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Emotions are affective states related to physiological responses. This study proposes a model for recogni-
tion of three emotions: amusement, sadness, and neutral from physiological signals with the purpose of
developing a reliable methodology for emotion recognition using wearable devices. Target emotions were
elicited in 37 volunteers using video clips while two biosignals were recorded: photoplethysmography,
which provides information about heart rate, and galvanic skin response. These signals were analyzed in
frequency and time domains to obtain a set of features. Several feature selection techniques and classi-
fiers were evaluated. The best model was obtained with random forest recursive feature elimination, for
feature selection, and a support vector machine for classification. The results show that it is possible to
detect amusement, sadness, and neutral emotions using only galvanic skin response features. The system
was able to recognize the three target emotions with accuracy up to 100% when evaluated on the test
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1. Introduction

Emotions are affective states that influence behavior and cog-
nitive processes. They appear as a result of external or internal
stimuli, and are accompanied by physical and physiological reac-
tions. There are several different emotions that can be distinguished
from each other by facial expressions, and behavioral and phys-
iological responses [1]. Plutchik proposed a psychoevolutionary
theory of emotions that considers eight primary emotional states:
fear, anger, joy, sadness, acceptance, disgust, expectancy, and sur-
prise [2]. Other emotions that have been considered in the literature
include interest, contempt, guilt, and shame. Emotions can be char-
acterized by two features: valence or pleasantness, and arousal or
activation [3]. A two dimensional model of emotions was proposed
by Russell [4]. This model organizes emotions according to their
valence and arousal, as seen in Fig. 1.

The onset and intensity of emotions have been associated to
neural and physiological activity, thoughts and culture. From the
physiological point of view, it is considered that emotions are gen-
erated by physiological reactions to events [5].

Automatic emotion recognition has been a topic of interest since
the last century. Previous works have developed methods for emo-

* Corresponding author.
E-mail address: scontreras@utb.edu.co (S.H. Contreras-Ortiz).

https://doi.org/10.1016/j.bspc.2019.101646

ts reserved.

tion detection from speech features [6,7], facial expressions [8],
body gestures [9], and even touches on sensitive screens [10]. As
people can hide their emotions or pretend them, methods based
only on physical cues may fail to identify the true emotional state
of a person. Some studies have used multimodal approaches that
combine speech, facial and physiological signals for emotion recog-
nition [11,12].

Changes in physiological signals related to emotional states are
involuntary, and people are often unaware of them. Therefore,
physiological signal analysis can be a reliable method for emotion
recognition. Previous studies have shown that biosensors can be
useful in the task of emotion detection by monitoring autonomic
nervous system (ANS) activity [13-15].

Another advantage of using biosignals for emotion recognition
is that the system can be designed to be wearable and unobtrusive.
Since the 1990s, several studies have proposed the use of wear-
able technologies for emotion detection. In 1997, Picard and Healey
introduced the concept of “affective wearables” that are electronic
devices equipped with sensors to monitor signals such as gal-
vanic skin response (GSR), blood volume pressure (BVP), heart rate
(HR), and electromyogram (EMG), with the purpose of recognizing
the wearer’s affective states [16]. Later, Scheirer et al. developed
a wearable device for facial expression recognition using glasses
to sense facial muscle movements to identify expressions such as
confusion or interest [17]. In 2004, Haag et al. proposed a system
that acquires respiration rate (RSP), electrocardiogram (ECG), GSR,
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Fig. 1. Russell’s circumplex model of affect [4].

and facial EMG signals and used pattern recognition techniques
to recognize emotion valence and arousal, with high accuracy [18].
Although this system uses cabled sensors and it is not wearable, the
authors stated that in the future, sensors will become small enough
to make the design of wearable devices for emotion recognition
possible. Recent studies have proposed frameworks for emotion
detection using off-the-shelf wearable sensors, smartphones, and
mobile platforms [19,20]. These technologies have also been used
in other applications such as health care, education, gaming, and
sports [21-23].

