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This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical
model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as propor-
tional integral derivative (PID) control and state variables feedback control are explored. Lyapunov’s
method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to

design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing
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up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper
position from an arbitrary initial location. Simulation results show that it is possible to obtain the same
dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were con-
ducted via MATLAB Ordinary Differential Equation packages.

© 2019 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Test prototypes are used to validate diverse strategies of linear
and nonlinear controls [7]. This is due to the fact that their nonlin-
ear dynamics allows understanding the phenomena and physical
behavior of factories and equipment in practical applications, such
as robotic systems (e.g., snake-type robots, flexible-link robots,
mobile robots, and walking robots), aerospace systems (e.g., heli-
copters, aircraft, spacecraft, satellites, and rockets), or marine vehi-
cles (e.g., surface vessels and underwater vehicles) [2,9], among
others. There are different variants of the classic models of the pen-
dulum, such as the reaction wheel pendulum, the pendulum on a
cart with linear displacement, pendulum models with two and
three bars, the Furuta pendulum with a rotating base, Pendubot,
and Acrobot, among others [12,11,5].

The reaction wheel pendulum (RWP) was introduced by Spong
[19]. It is a variant of the inverted pendulum, which has a bar
which can spin freely around the support point (pivot) at one of
its ends, as is depicted in Fig. 1. The RWP has a motor coupled to
the opposite end of the pivot, acting on a wheel of inertia with
which the oscillations of the wheel are controlled, due to the reac-
tion torque 7. The angle ¢ of the pendulum (from the vertical) and
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the angle o between the pendulum and the wheel are measured
with sensors located on each of the axes of rotation.

The RWP presents basically two problems: the first is maintain-
ing the local stability around the equilibrium position, which is
analogous to the problem of the juggler who intends to keep a stick
on the tip of a finger. Several control strategies have been proposed
for this problem. In [15], a proportional integral controller is intro-
duced. A fuzzy-logic approach is presented in [3], a passivity-based
control is described in [17], and feedback linearization is employed
in [19].

The second problem is that of lifting the pendulum from its rest
position to the upright position. This problem is known as “swing
up” [19]. To address this problem, the most used strategies are
based on a gradual increase with oscillations of increasing ampli-
tude, in which there stand out trajectory tracking [3] and energy
regulation [14,13].

While it is true that this system has been widely studied using
linear and nonlinear techniques, it is important to mention that the
use of linear techniques requires the application of linearization
methods such as Taylor’s series or trigonometric approximations
[15]. These techniques can operate well around the operating
point; nevertheless, they only guarantee local stability and their
performance decreases speedily when the pendulum moves away
from the operating point [3]. In the case of nonlinear methodolo-
gies, some of them are based on artificial intelligent like neural net-
works or fuzzy logic developments [21]. Although their
implementation does not require a dynamical model of the system,
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Fig. 1. Bi-dimensional RWP scheme.

it is hard to guarantee the stability properties in closed-loop. Addi-
tionally, these techniques can cause undesired oscillations around
the operating point [14]. On the other hand, there are nonlinear
strategies, such as exact or partial feedback linearizations or
passivity-based approaches, that work well enough over the entire
range of operation and also guarantee global stability conditions in
the sense of Lyapunov [2].

Unlike the aforementioned papers, the present paper gives the
design of a controller to operate an RWP system by applying Lya-
punov theory in a direct way. The main advantage of this is the
possibility of guaranteeing stable operation through the control
input without requiring extra calculations. In addition, at least
two different Lyapunov functions are presented in the controller
design in conjunction with a swing up strategy to bring the posi-
tion of the bar pendulum, starting from any location, closer to
the desired operating point [1].

The proposed controller strategy is compared with classical lin-
ear and nonlinear techniques, showing its efficiency and robust-
ness. All simulation results were obtained using MATLAB, using
the ordinary differential equation packages ODE[45-15s-23tb.

Note that one of the main contributions of this paper corre-
sponds to its tutorial style, since it provides multiple forms of
developing control strategies for nonlinear systems, which allows
engineering students to understand the application of both linear
control approaches (PID and feedback realizations) and nonlinear
methods (exact feedback realization and Lyapunov’s direct meth-
ods) on complex nonlinear systems.

