

1

c2
w

∫
Ωs
W (x′,x)ẅ(x, t)dΩs (9)

where x and x′ are field and collocation points respectively, W (x′,x) and T (x′,x) are fundamental
solutions for displacement and traction, respectively as given in [2]. c(x′) is the jump term arising
from the terms of O(1/r) in the kernel T (x′,x).
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In this work, the DRM was used to transform domain integrals related to inertial terms into
boundary integrals. In this way, this equation (9) can be re-written as [25]:

ci(x
′)w(x′, t) +

∫
Γs
T (x′,x)w(x, t)dΓs −

∫
Γs
W (x′,x)f(x, t)dΓs =

− 1

T0

NDRM∑
j=1

αj(t)
[
ci(x

′)Ŵj(x, t) +

∫
Γs
T (x′,x)Ŵj(x

′,x)dΓs

−
∫

Γs
W (x′,x)T̂j(x

′,x)dΓs

]

+
1

c2
w

MDRM∑
j=1

β̈j(t)
[
ci(x

′)Ŵj(x, t) +

∫
Γs
T (x′,x)Ŵj(x

′,x)dΓs

−
∫

Γs
W (x′,x)T̂j(x

′,x)dΓs

]
(10)

where NDRM represent the total number of DRM collocation used in the membrane; T̂j(x
′,x) and

Ŵj(x
′,x) are the particular solutions to equivalent homogeneous equation (3). These particular

solutions were obtained considering the function fj(r) = 1 + rj for the approximation of ẅ(t) and
pw(t) terms, as presented in [25]. Coefficients αj are related to pw(t) through: pw = Aijαj(t),
where Aij is a matrix of coefficients, obtained by taking the value of p(t) at different DRM points.

Similarly, coefficients β̈j are related to ẅ through: ẅ = Bij β̈j(t), where Bij is a matrix of coefficients,
obtained by taking the value of p̈(t) at different DRM points.

Applying this equation at each collocation point, the following linear system of equations is
obtained:

sMẅ + sHw = sGf − sBpw (11)

Here sM is the membrane mass matrix, sH and sG are the influence matrices, sB is the influence
matrix related with distributed pressure pw applied over the membrane.

4. Fluid-structure coupling equations

Fluid-structure coupling equations are given by compatibility considerations about normal pressure
and dynamic pressure force acting at the fluid-structure interface. Mathematically, these conditions
can be written as follows [26]:

nf ·∇p = qn ≡ −ρwCwẅ (12)

pw ≡ −Cfp (13)

That is, pressure gradient acting on the fluid-structure interface Γfs are related to normal
acceleration of the plate and the acoustic pressure is equilibrated with pressure on the membrane
(see figure 4). In these equations, Cw and Cf represent connectivity matrices joining fluid and
structural degree of freedom at fluid-structure interface.

Replacing equations (12) and (13) into equations (8) and (11) we obtain the coupled fluid-
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Figure 4. Acoustic fluid domain

structure equation problem:[
sM 0
S fM

]{
ẅ
p̈

}
+

[
sH −A
0 fH

]{
w
p

}
=

[
sG 0
0 fGff

]{
t
q

}
(14)

In this equation, the off-diagonal sub-matrices A = sBfsCf and S = ρw
fGfsCw are fluid-

membrane coupling matrices. fGfs and fGff are sub-matrices of fG related with degrees of
freedom defined on the interface Γfs.

sBfs is a sub-matrix of sB related with pressure terms
defined in Ωs.

Equations (14) can be rewritten in a general way as:

Mü + Hu = Gr (15)

where, ü = {ẅ, p̈}T , u = {w,p}T and r = {f ,q}T .

5. Time integration

The two integration schemes which were tested to obtain the time response for the equation (15)
are described below.

The Houbolt Method
The Houbolt integration scheme is an explicit unconditionally stable algorithm based on backward-
type finite difference formula with error of order O(∆τ2). The most important aspect of
this method, when compared to other time integration methods based on central difference
approximations or Newmark scheme, is the introduction of artificial damping which truncates the
influence of higher modes in the response. Here the acceleration is approximated as:

üτ+∆τ =
1

∆τ2
(2uτ+∆τ − 5uτ + 4uτ−∆τ − uτ−2∆τ ) (16)
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where ∆τ represents the time-step. Writing equation (15) at time τ + ∆τ :

Müτ+∆τ + Huτ+∆τ = Grτ+∆τ (17)

and substituting equation (16) into equation (17), we have:

(2M + ∆τ2H)uτ+∆τ − 1

∆τ2
Grτ+∆τ = M(5uτ − 4uτ−∆τ − uτ−2∆τ ) (18)

The above equation allows the calculation of the distribution of u at time τ + ∆τ by using
boundary conditions at that time and information from three previous time steps. This algorithm
requires a special starting procedure in which initial conditions for u are employed to calculate u1

and u2.

The Newmark Method
In this method the acceleration is approximated as:

üτ+∆τ =
1

β∆τ2

[
uτ+∆τ − uτ

]
+

1

β∆τ
u̇τ − (1− 2β)

2β
üτ (19)

substituting equation (19) into equation (15), we have:

(
M

β∆τ2
+ H

)
uτ+∆τ −Grτ+∆τ = M

[
1

β∆τ2
uτ − 1

β∆τ
u̇τ +

(1− 2β)

2β
üτ
]

(20)

6. Numerical examples

The results shown below for the different examples were obtained mainly from the Newmark method
since the Houbold method, in general, does not converge. Hereinafter HBEM and NBEM will refer
to the combination of BEM with the Houbolt and the Newmark method, respectively.