In emotion studies, emotion elicitation is an essential and some-
times difficult task. There are different types of stimuli that can be
used for emotion elicitation in an experimental setup. The follow-
ing studies have used pictures, video fragments, or music as stimuli.
Gouizi et al. used pictures from the international affective picture
system (IAPS) to induce emotions, and recorded EMG, respiratory
volume (RV), skin temperature (SKT), skin conductance (SKC), BVP,
and HR. Then, they used a support vector machine (SVM) to clas-
sify six basic emotions (joy, sadness, fear, disgust, neutrality, and
amusement) with a recognition rate of 85% [24]. A more recent
work used the Geneva affective picture database (GAPED) for emo-
tion elicitation. They developed a system to classify valence and
arousal from PPG and GSR signals with accuracy up to 86.7% for a
single-user model [25].

Liuetal. used video fragments to elicit four emotions (happiness,
grief, anger, and fear), and recorded GSR. Emotions were classified
with a SVM with accuracy of 66.67% [26]. Ayata et al. developed a
music recommendation system based on emotions from GSR and
photoplethysmography (PPG) signals. They used the database for
emotion analysis using physiological signals (DEAP) that includes
PPG, GSR, and EMG signals from subjects during video watching,
and obtained accuracies up to 72.06% and 71.05% for arousal and
valence prediction respectively [27]. Finally, Balasubramanian et al.
studied emotional responses to music using electroencephalogra-
phy (EEG) signals. They compared the valence and arousal of per-
ceived emotions with the valence and arousal of induced ones [28].

This paper proposes an approach for emotion recognition using
biosignal processing and machine learning techniques. We devel-
oped an instrumented glove with two off-the-shelf sensors to
acquire PPG and GSR signals. These biosignals were recorded on

ing video clips for emotion elici-

tation. Signal features were carefully selected, and several machine
learning techniques were evaluated. The proposed system is able
to identify amusement, sadness, and neutral state with high accu-
racy. Preliminary results of this research project were published
in a conference paper [29]. The purpose of the previous work
was to determine the relationship between mean values of PPG
and GSR signal features and emotional states. This paper proposes
a new experimental protocol for emotion elicitation and biosig-
nal recording and a complete approach for emotion recognition.
The rest of the paper is organized as follows. Section 2 describes
the stimuli selection, experimental protocol, selected features, and
performance measurements. Then, Section 3 presents the results.
Finally, Section 4 concludes the paper.

2. Methods

Fig. 2 shows a block diagram of the proposed methodology
for emotion recognition. An instrumented glove was developed
to acquire two biosignals: PPG and GSR during an emotion elici-
tation experiment. These signals were analyzed in frequency and
time domains to extract a set of features, and the most significant
ones were selected to train a classifier. The signal processing tasks
were done in Matlab (Mathworks Inc.) and the statistical analysis
in RStudio (Version 1.1.442).

The system was designed to identify three emotional states:
amusement, sadness, and neutral (non-emotional). Amusement is
a feeling that appears as a result of experiencing something funny,
and can be located in the first quadrant of the circumplex, with
positive valence and arousal. On the other hand, sadness is con-
sidered an unpleasant feeling, and is located in the third quadrant
of the circumplex, with negative valence and arousal [15]. Finally,
neutral can be located in the center of the model.

Below, there is a description of the experimental protocol for
emotion elicitation, and data acquisition and processing stages.

2.1. Experimental protocol

We invited 42 healthy subjects aged 18-25 years to participate
in the experiments. This study was approved by the Ethics Com-
mittee of Universidad Tecnolodgica de Bolivar. A block diagram of
the protocol is shown in Fig. 3.
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Fig. 3. Experimental protocol. Physiological signals were recorded before and during the presentation of both video clips.
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Fig. 4. Results of pre-stimuli survey.