The remainder of this paper is organized as follows. Section 2
shows the development of the dynamical model for the RWP as
well as its reduced equivalent model. Section 3 explores the basic
ideas of the Lyapunov theory of stability analysis of equilibrium
points. Section 4 shows the six studied controllers for addressing
the problem of regulating the position of the RWP, by presenting
conventional PID and feedback control realizations for the equiva-
lent Taylor’s model around the operating point. In addition, there
are included those realizations based on exact feedback lineariza-
tion method as well as two control Lyapunov functions. Section 5
presents all the simulation results, including model uncertainties.
The main conclusions derived from this research are presented in
the last section.

2. Dynamical model of an RWP

Typically, Lagrangian or Newtonian mechanics is employed in
the specialized literature to obtain the dynamical model of a pen-
dulum system [2]. The basic diagram of the physical system under
study is depicted in Fig. 1.

Defining 6 = ¢ + «, the dynamical model of the RWP system
can be written as follows:

¢ =asin(¢p) - bu,
0 =cu,

(1)

where a, b and c are constants related to the physical parameters of
the system, ¢ represents the angular position of the pendulum
measured from the vertical axis, and 0 is the relative angle of the
reaction wheel measured from the same vertical reference.

To transform the set of Eq. (1) to a state-space representation,
the following state variables will be used: x; = ¢,x; =%; and

x3 = 0. After substituting these into (1), one obtains

X1 =Xy,
X, =asin(x;) — bu, (2)
X3 = CU.

It should be noted that the dynamics of the angular speed of the
reaction wheel depends exclusively on the control input. For this
reason its dynamics is completely determined by the control
behavior, i.e., if the input signal u is stable bounded, the third term
of (2) can be solved for:

t
X3 = c/ u(s)ds. (3)
to
Taking into account the above mentioned reduction, the simpli-
fied dynamical model of the RWP system can be expressed as

X] = X2,

4
X, =asinx; — bu. @

2.1. Equilibrium points

Note that the equilibrium points of the RWP dynamical model
defined by (4) can be easily obtained by solving these equations
[16]:

Xy = 0,
sin (xq)

=a'hu. ()

The second equality of (5) shows that the equilibrium points of
the angular position for the pendulum depend exclusively on the
control input; nevertheless, if one analyzes the third equation of
(2), the admissible values of the external input to guarantee that
the reaction wheel reaches its equilibrium point occur only when
the external input is strictly equal to zero. To satisfy this condition,
it is necessary that x; be equal to nn, where n € 7.

2.2. Stability analysis

The reduced dynamical system defined by (4) can be repre-
sented through its open-loop dynamics. That is, u = 0, when the
main interest is to characterize the nature of its equilibrium points,
which produces the following structure [8]:

() -15 olCater)
Vi = 2 V(x1,%2) (6)

OX;

V(x1,%;) = 2acos? (1x1) +1x3.
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Note that the function V(x;, x,) corresponds to a possible energy
storage function of the system. Analyzing this energy storage func-
tion, it is possible to see that if V(x1,x2) has a local minimum in
(x1,x5), then (x;,x;) is stable. Otherwise, if V(x1,x;) has a saddle
point or a local maximum in (xj,x;), then these points are
unstable.

Applying the gradient operator to the energy storage function
yields

(VX] (x1,x2)> _ (—asin (x])> ™
Vi, (X1,X2) X2

Note that the critical points of the energy storage function cor-
respond to the equilibrium points of the reduced RWP model:
X; =nmand x, = 0.

Taking the Jacobian of the system of Egs. (7), one obtains the
following matrix:

Viax VX]XZ} B [—acos(xl) 0}

j(XhXZ) N |:VX2X1 szxz 0 1

(8)

Definition 1. If the function V(x;,x;) has a critical point in (x],x3),
and J(x1,x,) is its Jacobian matrix, then (x; 7x§) can be classified by
using the eigenvalues of J(x1,x,) as follows:

1. If J(x1,x2) is positive definite, that is, 24 > 0 and 4, > 0 with
/1,72 € R, then (x;,x;) is a local minimum.

2. If J(x1,x2) is positive definite, that is, 24 <0 and 4, < 0 with
/1,72 € R, then (x;,x;) is a local maximum.

3. If J(x1,x2) is neither positive nor negative definite, that is, if
either /; >0 and /, <0 or 4; <0 and 2, > 0 with 4,1, € R,
then (x7,x;) is a saddle point.

