
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A Novel Full Boundary Element Formulation for Harmonic Analysis of
Elastic Membranes Coupled to Acoustics Fluids
To cite this article: A J Narváez-Cruz et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 844 012061

 

View the article online for updates and enhancements.

This content was downloaded from IP address 181.140.249.248 on 07/09/2020 at 17:26

https://doi.org/10.1088/1757-899X/844/1/012061


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Expotecnología 2019 "Research, Innovation and Development in Engineering"

IOP Conf. Series: Materials Science and Engineering 844 (2020) 012061

IOP Publishing

doi:10.1088/1757-899X/844/1/012061

1

A Novel Full Boundary Element Formulation for

Harmonic Analysis of Elastic Membranes Coupled to

Acoustics Fluids
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1 Universidad Tecnológica de Boĺıvar, Cartagena de Indias, Colombia
2 Institución Tecnológica Colegio Mayor de Boĺıvar, Cartagena de Indias, Colombia
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Abstract. A novel full Boundary Element Formulation for the harmonic analysis of elastic
membranes coupled to acoustics fluid is presented. The elastic membranes is modeled using the
classical linear elastic pre-stretched membrane theory. The acoustic fluid is modeled using the
acoustic-wave equation for homogeneous, isotropic, inviscid and irrotational fluids. Elastostatic
fundamental solution is used in the boundary element formulation for the elastic membrane. The
boundary element formulation for the acoustic fluid is based on the fundamental solution of three
dimensional Poisson equation. Domain integrals related to inertial terms and those related with
distributed pressure on membrane, were treated using the Dual Reciprocity Boundary Element
Method. Fluid-structure coupling equations were established considering the continuity of the
normal acceleration of the particles and dynamic pressure at fluid-structure interfaces. Results
obtained shows the accuracy and efficiency of the proposed boundary element formulation.

Nomenclature
p̈ second time derivative for pressure

ẅ second time derivative for displacement

Γf fluid boundary surface

Γpf fluid boundary surface with stablished p

Γqf fluid boundary surface with stablished q

Γs membrane boundary

Γfs membrane boundary with stablished f

Γws membrane boundary with stablished w

Γfs fluid-structure interface

ˆ̇p0(x) known initial first time derivative for pressure in Ωf

ˆ̇w0(x) known initial velocity in Ωs

f̂(x, t) known normal traction on Γfs

p̂(x, t) known pressure on Γpf
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p̂0(x) known initial pressure in Ωf

P̂j(x
′,x) particular solutions for pressure as a poisson type equation

q̂(x, t) known normal pressure gradient on Γpf

Q̂j(x
′,x) particular solutions for gradient pressures as a poisson type equation

T̂j(x
′,x) particular solutions for tractions as a poisson type equation

ŵ(x, t) known displacement on Γws
ŵ0(x) known initial displacement in Ωs

Ŵj(x
′,x) particular solutions for displacements as a poisson type equation

κ bulk modulus

Ωf fluid opened cavity domain

Ωs flexible membrane domain

ρf fluid mass density

ρs membrane mass density

Aij matrix of coefficients, obtained by taking the value of p(t) at different DRM points

Bij matrix of coefficients, obtained by taking the value of ẅ(t) at different DRM points

c(x′) jump terms arising from the terms of O(1/r) in the respective kernel

cf fluid wave propagation velocity

cw membrane wave propagation velocity

f = f(x, t) normal membrane traction

Fij matrix of coefficients, obtained by taking the value of p̈(t) at different DRM points

fj(r) radial basis function

h membrane thickness

N number of boundary elements

nwi components of the outward normal vector

NDRF number of total DRM collocation points used in the fluid

NDRM number of total DRM collocation points used in the membrane

P (x′,x) fundamentals solutions for pressure for three dimensional acoustic problems

p = p(x, t) fluid pressure

pw distributed pressure applied over the membrane

p,αα pressure laplacian

pmax distributed time harmonic pressure load amplitude

Q(x′,x) fundamentals solutions for gradient pressures for three dimensional acoustic problems

q = q(x, t) normal fluid pressure gradient

qn pressure gradient acting on the fluid-structure interface

T (x′,x) fundamentals solutions for tractions

T0 unit length tension

W (x′,x) fundamentals solutions for displacements

w = w(x, t) membrane transversal displacement

w,αα displacement laplacian

αj coefficients that relate Aij with pw

A fluid-membrane coupling sub-matrix of H
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Cw and Cf connectivity matrices joining fluid and structural degree of freedom at fluid-
structure interface