The experiments were conducted in the Bioengineering lab of
the university. After the arrival of the subject, a research assistant
explained the procedure and answered the subject’s questions. He
said that the purpose of the study was to analyze physiological sig-
nals during the observation of video clips, without mentioning the
emotion detection aim, to facilitate spontaneous emotion elicita-
tion. The subject signed an informed consent and the instrumented
glove was put on the left hand. Then, the subject was asked to fill
in a pre-stimuli survey to know his/her initial emotional state. The
results of the survey are shown in Fig. 4. It can be seen that most of
the subjects reported feeling fine and comfortable with the glove.

When the subject was observed to be in a neutral state, the sig-
nals from the sensors were recorded for two minutes. After that, the
subject was asked to watch a video clip that evokes sadness. Biosig-
nals were recorded during the presentation of the stimuli. After the
end of the video, the subject was asked to fill in a post-stimuli sur-
vevioinauire abonthis/heremotions. Then, a second video clip that

ed and the procedure was repeated.

Finally, the research assistant took off the glove, answered ques-
tions and thanked the subject for his/her participation.

2.2. Stimuli selection

We used video clips from the FilmStim database for emotion
elicitation [30]. This database is composed of 70 video clips to evoke
several emotions: anger, sadness, fear, disgust, amusement, tender-
ness and neutral state. We selected two video clips with a duration
of approximately 2’40”. Below, there is a brief description of the
scenes.

* Sadness. The dreamlife of angels. Marie commits suicide by jump-
ing out of a window.

e Amusement. When Harry met Sally. Sally fakes an orgasm in a
restaurant, provoking Harry's embarrassment.

To confirm the effectiveness of the selected video clips to evoke
the target emotions, we performed an analysis of the scores given
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Fig. 5. Exploratory analysis based on principal components of the data provided by Shaefer et al. [30].

by 364 volunteers that rated the clips. The evaluated parameters
were subjective arousal, positive and negative effect, emotional
discreteness scores, and fifteen mixed feelings scores.

Ten films were selected per emotional category. Due to the high
dimensionality (40 dimensions) of the records, we used principal
component analysis (PCA) to find a visual representation of the
video clips. Fig. 5 shows the two first dimensions which explain
58.01% of the variability of the data. The selected amusement video
clip is located in the second quadrant. This location maximizes the
discreteness coefficient of amusement and is in the direction of the
positive arousal (PA) score. On the other hand, the sadness video
clip is located in the first quadrant, in the growing direction of the
discreteness coefficient of sadness. This location contributes to the
negative arousal (NA) score.

2.3. Physiological signals acquisition

The PPG and GSR signals were selected to assess the subject’s
emotional states. Below, there is a description of these signals.

e GSR: the galvanic skin response is a measure of the electrical
conductivity of skin. It varies with changes in the activity of
sweat glands controlled by the ANS [31-33]. Previous studies
have shown that skin conductivity increases monotonically with
emotional arousal [34,35]. We used a commercial sensor (Grove-
GSR sensor) to measure the GSR signal. The sensor was attached
to the subject’s middle and index fingers.

* PPG: photoplethysmography is a non-invasive optical technique
that detects blood volume changes in tissues. It can be used to
measure heart rate and oxygen saturation. Heart rate is regu-
lated by the sympathetic and parasympathetic nervous system
and varies with emotional states. Psychological arousal is charac-
terized by an increased heart rate [36]. Additionally, it has been
observed that heart rate decelerates due to unpleasant stimuli
[35].In this study, we measured heart rate with a commercial PPG
sensor (Gravity, DFRobot) fastened to the subject’s ring finger.

eveloped to hold the data acqui-
e sensors were connected to a

Fig. 6. Instrumented glove for signal acquisition.

microcontroller board (Bluno Nano, DFRobot). The sampling fre-
quency was 500Hz and the data was acquired through the USB
port.