4. If J(x1,X2) has complex eigenvalues, then this criterion is
indecisive.

Note that the eigenvalues of [7(x;,X;) can be calculated as
follows:
J1=-acos(x;) AN lp=1. 9)

When (9) is observed, then on applying the Definition 1, it is
easy to demonstrate that

X1 = 2km
x;=0
X =02k+1r
Xy = 0

} k € 7 isasaddle point — unstable
(10)
} k €7 isalocal minimum — stable

Based on the results presented in (10), we are mainly interested
in obtaining a general control law u such that the saddle point
(x3,x5) = ((2k + 1)7,0) with k € Z becomes a stable point.

3. Basic ideas of Lyapunov-based control theory

Lyapunov stability theory is a standard tool and one of the most
important tools in the analysis of nonlinear systems [8]. We con-
sider the following nonlinear autonomous system:

X =f(x), (1)

where f:O—R" is a locally Lipschitz map from the domain
O CR™ o R". Suppose that the system shown in (11) has an equilib-
rium point in X € O (i.e., f(X) = 0). The question then arises, how to
know if the equilibrium point X is stable. First, we assume that X is
the origin of the state space. This does not involve any loss of gen-

erality since we can always apply a change of variables £ =x — X to
obtain [22]:

E=flE+%) =g(o). (12)
Now, the stability is studied for the new system with respect to
¢ = 0. There are two types of stability [8].

Definition 2. The equilibrium point x = 0 of (11) is

1. Stable if, for each € > 0, there exists a o = a(€) > Osuch that
[Ix(to)|| < ot = ||X(to)|| <€, V> to. (13)
2. Asymptotically stable if it is stable and « can be chosen such that

[x(to)|| < o0 = limx(t) = 0. (14)

Also, it defined to be unstable if it is not stable.

3.1. Lyapunov’s direct method

This method tries to determine the stability directly by means
of functions which are defined in the state space [8].

Theorem 1. [Lyapunov’s Theorem|] Considers the system (11) and
suppose that there is a continuously differentiable function V : O—R
such that

V) = 0,
Vix) > 0, Xe OVx#0 (15)
V(x) = Zf(x)<0, x€ O.

If the above is true, the equilibrium point is stable in the sense of Lya-
punov. If also

V(x) = Zf(x)<0, xe O, (16)

the equilibrium point is asymptotically stable. This stability will be glo-
bal if © = R" and, in addition, the function V is radially unbounded, i.e.,
limyy—.V(x) = oc. Finally, if there exist scalars o, 8,7 >0 and p > 1
such that

xe O

x| < V(x) < B, a7)
< xe O

V(x) = 5f(x) < V().

T oox
the equilibrium point is exponentially stable. This stability will be global
if O = R" and, in addition, the function V is radially unbounded [8].

Fig. 2 illustrates the differences between stability in the sense of
Lyapunov, asymptotic stability, and instability.

4. Design of a general control law for the RWP

There are several approaches to designing controllers for an
RWP using a dynamic model of the system. We have selected some
classical linear and nonlinear methodologies to compare with our
proposed Lyapunov methodology. This section presents the classi-
cal PID design, feedback control via linearization, exact feedback
linearization using pole reassignment, and the Lyapunov control
strategy.

4.1. Linear controllers

4.1.1. Classical PID approach

While it is true that PID control can be applied to linear and
nonlinear systems with good results, this kind of control is usually
employed for linear systems, mainly when the system has one par-
ticular variable of interest and one control input [5,3]. In case of the
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Fig. 2. Phase portrait for stable and unstable equilibrium points: (a) Stable in the sense of Lyapunov, (b) Asymptotically stable, (c¢) Unstable (saddle), (d) time domain for a
stable equilibrium point, (e) time domain for an asymptotically stable equilibrium point, and (f) dynamical behavior of an unstable equilibrium point.

reduced RWP model, the interest is to control the position of the
pendulum x; using the control input u.