H and G global coupling influence matrices

M global coupling mass matrix

nw outward normal vector

S fluid-membrane coupling sub-matrix of G

x field points

x′ collocation points

α̈j coefficients that relate Fij with p̈

β̈j coefficients that relate Bij with ẅ
fGfs and fGff sub-matrices of fG related with degrees of freedom defined on the interface Γfs
sBfs sub-matrix of sB related with pressure terms defined in Ωs

t time
fH and fG influence matrices for the fluid
fM fluid mass matrix
sB influence matrix related with distributed pressure pw applied over the membrane
sH and sG influence matrices for the membrane
sM membrane mass matrix

1. Introduction
Acoustic problems in real life applications involve considerations of structural and acoustic part
together and thus calls for a coupled vibroacoustic treatment rather a pure acoustic approach.
Thus, whenever an elastic structure is in contact with a fluid, the structural vibrations and
the acoustic pressure field in the fluid are influenced by the mutual vibro-acoustic coupling
interaction. The analysis of fluid-structure coupled systems is a challenging and complex
task. In general, the use of experimentation or numerical methods represent the two uniques
alternatives to obtain approximate solutions for these kind of problems. However, numerical
methods based on domain discretization requires refined meshes for high frequency problems,
since the length of the elements should be proportional to the size of the wavelength. This means
a more time-consuming model. The boundary element method (BEM) is a modern numerical
technique which has enjoyed increasing popularity over the last two decades, and is now an
established alternative to traditional computational methods of engineering analysis [1, 2]. The
main advantage of the BEM is its unique ability to provide a complete solution in terms of
boundary values only, with substantial savings in modelling effort. Since consolidation of the
boundary element method (BEM) as reliable numerical method for structural and fluid analysis,
linear vibrations of structures coupled with an internal fluid has been carried out using hybrid
BEM-FEM formulations. In these formulations BEM is used to model the fluid media and the
FEM to model the structural response [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The main advantage
of such formulations lies in a substantial reduction in the number of the degrees of freedom in
the discretization of the fluid domain. However, in this formulations is necessary to discretize
the entirely structure due to the use of the FEM. Few BEM-BEM coupled formulations for fluid
structure-interaction has been published [14, 15, 16, 17]. However, despite the fact that the BEM
has been used for dynamic analysis of membrane structures and for analyses of acoustic fluids, to
the best of authors knowledge, these formulations do not have been used for the fluid-structure
interaction problem analysis using a full boundary element formulation for such purpose. In this
work, a new full boundary element formulation for the transient dynamic analysis of acoustic
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Figure 1. Fluid-structure interaction problem.

fluids coupled to elastic membranes is presented. Membranes are modeled using a boundary
element formulation based on the linear elastic membrane theory under small deflection. The
acoustic fluid is modeled using a boundary element formulation for the three dimensional acoustic
wave equation. Fluid-structure coupling equations were established considering the continuity
of the normal acceleration of the particles at fluid-structure interfaces. Domain integrals on
both, fluid and structure equations, were treated using the Dual Reciprocity Boundary Element
Method. The developed formulation was used to study the linear vibration response of elastic
membranes coupled to acoustic fluids.

2. Structure subjected to a fluid pressure loading
Consider a partially opened cavity Ωf with ridig walls and a flexible elastic membrane Ωs with
mass density ρs and thickness h (see Fig. 1). Cavity contains an homogeneous and isotropic
acoustic fluid with mass density ρf . The membrane vibrations and the acoustic pressure field
in the fluid are influenced by the mutual vibro-acoustic coupling interaction. In this work,
the vibro-acoustic coupling interaction is modeled using an eulerian formulation where the
acoustic response is described by the pressure, while the membrane response is described by
the transversal displacement field.