2.4. Feature extraction

The recordings from 37 subjects had acceptable quality and were
analyzed. The signals from other five subjects were saturated and
were excluded from the study.

Previous to feature extraction, the signals were filtered to reduce
noise. The PPG signal was processed with a 100th-order band pass
FIR filter with corner frequencies equal to 0.1 Hz and 10 Hz. The GSR
signal was low pass filtered with a 1000th-order FIR filter with a
corner frequency of 1 Hz.

Heart rate was estimated from the PPG signal using short-time
fast Fourier transform (ST-FFT). We used 5-s length windows and
zero-padding to obtain an effective frequency resolution of two
beats per minute (BPM).



J.A. Dominguez-Jiménez, K.C. Campo-Landines, J.C. Martinez-Santos et al. / Biomedical Signal Processing and Control 55 (2020) 101646

Table 1
Feature selection methods and final predictors.

Method Number of  Predictors

predictors

RF-RFE 4 scraonv,scrpnv,scravd,crmé4

GA 5 scravd,scraonv,scrpnv,crm3,hrstd

SW-F 8 scravd,scrpnv,scrstd,crm2,scrdr

crm1,thd5,LFHF
SW-Bidir 16 scravd,scrstd,scrdr,scraonv,scrpnv,crm1,crm3,crm4

hrm,hrstd,hrdr,hrssdn,hrrmssd,thd2,thd3,thd5

The features extracted from the signals were selected according
to previous studies in emotion recognition [37,27,38], and consid-
ering related metrics and norms used in healthcare [39,40].

2.4.1. Photoplethysmography signal
The PPG signal was analyzed in time and frequency domain to
obtain 13 features.

e Time domain features: root mean square differences of successive
R-R intervals (HRRMSSD) and standard deviation of normal to
normal R-R intervals (HRSDNN)

e Frequency domain features: mean of heart rate (hrmean), stan-
dard deviation of heart rate (hrstd), heart rate dynamic range
(hrdr), heart rate mode (hrmode), harmonic distortion of the sec-
ond, third, fourth and fifth harmonics of the PPG signal (THD2,
THD3, THD4, THD5). The power spectrum of the PPG signal was
divided into two bands: low frequency (0.04-0.15Hz) and high
frequency (0.15-0.5 Hz) to compute the normalized power in the
low and high frequency bands (LFnu and HFnu respectively), and
the ratio of LF to HF power (LFHFnu).

2.4.2. Galvanic skin response signal

The GSR signal was analyzed in time domain, to characterize its
variability. A total of 14 features were calculated: mean (scrmean),
standard deviation (scrstd), dynamic range (scrdr), mean of the
derivative (scravd), negative values of the derivative (scraonv), and
ratio of negative values over the total number of samples (scrpnv).
To obtain information about nonlinear and non-stationary compo-
nents, empirical mode decomposition (EMD) was used. We limited
the number of modes to four, and calculated the energy (emf1,
emf2, emf3, emf4) and the zero crossing rate (crm1, crm2, crm3,
crm4) of each mode.

2.5. Feature selection

We computed a total of 27 features, but not all of them were
considered for the classification stage, because possible dependen-
cies among the variables may decrease the classifier performance.
There are several feature selection methods that have been used
in the literature, and some of them are mentioned next. Chih-Fong
used T-test, correlation matrix, stepwise regression (SW), princi-
ple component analysis (PCA) and factor analysis (FA) to select the
most representative features for bankruptcy prediction [41]. Niu
et al. used genetic algorithms (GAs) and K-neighbors for feature
selection for emotion recognition from physiological signals [42].
Zvarevashe et al. used the random forest recursive feature elimina-
tion (RF-RFE) algorithm with gradient boost machines (GBMs) for
gender voice recognition [43].