From the reduced dynamic system presented by (4) there can
be obtained a linear representation around the upright position
by applying a linearization using Taylor’s series as follows:

AX] 01 AXq 0
= A 18
o) = La o] [e] [ 5pJ a9
The classical structure of the PID controller is
Au = koe(t) + k; / e(t)dt + kd%e(t) (19)

Note that k,, k; and k, correspond to the PID controller gains and
e(t) represents the error between the reference and the state vari-
able of interest. In the case of the reduced RWP model, the error is
defined as e(t) = r(t) — Ax;. Using the definition of the error and
applying the Laplace transformation, the transfer function between
the output Ax; and the reference signal is obtained as follows:

_ AXi(s) —b(kqs? + kps + ki)

HS)="RG) = 5~ bkes? — (a+ bky)s — bk

(20)

The stability of the controller depends exclusively on the
parameters of the PID, which implies that with these gains the
poles of the system can be reallocated. Let us consider the follow-
ing desired polynomial:

pa(s)

s — (py 4+ P2 +p3)S*+
(P1P3 + P13 + PaP3)S — P1P2Ds

where p,,p, and p; are the desired poles of the closed-loop system,
such that p; € R™ and (p,,p;) € C ARe(p,,p3) < 0 Ap, = conj(ps).

After comparing the desired polynomial (21) with the charac-
teristic polynomial in the transfer function given by (20), the PID
gains can be obtained as

(21)

ky = —4 (1D +P1D3 + PoP3 + Q)
ki= §piD2Ds
ka=§(p1+Dp2+Ps)

It should be noted that the desired poles define the PID gains;
nevertheless, to select the desired poles it is necessary to consider
the operating limits of the control signal.

4.1.2. Approximate feedback linearization approach

Feedback linearization using Taylor’s series is one of the most
common control strategies for nonlinear systems around an oper-
ating point [19]. This approach tries basically to reallocate the
open-loop eigenvalues so that the dynamical system becomes
locally asymptotically stable [15].

Let us define the control input as follows:

Au = —kiAX; — ko Axs. (22)

If the control input (22) is substituted into (18), the closed-loop
dynamical system via approximate feedback linearization is
0 1

obtained:
— AX]
} B {a+bk1 bszsz}

The eigenvalues of the closed-loop dynamical system can be
calculated by finding the roots of the characteristic polynomial:

)2 — bkyJ. — (a + bky) = 0. (24)

If the desired polynomial is defined as
pa(s) = 22 — (p; + p,)4 + p,p, such that p, and p, are the desired
poles of the closed-loop system defined by
{(p1,P2) € C ARe(py,p,) <0}V (p1,p,) € R, it is then possible to
obtain, by comparison with (24), the feedback gains presented
below:

[Axl 23)

Ax;
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1 1
ki = _E(plpz +a) Ak :E(FH + D) (25)

Note that the feedback gains depend exclusively on the maxi-
mum values that the control input (22) can take.

4.2. Exact feedback linearization approach

In the case of nonlinear control, the exact feedback control theory
is one of the most popular approaches. The main idea of this control
technique is to obtain a nonlinear control law that allows transform-
ing the nonlinear system into a linear equivalent system [19].

Let us consider the reduced RWP model defined by (12), and
consider the following control law:
u:%sin(xl)—%. (26)
where v represents the control law for the equivalent linear system.
After substituting (26) in (12) and rearranging some terms, we
obtain the following equivalent linear system.

Bﬂ - {8 cﬂ Kj * mT’ (27)

For this equivalent linear system, it is easy to obtain an equiv-
alent PID representation or pole reassignment, as presented in
the two above subsections.