2.1. Acoustic wave equation
The dynamic pressure of an ideal inviscid fluid under small perturbations in a spatial region Ωf

confined by the boundary surface Γf = Γpf ∪ Γqf , is governed by the wave equation (see Fig. 2)

[18]:

p,αα =
1

c2
f

p̈ (1)

In this equation p is the fluid pressure, c2
f = κ/ρf stands for wave propagation velocity, κ is the

bulk modulus. Above equation can be modified to include the effect of presence of an acoustic
source. Double dot represents a second time derivative. Indicial notation is used throughout
this work. Greek indices vary from 1 to 2 and Roman indices from 1 to 3. The boundary and
initial conditions for equation (1) in the time interval [0, t∗] are:

p(x, t) = p̂(x, t), x ∈ Γpf , t ∈ [0, t∗]

q(x, t) = nfi p,i = q̂(x, t), x ∈ Γqf , t ∈ [0, t∗]

p(x, 0) = p̂0(x), ṗ(x, 0) = ˆ̇p0(x), x ∈ Ωf (2)

where nfi are the components of the outward normal vector nf at boundary. and t denotes time.
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Figure 2. Acoustic fluid domain.
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Figure 3. Elastic membrane domain.

2.2. Dynamic equation of an elastic membrane
Now consider a linear elastic membrane with thickness h ocuppying the spatial domain Ωw

confined by the boundary Γs = Γws ∪ Γfs (see Fig. 3). An initial tension T0 is uniformly applied
to the membrane. In this work, the small deflection elastic membrane theory is considered.
Thus, differential equation describing the trasversal displacement w(x, t) of this membrane in
the time interval [0, t∗] is given by:

w,αα +
pw
T0

=
1

c2
w

ẅ (3)

where c2
w = T0/ρs and pw(x, t) is a distributed pressure applied over the membrane. The

boundary and initial conditions for this equation are given by:

w(x, t) = ŵ(x, t), x ∈ Γws , t ∈ [0, t∗]

f(x, t) = nwi w,i = f̂(x, t), x ∈ Γfs , t ∈ [0, t∗]

w(x, 0) = ŵ0(x), ẇ(x, 0) = ˆ̇w0(x), x ∈ Ωs (4)

In these expressions, nwi are the components of the outward normal vector nw at boundary.

3. Boundary element equations
3.1. Boundary element equations for acoustic wave equation
The derivation of the integral formulation for equation (1) is based on application of the
Boundary Element Method to the acoustic wave equation as presented in [2]. Thus, by using
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the weighted residual method and making use of the Green’s identity, the following equation is
obtained:

c(x′)p(x′) +

∫
Γf

Q(x′,x)p(x)dΓf =

∫
Γf

P (x′,x)q(x)dΓf +
1

c2
f

∫
Ωf

P (x′,X)p̈(X)dΩf (5)

In this equation, x′ and x represent collocation and field points, respectively; P (x′,x) and
Q(x′,x) are fundamentals solutions for pressure and gradient pressures for three dimensional
acoustic problems, respectively, as presented in [2]. The value of c(x′) is equal to 1

2 when x′ is
located on a smooth boundary.

In order to threat the domain integral, the Dual Reciprocity Boundary Element Method
(DRM) is used as presented in [19]. In this way, equation (5) can be re-written as:

c(x′)p(x′) +

∫
Γf

Q(x′,x)p(x)dΓf =

∫
Γf

P (x′,x)q(x)dΓf +

+
1

c2

NDRF∑
j=1

α̈j(t)
[
ciP̂ij +

∫
Γf

Q(x′,x)P̂jdΓf −
∫

Γf

P (x′,x)Q̂jdΓf

]
(6)

In this equation, NDRF represents the number of total DRM collocations points used in the
fluid; P̂j(x

′,x) and Q̂j(x
′,x) are the particular solutions to equivalent homogeneous equation

(1). These particular solutions were obtained considering the function fj(r) = 1 + rj for the
approximation of p̈(t), as presented in [19]. Coefficients α̈j are related to p̈ through: p̈ = Fijα̈j(t),
where Fij is a matrix of coefficients, obtained by taking the value of p̈(t) at different DRM points.