To find the optimal feature subset to represent the target emo-
tions, we used several feature selection techniques including SW,

B el e el <gtors for each technique are presented

2.5.1. Stepwise regression

This method consists of regressing multiple variables by remov-
ing the least contributing predictors step by step. Only independent
variables with non-zero coefficients are included into the final
regression model. There are three types of SW: forward selec-
tion (FW), backward selection (BW), and bidirectional elimination
(BIDIR). We used SW with the Akaike information criterion (AIC) as
stop criterion.

2.5.2. Genetic algorithms

GAs are inspired in natural evolution. In nature, organisms have
evolved over generations to better adapt to their environment. GAs
can be used to maximize the performance of a predictive model
on an unseen data set avoiding overfitting. GAs need a population
of individuals and generations to produce better approximations
depending on some parameters such as mutation and crossover
probability. At each generation, according to a fitness criterion,
a new set of individuals, i.e. subsets of predictors, is created and
also recombined using operators from natural genetics. Among the
fitness measures are root mean squared error (RMSE) and classifi-
cation accuracy [44,45]. In this work, 10-fold cross-validation was
implemented as resampling method, with classification accuracy as
fitness measure. Only internal performance, provided by the train-
ing data, was used in the search. External performance was not
used. The best performance was achieved at iteration 26 with a
subset of 5 variables.

2.5.3. Random forest — recursive feature elimination

Resampling methods such as cross-validation and bootstrap are
useful for feature selection during model building. These meth-
ods can maximize the model's performance but the computational
cost increases. RF-RFE provides a reliable assessment of predictors
and presents a ranked set of the best predictors at the end. In this
work, 10-fold cross-validation was used as resampling method,
and RF-RFE was used to predict during each resample. The best
performance was empirically obtained with four predictors.

2.6. Classification

The selected features were used as input to the classification
stage. Several models were evaluated for the purpose of recognition
of three emotional states: amusement, sadness and neutral.

2.6.1. Data preparation

The data set was standardized and centered. Then, it was divided
into 80% for model training, and 20% for testing the model with
unseen data. The data were balanced during training and test, i.e.
we used the same number of observations of each class.

2.6.2. Classification models

We used several classification methods that include support
vector machines (SVM), linear discriminant analysis (LDA and
SLDA), multinomial regression (MN), decision trees (DT), and naive
Bayes (NB). We also evaluated ensemble models, such as extreme
gradient boost (XGBTREE), boosted logistic regression (BLR), lasso
and elastic-net regularized generalized linear models (GLMNET)
and bagging trees (TBAG). These classifiers were trained and tested
over the unseen data with a 10-folds cross-validation algorithm to
obtain subject-dependent models for emotion recognition.

2.7. Performance metrics

The performance metrics used in this work are accuracy and
the receiver operating characteristic (ROC) curve. The ROC curve
considers the number of true positives (TP), true negatives (TN),
false positives (FP), false negatives (FN), and area under the curve
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Table 2

One-way ANOVA results for statistically significant predictors.
Predictor df  Sumsgq Mean sq F p
crm4 2 7.41e-07 3.70e-07 14.268 4.37e-06**
crm3 2 1.66e—-06 8.30e-07 11.456 3.83e—05*"
crm2 2 492e-06 2.46e—-06 9.8188 1.42e—-04**
crml 2 2.68e-05 1.34e-05 7.8087 7.60e—04**
scravd 2 5.78e-10 2.89e-10 24572 3.46e-09*"
scraonv 2 980,257,470 490,128,735 10,563 7.821e-05™"
scrpnv 2 0.42915 0.214576 22,530 1.305e—-08**
emf4 2 3.42e-06 1.71e-06 3.4093 3.75e—02"
hrstd 2 4851 24.25 2.78 0.06.

Signif. codes: 0 **0.01 * 0.05.

(AUC) to illustrate the detection ability of a model. These met-
rics were computed during a cross-validation procedure for each
model. Below, there is a description of the metrics.