4.2.1. PID design

Defining the linear control input v as
v =kye(t) + ki [e(t)dt + kyde(t), the transfer function between
the pendulum angle x; and the reference value can be calculated:

X1(5)  kgS®+Kps+ ki
R(s) — $3 +kgs® + kys + ki

H(s) = (28)

Note that to control the equivalent linear system, it is necessary
to find a third order polynomial with the same characteristics pre-
sented in (21), which produces the following PID gains:

ky =" py1p2 +D1D3 +DP2Ds
ki = —pp,p;
ka= —(py +p,+Dps)

4.2.2. Feedback design

For the equivalent linear system given by (27), it is possible to
obtain an equivalent linear controller via feedback realization, by
defining v = —kyx; — kxX,. Substituting the linear control input »
in (27) and rearranging some terms yields

Kj N L(l)q ij Bﬂ (29)

Note that the eigenvalues of (29) depend on the feedback gains

k; and k,. These eigenvalues can be calculated by 22+ kyd+k =0,
which implies that the feedback gains may be obtained:

ki =pip; A ko =-p; —p, (30)
4.3. Lyapunov control approach

The design of controllers using Lyapunov’s direct method allows
determining the mathematical structure of the control law that
will guarantee stability in closed-loop for the dynamic system
under study. In the specialized literature there is a strategy of con-
trol design called Control Lyapunov Function [18], which has strong
mathematical foundations and is based on the analyses presented
in Section 3 [8]. In this section we will propose two possible Lay-
punov’s functions to control the RWP system.

4.3.1. First function: stable controller design

Let us define the following Lyapunov candidate function:

V(X) = % (kix? +x2) + 2asin’ G)ﬁ), (31)
where k; represents a positive control feedback gain related to the
X state variable.

Note that (31) fulfills the first two conditions defined by (15),
since (31) is a positive definite function with a global minimum
located at the origin of the coordinates. To relate the control input
to the output, the derivative with respect to time of Lyapunov’s
candidate function is given below:

V(X) = x2(k1X; — bu + 2asin (x1)). (32)

To guarantee that (32) is negative semidefinite, as is required by
the third condition of (15), we can select the control input u to be

u= %(klxl + kaxy + 2asin (x1)), (33)

where u € R and k; is a positive control feedback gain.
After substituting (33) in (32) and rearranging some terms, one
obtains

V(x) = —kox3. (34)

Recall that (34) is negative semidefinite, which implies (recur-
ring to Theorem 1) that the dynamical system (4) is stable in the
sense of Lyapunov.

By employing LaSalle’s invariance principle [4], it is easy to
prove, for the RWP system, that the origin of the coordinates is
asymptotically stable in the sense of Lyapunov. If V(x) = 0, then
X, = 0, which implies that x; = 0 (see the first equation of (4)),
which confirms that the origin corresponds to the maximum
invariant set and is asymptotically stable.

4.3.2. Second function: design of an asymptotically stable controller
In this section, we present an alternative Lyapunov candidate
function that guarantees asymptotic stability without recurring
to LaSalle’s principle.
Let us consider the following Lyapunov candidate function,
which fulfills the first two conditions of (15).

V(x) = %(klxl + koxy)’. (35)

Using (16), one obtains
V(x) = (kix1 + kaX2) (kiXz + ak sin (x;) — bkyu) (36)

To guarantee that (36) is negative definite, we propose the fol-
lowing control input:

u :%<k1x1 + kX, + asin (x;) +’,§—1x2>, (37)
2
where u € R and k; and k; are two positive feedback gains such that
kz # 0.
After substituting the control input (37) into (36) and rearrang-
ing some terms, one obtains

V(X) = —ka (ki Xy + koXy)? (38)
Note that (8) is negative definite, which implies that the RWP
system (4) is asymptotically stable at the origin.

4.4. Additional comments

In the design of controllers using Lyapunov’s direct method, the
existence of at least one Lyapunov candidate function is required.
In the case of the RWP system, we have presented two different
quadratic functions; nevertheless, we claim that for the RWP
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reduced model (4) there are multiple Lyapunov’s candidate func-
tions that guarantee stability or asymptotic stability in closed-loop.

On the other hand, one of the biggest advantages of Lyapunov’s
direct method is the possibility of obtaining nonlinear controllers
directly in two steps, without recurring to the eigenvalue analysis
needed for the proportional integral and linear state variables feed-
back control approaches.