In order to discretize boundary surfaces of the acoustic medium, N boundary quadrilateral
elements were used and p(x) and q(x) were assumed to be constant over each element and equal
to their values at the mid-element node. Thus, the discretised form of equation (6) is given by:

ci(x
′)p(x′, t) +

N∑
k=1

[ ∫
Γk
Q(x′,x)dΓ

]
pk(t)−

N∑
k=1

[ ∫
Γk
P (x′,x)dΓ

]
qk(t) =

1

c2
f

NDRF∑
j=1

α̈j

[
ci(x

′)P̂ij(x
′,x) +

N∑
k=1

∫
Γk
Q(x′, x)P̂j(x

′,x)dΓ

−
N∑
k=1

∫
Γk
P (x′,x)Q̂j(x

′,x)dΓ
]

(7)

Applying this equation at each collocation point, the following linear system of equations is
obtained:

fMp̈ + fHp = fGq (8)

where fM is the fluid mass matrix, fH and fG are boundary element influence matrices; p and
q are vectors of nodal pressures and normal derivative of pressure, respectively.

3.2. Boundary element equations for an elastic membrane
The derivation of the integral formulation for equation (3) is based on the application of the BEM
to the membrane equation as presented in [2]. Thus, by using the weighted residual method,
and making use of the Green’s identity, the integral formulation for equation (3) is given by:

c(x′)w(x′, t) +

∫
Γs
T (x′,x)w(x, t)dΓs −

∫
Γs
W (x′,x)f(x, t)dΓs = − 1

T0

∫
Ωs
W (x′,x)pw(x, t)dΩs

+
1

c2
w

∫
Ωs
W (x′,x)ẅ(x, t)dΩs (9)
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Figure 4. Discretized coupled problem using BEM.

where x and x′ are field and collocation points respectively, W (x′,x) and T (x′,x) are
fundamental solutions for displacement and traction, respectively as given in [1]. c(x′) is the
jump term arising from the terms of O(1/r) in the kernel T (x′,x).

In this work, the DRM was used to transform domain integrals related to inertial terms into
boundary integrals. In this way, this equation (9) can be re-written as [19]:

ci(x
′)w(x′, t) +

∫
Γs
T (x′,x)w(x, t)dΓs −

∫
Γs
W (x′,x)f(x, t)dΓs = − 1

T0

NDRM∑
j=1

αj(t)
[
ci(x

′)Ŵj(x, t) +

∫
Γs
T (x′,x)Ŵj(x

′,x)dΓs −
∫

Γs
W (x′,x)T̂j(x

′,x)dΓs

]

+
1

c2
w

MDRM∑
j=1

β̈j(t)
[
ci(x

′)Ŵj(x, t) +

∫
Γs
T (x′,x)Ŵj(x

′,x)dΓs −

∫
Γs
W (x′,x)T̂j(x

′,x)dΓs

]
(10)

where NDRM represent the total number of DRM collocation used in the membrane; T̂j(x
′,x)

and Ŵj(x
′,x) are the particular solutions to equivalent homogeneous equation (3). These

particular solutions were obtained considering the function fj(r) = 1 + rj for the approximation
of ẅ(t) and pw(t) terms, as presented in [19]. Coefficients αj are related to pw(t) through:
pw = Aijαj(t), where Aij is a matrix of coefficients, obtained by taking the value of p(t) at

different DRM points. Similarly, coefficients β̈j are related to ẅ through: ẅ = Bij β̈j(t), where
Bij is a matrix of coefficients, obtained by taking the value of ẅ(t) at different DRM points.

Applying this equation at each collocation point, the following linear system of equations is
obtained:

sMẅ + sHw = sGf − sBpw (11)

Here sM is the membrane mass matrix, sH and sG are the influence matrices, sB is the
influence matrix related with distributed pressure pw applied over the membrane.
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4. Fluid-structure coupling equations
Fluid-structure coupling equations are given by compatibility considerations about normal
pressure and dynamic pressure force acting at fluid-structure interface. Mathematically, these
conditions can be written as follows [20]:

nf · ∇p = qn ≡ −ρwCwẅ (12)

pw ≡ −Cfp (13)

That is, pressure gradient acting on the fluid-structure interface Γfs are related to normal
acceleration of the plate and the acoustic pressure is equilibrated with pressure on the membrane
(see Fig. 4). In these equations, Cw and Cf represent connectivity matrices joining fluid and
structural degree of freedom at fluid-structure interface.

Replacing equations (13) and (13) into equations (8) and (11) we obtain the coupled fluid-
structure equation problem:[

sM 0
S fM

]{
ẅ
p̈

}
+

[
sH −A
0 fH

]{
w
p

}
=

[
sG 0
0 fGff

]{
f
q

}
(14)

In this equation, the off-diagonal sub-matrices A = sBfsCf and S = ρw
fGfsCw are fluid-

membrane coupling matrices. fGfs and fGff are sub-matrices of fG related with degrees of
freedom defined on the interface Γfs.

sBfs is a sub-matrix of sB related with pressure terms
defined in Ωs.