2.7.1. Accuracy
It computes the amount of TP and TN over the total of observa-
tions:

TP+ TN

Accuracy = PN

2.7.2. Receiver operating characteristic

This metric describes the TP percentage versus the FP percent-
age. It helps to understand how sensitive (TP rate) and specific (TN
rate) is a model. The ROC curve can be obtained by plotting the TP
rate against FP. The best possible AUC is 1.0. The diagonal line in
the ROC depicts randomness.

3. Results and discussion

In this section, we present and discuss the results of the statis-
tical analysis, classification, and post-stimuli surveys.

3.1. Statistical analysis

The hypothesis of this analysis is to prove that at least one pair of
emotions varies with respect to the mean levels in at least one pre-
dictor. Table 2 shows the one-way ANOVA results for the predictors
that are statistically significant with 95% certainly. The analysis of
GSR features including scravd, scrpnv and scraonv shows that by
computing just derivative characteristics, a statistically significant
difference can be reached for emotion recognition. EMD features
are also relevant, since the zero crossing rates and energy values
of the four modes are statistically significant. On the other hand,
hrstd is the only PPG feature that provides differences on each tar-
get emotion. However, it does not provide a statistically significant
difference since its p-value is above the limit. Hence, it is possible
to detect emotional changes only from GSR predictors even in their
mean levels with 95% certainly. The reason why HR features were
not significant to identify among amusement, sadness and neutral
may be that these emotions have similar values of arousal, and HR
is a signal that mostly varies with changes in this attribute.

3.2. Cross-validation

This section presents the 10-fold cross-validation! results listed
in Table 3 for each subset of predictors presented in Table 1. Table 4
shows the tuning hyperparameters for all the models and the
selected ones.

The worst subset of predictors is the SW-FW subset. The best
mean accuracy for this data set was reached by GLMNET with 64%,

of results.

Table 3

10-Fold cross-validation results for each model.