6.1. Box-shaped structure containing an acoustic fluid subjected a Heaviside load coupled to a membrane

The first example consists of a partially opened box-shaped structure with ridig walls and a flexible
elastic membrane with cw = 0.7071 m/s as presented in figure 5. The structure contains an acoustic
fluid with mass density ρf = 1.21 kg / m3 and a bulk’s modulus κ = 139876 Pa. A distributed unit
pressure load p(t) = −1.0 Pa is applied over the face of the structure located at x3 = 2 m. Pressure

gradients q = nfi p,i are considered zero at the other faces. Initial conditions for this problem are
u(x, 0) = u̇(x, 0) = 0.

To validate the BEM solution, a 3D finite element code (FEM) for this problem was developed.
The meshes used for discretization are resumed at the table below.

These collocation points are coincidents with fluid collocation points located in the fluid-
membrane interface.

6.2. Box-shaped structure containing an acoustic fluid subjected an harmonic load coupled to a membrane

For the second example, only the Heaviside pressure load was changed for a harmonic load defined
as p(t) = −sin(wt) Pa. Here both the frequency w and the amplitude was set to one.
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x2
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Figure 5. Box-shaped structure coupled to a membrane

Table 1. FEM Meshes
Mesh Number of 3D ele-

ments
Number of fluid
nodes

Number of 2D
elements

Number of mem-
brane nodes

FEM 6x6x6 216 343 36 49
FEM 8x8x20 1280 1701 64 81

FEM 12x12x20 2880 3549 144 169
FEM 16x16x20 5120 6069 256 289

Table 2. BEM Meshes
Mesh Number of 2D

quadrilateral ele-
ments

Number of interior
collocation points

Number of 2D
constant ele-
ments

Number of interior
collocation points

BEM 5x5x5 125 125 20 25
BEM 7x7x7 343 125 28 49
BEM 9x9x9 729 125 36 81

BEM 11x11x11 1331 125 44 121
BEM 15x15x15 3375 125 60 225

6.3. Channel-shaped structure containing an acoustic fluid coupled to an inclined membrane

In this example lets to analyze a partially opened Channel-shaped structure with rigid walls
containing an acoustic fluid coupled to a inclined flexible elastic membrane located at the right
side of the channel. The membrane wave propagation velocity, the acoustic fluid mass density and
the fluid compressibility are respectively cw = 0.7071 m/s, ρf = 1.21 kg / m3 and κ = 139876 Pa.
A distributed harmonic pressure load p(t) = −sin(wt) Pa is applied over the membrane, see the

figure 1. Pressure gradients q = nfi p,i = considered zero at the rigid walls. Initial conditions for
this problem are u(x, 0) = u̇(x, 0) = 0.
The convergence in time for the displacement and pressure, using a refined mesh are shown below
in figures 13 and 14. Figure 13 shows that the behavior of displacement over time as well as for
pressure in figure 14 is periodic.
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Figure 6. Displacement time history at point A(0.25,-0.25,-1) using DR-BEM with Newmark method
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Figure 7. Pressure time history at point A(0.25,-0.25,-1) using DR-BEM with Newmark method

6.4. Channel-shaped structure containing an acoustic fluid coupled to a membrane

The last example consists of a partially opened Channel-shaped structure with rigid walls containing
an acoustic fluid coupled to a flexible elastic membrane located at top face of the channel. All
properties, pressure load and boundary conditions remain as before, see the figure 15.

The convergence in time for the displacement and presure, using a refined mesh are shown below
in figures 16 and 17. It can be observed that the time history for displacement is lightly different
compared with the inclined membrane, i.e., the shape of the wave is similar and only the amplitude
changes, because the dimensions are differents, and as it was expected, the longer membrane has
higher displacement at the center .
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Figure 8. Displacement time history at point A(0.25,-0.25,-1) using DR-BEM with Newmark or Houbolt method
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Figure 10. Displacement time history at point A(0.25,-0.25,-1) using DR-BEM with Newmark method

0 1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

P
re

s
s
u

re
 (

P
a

)

 

 

NBEM 15x15x15 ∆T=0.25 s

NBEM 15x15x15 ∆T=0.1 s

NBEM 15x15x15  ∆T=0.01 s

FEM 16x16x20  ∆T=0.01 s

Figure 11. Pressure time history at point A(0.25,-0.25,-1) using DR-BEM with Newmark method

Figure 12. Channel 1
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Figure 13. Displacement time history at point A(1.25,0.5,0.5) using DR-BEM and Newmark method
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Figure 14. Pressure time history at point A(1.25,0.5,0.5) using DR-BEM and Newmark method

Figure 15. Channel 2
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Figure 16. Displacement time history at point A(0.5,0.5,1) using DR-BEM and Newmark method
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Figure 17. Pressure time history at point A(0.5,0.5,1) using DR-BEM and Newmark method
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7. Conclusions

A new full boundary element formulation for the transient dynamic analysis of acoustic fluids
coupled to elastic membranes is presented. Membranes were modeled using a boundary element
formulation based on the linear elastic membrane theory under small deflection. The acoustic
fluid was modeled using a boundary element formulation for the three dimensional acoustic wave
equation. Fluid-structure coupling equations were established considering the continuity of the
normal acceleration of the particles at fluid-structure interfaces. Domain integrals on both, fluid
and structure equations, were treated using the Dual Reciprocity Boundary Element Method.
Results show good agreement with those obtained from finite element models, turning the proposed
formulation in an alternative numerical engineering tool for the dynamic analysis of acoustic fluids
coupled flexible elastic membranes.
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