5. Simulation results

This section presents a comparison of the performance of the
RWP for the different controllers presented in Section 4. For the
sake of making a fair comparison and obtain an equal dynamic
response for all controllers, the poles in closed-loop are located
in the same place:

p1=0 p,=-35 p;=-100.

The parameters of the RWP system and of each controller are
given in Tables 1 and 2, respectively. Three different tasks are con-
sidered. For each of them, x;,x, and u are shown. The initial condi-
tions for all tasks are x; = 0.12 rad and x, = 0 rad/s, and also the
limits of the control signal are assumed to be between —10 and 10.

5.1. Task 1: the normal case

Fig. 3 illustrates the response of the RWP under all controllers. It
should be noted that only one response is shown in Fig. 3 since all the
employed controllers have the same response dynamics. This is
because from the design of the controllers, all them are adjusted to
have the same response dynamics. However, the only controller that
guarantees asymptotic stability is the one presented in Section 4.3.2.

Fig. 4 presents the phase plane trajectory of the RWP for task 1,
which moves to the origin from the initial conditions, demonstrat-
ing that the system is stable.

5.2. Task 2: uncertainty

The uncertainty in the RWP can be expressed by [10,6]

2] = lasmion | 2] + [ o]

where AA is the matrix that represents the uncertainty of the RWP,
which includes the uncertainties in the parameters. These uncer-
tainties can make it difficult or impossible to get a precise measure-
ment, as the parameters tend to vary as a function of time, of the
temperature or unmodeled dynamics, among others. When AA is
added, this means that the parameters of the RWP are changed,
as determined by the following equation:

15 1.5}

A= {1.5 15

Fig. 5 shows the response of the RWP for task 2. In this task, all
the controllers can take the RWP to the equilibrium point without
any problem even if there are uncertainties in the system.

Comparing Figs. 3 and 5 it can be seen that in task 2, when there
are added uncertainties, the response of the RWP has a greater
oscillation and a slower response time. In this task as well, it can
be seen that the system is stable since it is also able to move from
the initial conditions to the origin, as shown in Fig. 6.

5.3. Task 3: external disturbances
The response of the RWP using all proposed controllers after

adding an angle disturbance with a value equal to 1 rad at time
0.5 s is shown in Fig. 7.

Table 1
RWP Parameters [2].
a b c
78.4 (%1)2 1.08 "S%’i ]98’5“—2’1
Table 2
Controller Parameters.
Controller Parameters
Section 4.1.1 k, = —3313.3 ki=0 kg = —-125
Section 4.1.2 ky = -33133 k, = —-125
Section 4.2.1 k, = 3500 ki=0 kq =135
Section 4.2.2 ky = 3500 k, =135
Section 4.3.1 ki = 3500 ky =135
Section 4.3.2 ky = 3500 k, =35
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Fig. 3. Response of the RWP for task 1: Pendulum angle, b) Angular velocity, and c)
Control signal.

The response of the RWP for the all employed controllers are
significantly faster and the oscillation of the pendulum angle with
respect to the equilibrium point does not much change (see
Fig. 7a). Fig. 8 shows the phase plane trajectory of the RWP system
under an external disturbance.

It can be seen in Fig. 8 that the phase plane trajectory of the
RWP system leaves the origin and moves back to the origin after
adding the angle disturbance, which indicates that the system is
stable for all the controllers used.
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Fig. 5. Response of the RWP for task 2: Pendulum angle, b) Angular velocity, and c)
Control signal.

5.4. Additional comments

A and B present the design of a swing-up control strategy for
bringing the pendulum bar from its natural position of equilibrium
(vertical inferior position) closer to the vertical upright position.

7
04 1
0.2 4
O - -
o)
=
& 02 ]
o
=
-04 | 4
—0.6 | b
-0.8 ! ! R
-0.1 0 0.1 0.2
x1 [rad]
Fig. 6. Phase plane trajectory of the RWP for task 2.
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Fig. 7. Response of the RWP for task 3: Pendulum angle, b) Angular velocity, and c)
Control signal.