SW FW

SW BIDIR

GA

RFE

Model

ROC

Accuracy

ROC

Accuracy

ROC

Accuracy

ROC

Accuracy

Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max Min Mean Max

Min

0.88
0.92
0.92
0.87
0.94
0.94
0.90
0.77
0.94
0.92
0.90
0.89

0.75
0.78
0.74
0.73
0.76
0.79
0.74
0.66
0.80
0.81
075
0.78

0.62
0.66
0.58
0.53
0.53
0.62
0.46
0.55
0.72
0.62
0.44
0.62

0.66
0.77
0.88
0.66
0.77
0.77
0.66
0.66
0.88
0.77

0.57
0.63
0.6

0.44
0.44
0.44
0.44
0.22
0.44
0.33
0.44
0.44
0.55
0.22
0.33

1.00
1.00
091
1.00
1.00
1.00
0.83
0.90
0.94
1.00
1.00
0.92

0.97
0.89
0.78
0.93
0.94
0.95
0.73
0.73
0.87
0.99
0.87
0.83

0.87
0.79
0.59
0.77
0.85
0.85
0.53
0.51
0.75
0.92
0.77
0.63

1.00
1.00
0.88
1.00
1.00
1.00
0.66
0.77
0.88
1.00
0.85
0.77

0.90
0.73
0.66
0.87
0.84
0.82
0.58
0.58
0.74
0.96
0.73
0.66

0.77
0.55
0.44
0.77
0.66
0.77
0.44
0.22
0.55
0.77

0.5

1.00
1.00
0.93
1.00
1.00
1.00
0.94
0.90
1.00
1.00
1.00
0.94

0.99
0.83
0.86
0.96
0.94
0.99
0.81
0.72
0.89
0.99
0,90
0.88

0.92
0.85
0.73
0.88
0.85
0.98
0.64
0.48
0.75
0.92
0.77
0.77

1.00
1.00
0.88
1.00
1.00
1.00
0.88
0.77
1.00
1.00
1.00
0.88

0.95
0.84
0.75
0.83
0.84
0.97
0.65
0.60

0.8

0.88
0.66
0.44
0.77
0.66
0.88
0.44
0.22
0.44
0.88
0.62
0.55

1.00
1.00
1.00
1.00
1.00
1.00
0.98
0.86
1.00
1.00
0,98
1.00

0.99
0.96
0.89
0.96
0.94
1.00
0.82
0.76
0.94
0.99
0.92
0.9

0.90
0.87
0.78
0.88
0.85

1.00
1.00
1.00
1.00
1.00
1.00
0.88
0.77
1.00
1.00
0,88
0.88

0.97
0.85
0.81
0.86
0.83
0.98
0.7

0.88

SVML
SVMR
KNN
LDA

0.77

0.66
0.77
0.66
0.88

0.54
0.57
0.57
0.56
0.52
0.64
0.64
0.58
0.56

SLDA
MN

1.00
0.61
0.51
0.74
0.90
0.79
0.76

0.44
0.22
0.66

NB

0.62
0.80
0.98
0.82
0.76

DT

XGBTREE
GLMNET

0.98
0.85
0.73

0.88

0.57

BOOSTLR
TBAG

0.77

0.55

0.55
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Table 4
Classification models tuning and final parameters.
Classification algorithm Tuning parameters Final model
KNN k-neighbors =c(1:50) 17 K-Neighbors
MN decay=c(0,1e—04,1e—01) decay =1e-04
GLMNET a=c(0,1), A=seq(0.001,0.1 by 0.001) a=1,A=0.06
SVML cost=2"¢(0:5) c=8, Support Vectors=34
SVMR o=2"c(-25,-20,-15,-10,-5,0), cost =2"¢(0:5) c=32, Support Vectors=47, 5=0.03125
DT cp=2"c(-32,-25,-20,-15,-10,-5,-2,0) cp=0.02643
BLR nlter=50 niter=11
NB fL=¢(0,0.5,1.00), bw_adjust=c(0,0.5,1.0) fL=1, bw_adjust=1.0
XGBTREE n.trees =500, max_depth=c(1:4), n=c(0.01,0.1) n.trees =500, max_depth=3,7=0.1
LDA No parameters need for this model
SLDA Both directions
TBAG No parameters need for this model
with a minimum value of 55% and a maximum of 77%.> SVM with ~ Table5 )
a radial kernel (SVMR) reached the same mean accuracy but its ~ AUC values per emotion target and model.
variability is higher. With respect to the ROC curve, the maximum Model Target emotion AUC
ROC value corresponds to GLMNET. The BLR model was the only A 093
one that did not reach the expected performance with respect to MN N 0.89
its variance in ROC, despite its mean accuracy was 58.21%. S 0.88
The results for the SW-BIDIR subset show that the model that A 0.96
maximizes the mean accuracy and the ROC is GLMNET, with 96% SVML g g'g?
and 99% respectively. Similarly, SVM with linear kernel (SVML) A 0.92
reached a mean accuracy of 90% within the same variability of GLMNET N 0.89
S 0.86

the aforementioned. In comparison with the SW-F subset, this one
improves the global mean accuracy, from 58% to 76.92% and the
global mean ROC from 76.28% to 87.93%. The results for this subset
also show that the MN, LDA, and SLDA models are able to dis-
criminate among the target emotions with high mean accuracy.
The minimum ROC in the worst case scenario corresponds to LDA
with 77%. The models KNN, NB, and DT have the lowest accura-
cies. Finally, all the models are able to generate information over
randomness, since the lowest ROC is 51%.

The GAs subset performance is better than the SW-BIDIR. The
mean global accuracy was 82.04% and the ROC 90.95%. Particularly,
there is no a statistically significant difference among the mean
accuracy levels of GLMNET, MN, and SVML models. GLMNET is the
model that maximizes the mean accuracy to 98% and MN is the one
that maximizes the ROC value, since its variability goes from 98%
to 100%. In addition, once again the NB, KNN and DT models are not
able to predict the target emotions within a 95% of certainly.