Equations (14) can be rewritten in a general way as:

Mü + Hu = Gr (15)

where, ü = {ẅ, p̈}T , u = {w,p}T and r = {f ,q}T .

5. Numerical examples
5.1. Box-shaped structure containing an acoustic fluid coupled to a membrane
Consider a partially opened box-shaped structure with ridig walls and a flexible elastic membrane
with cw = 22.36 m/s as presented in Fig. 5. The structure contains an acoustic fluid with mass
density ρf = 100 kg / m3 and a bulk’s modulus κ = 2.5× 105 Pa. A distributed time harmonic
pressure load pmax = 1.0 Pa is applied over the face of the structure located at x3 = 2 m.

Pressure gradient q = nfi p,i = is considered zero in the other faces.
Four meshes were used to show the convergence. Table 1 shows the respective meshes.

Table 1. Mesh characteristics for example 1

Meshes Elements Collocation Points
Mesh 1 54 (12) 125 (9)
Mesh 2 150 (20) 125 (25)
Mesh 3 294 (28) 343 (49)
Mesh 4 486 (36) 343 (81)

The collocation points are coincidents with fluid collocation points located in the fluid-
membrane interface. A membrane tensile load T0 = 500 N/m was considered in the analysis.
The frequency-history response of the central deflection for frequency interval 0.039788 Hz. to
20.0 Hz. is shown in figure 6.

The collocation points are coincidents with fluid collocation points located in the fluid-
membrane interface. A membrane tensile load T0 = 500 N/m was considered in the analysis.
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Figure 5. Discretized coupled problem using BEM.

Figure 6. Maximum displacement frequency history at point A(0.25,-0.25,-1) using DR-BEM

Figure 7. Pressure frequency history at point A(0.25,-0.25,-1) using DR-BEM
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Figure 8. Maximum displacement frequency history at point A(0.25,-0.25,-1) using DR-BEM

Figure 9. Pressure frequency history at point A(0.25,-0.25,-1) using DR-BEM

5.2. Rigid channel containing an acoustic fluid coupled to a membrane
In this problem, a 10 m. long channel containing an acoustic fluid under a distributed time
harmonic pressure load and coupled with a homogeneous elastic membrane with cw = 22.36 m/s
and density µw = 1.0 kg/m2 is analyzed (see Fig. 10). The fluid has a density ρf 100 kg/m3

and a bulk’s modulus of κ = 2.5 × 105 Pa. The membrane is inclined 20.56◦ with respect to
the vertical axis. A distributed time harmonic pressure load pmax = 1.0 Pa is applied on the

membrane. Pressure gradient q = nfi p,i = is considered zero in the other faces.
Four meshes were used to show the convergence. Table 2 shows this meshes.

Table 2. Mesh characteristics for example 2

Meshes Elements Collocation Points
Mesh 1 162 (12) 90 (9)
Mesh 2 330 (20) 90 (25)
Mesh 3 658 (28) 171 (49)
Mesh 4 1098 (36) 171 (81)
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Figure 10. Discretized coupled problem using BEM.

Figure 11. Maximum displacement frequency history at point A using DR-BEM

Figure 12. Pressure frequency history at point A using DR-BEM
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Figure 13. Maximum displacement frequency history at point A using DR-BEM

Figure 14. Pressure frequency history at point A using DR-BEM
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6. Conclusions
A new full boundary element formulation for the harmonic dynamic analysis of acoustic fluids
coupled to elastic membranes is presented. Membranes were modeled using a boundary element
formulation based on the linear elastic membrane theory under small deflection. The acoustic
fluid was modeled using a boundary element formulation for the three dimensional acoustic wave
equation. Fluid-structure coupling equations were established considering the continuity of the
normal acceleration of the particles at fluid-structure interfaces. Domain integrals on both, fluid
and structure equations, were treated using the Dual Reciprocity Boundary Element Method.
Results show good agreement with those obtained from finite difference models, turning proposed
formulation a reliable and an alternative numerial engineering tool for the dynamic analysis of
acoustic fluids coupled to flexible elastic membranes.
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