For doing this task, an energy-based approach is presented in
[14] by using a soft switching method. In addition, multiple simu-
lations are included to compare all six studied controllers in order
to prove that all of them have pretty similar dynamic performances
when the control gains are adjusted adequately.
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6. Conclusions

In this paper, different controllers were presented to control a
reaction wheel pendulum. All employed controllers have been
tested by using three simulation tasks: the typical case, including
uncertainties, and in response to external disturbances. All pro-
posed controllers had the same dynamical behavior since equiva-
lent controller gains were selected for their design.

The design of the controllers using exact feedback linearization
or Lyapunov’s direct method guarantees stability or asymptotic
stability, which is the main advantage of these techniques in com-
parison with the classical feedback and proportional integral con-
trollers based on Taylor series linearizations.

The reaction wheel pendulum mechanism is a complicated non-
linear dynamical system that allows designing multiple control
strategies with excellent dynamical performances. For this reason,
the RWP continues to be an important system in dynamic analysis
and control theory, and affords an introduction to research involv-
ing complicated dynamical models in an easy and simple form.

Appendix A. Swing-up strategy for the pendulum

To bring the pendulum closer to the equilibrium position, we
employed an energy-based method, as proposed in [14]. This strat-
egy works with the total potential energy stored in the pendulum
bar [20,19]". The potential energy stored in the pendulum can be
calculated as

1, .
W, = jfp(q)z) + mgl(cos (@) — 1), (A1)
where J, denotes the inertia of the pendulum, [ and m are its length
and mass, while g is the acceleration due to gravity.

If we take the time derivative of the potential energy W, then

W, = ¢(J, — mglsin (¢)). (A2)

Now, if (A.2) is compared with (1), then it is possible to find a
direct relation between the variation of the potential energy and
the control input:

W, = —J,bpu. (A.3)

! Note that the kinetic energy of the reaction wheel is not taken into account, since
it does not influence its angular position [14].
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Note that the potential energy given by (A.1) has a global min-
imum (W, = —2mgl) when the pendulum is located at its natural
equilibrium point (vertical bottom position). In addition, the
potential energy will be zero at the vertical upper position. In order
to bring this energy to zero, all that is needed is to ensure that
W, > 0 [14], which implies that the control input can be selected
to be

u = —kysign(o). (A4)

Note that (12) uses k, as a positive constant to manipulate the
required time to reach a vertical position; in addition, it uses the
sign of the angular speed to reinforce the movement of the pendu-
lum in order to increase the amplitude of its oscillations [19] by
applying a torque in the same direction as the movement.

Finally, to ensure a soft movement of the pendulum, the control
strategy is divided into three possibilities:

u:{m.mmvv%gwg%

. (A.5)
0, otherwise

Appendix B. Additional simulations

In order to compare all dynamic performances of the studied
linear and nonlinear controllers, we tested all of them by consider-
ing the following initial conditions and parameters: x; = 7,x, =0
and k, = 10.
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Fig. B.9. Dynamic behavior of the reduced RWP model (4) for all the proposed
controllers: a) Angular position, b) Angular velocity and c¢) Control signal.
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Fig. B.9 depicts all dynamic performances for the controllers
studied in Section 4 when they are integrated with the soft switch-
ing control strategy defined by (A.5).

Note that all studied controllers produce overlapping between
angular positions (also in angular velocities) (see Figs. B.9a) and
B.9b)) by minimal changes at the control inputs (see Fig. B.9c)).
In addition, it is possible to observe that the control input defined
by (A.4) allows reaching a region closer to the desired operating
point (vertical upper position) from this natural vertical inferior
position when 3.5 s have passed. To do so, the control input pro-
duces a square wave function in order to increase the oscillation
of the pendulum; furthermore, in some periods of time, this control
input takes zero values to allow free movement of the pendulum
bar and reduce its velocity, for the sake of minimizing the effort
produced by the commutation when the controller proposed in
Section 4 is used.

Note that the main idea of plotting all controllers (included the
swing up strategy) in Fig. B.9 is to show that with an adequate cal-
ibration of each controller it is possible to obtain pretty similar
dynamical performances, which effectively corresponds to the
main purpose of this tutorial paper in reviewing linear and nonlin-
ear controllers from the point of view of Lyapunov’s stability
theory.
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