The RFE subset is the one that provides the best global per-
formance with mean global accuracy of 83.61% and mean global
ROC of 92.36%. Results are shown in Fig. 7. The results in Table 3
show that the models with the best performance are GLMENT, MN
and SVML. Fig. 8 shows the ROC curve for each model. This figure
is helpful to identify the best model to discriminate among emo-
tion pairs i.e. neutral-sadness (N-S), amusement-sadness (A-S), and
neutral-sadness (N-S). There are three ROC plots, one per emotion.
We can state that all models are able to identify amusement when
it is the target. GLMNET could fail in identify amusement when the
pair is A-S. On the other hand, when sadness is the target, MN and
SVML may fail if the emotion pair is A-N. Once again, GLMNET has
problems with the A-S pair. Finally, when neutral is the target, all
models have the same behavior regarding to A-N and N-S. They are
able to discriminate neutral when it is present. In contrast, when
the pair is A-S, the models tend to get confused as they lie close
to the diagonal in the ROC curve. Table 5 presents the mean AUC
values for each case. Since the priority of this work is to discrim-
inate between amusement and sadness, over neutral, SVML is the

of the 10 folds cross-validation results with

best model to classify the emotions when the target is amusement
(96%) or sadness (91%).

Finally, the information of the SVML model’s performance dur-
ing training and test is presented by the confusion matrices in Fig. 9,
where the number in parentheses represents the classified obser-
vations per class. When evaluated on the test data, the SVML was
able to recognize emotional states with mean accuracy of 100%.
When evaluated on the training data, the model identified the
target emotions with mean accuracy of 97.78%. This model has a
no-information rate of 33.33% with the unseen data.

3.3. Post-stimuli survey

The self-report survey had five questions that go from general to
particular to track the emotion elicitation process. These questions
are listed below:

1. What impressions do you have about what you have just seen
and experienced?

. Did you experience any change in your emotional state?

3. Did you experience something positive, negative or something
else?

. Express in a single word what you felt.

. On a scale from 1 to 5 (where 1 is little amused/sad and 5 very
amused/sad) how would you rate the intensity of what you felt?

L]

U

The answers to the survey show that most of the subjects that
watched the amusement video clip declared experiencing the tar-
get emotion. All subjects stated feeling a change in their emotional
state. From the valence domain, 86.50% declared feeling a positive
emotion, and nobody said that felt a negative emotion. All subjects
described their emotional state as fun and amusement, and their
facial expressions were according to it. Fig. 10 and Table 6 show
these results.

In the case of the sadness video clip, 56.75% of the population
stated feeling a change in their emotional state. From the valence
domain, 37.83% of the subjects declared feeling a negative emotion,
56.75% something else, and the rest a positive emotion. Regarding
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Fig. 8. ROC curve for the best three models with the selected subset.
Table 6
Analysis of the survey responses for the amusement video.
Reported valence Reported emotion Intensity of amusement Subjects
Amusement, laugh, nothing, satisfaction 5 19
Positive Amusement, laugh 4 9
Amusement 3 4
X . Amusement, happiness 5 3
zgi_ ﬁgsgtlffe Amusement 4 1
&atl Boring 3 1

the main evoked emotion, as seen in Fig. 10, only two participants
(5.4%) reported sadness, and other three (8.1%) reported similar
emotions: shame and loneliness. Most of the subjects reported
i i to the first question, ten subjects

as sad, sadness, sorrow, tragic,

compassion, grief, depression, empathy, and touched. Finally, with
respect to the last question, 40.5% of the subjects rated the inten-
sity of sadness as 2, 18.9% as 3, and 5.4% as 4 (see Table 7).
Therefore, 64.9% of the subjects stated feeling moderate to intense
sadness.
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Fig. 9. Confusion matrices for the training (left) and test (right) samples for the SVML model.

Table 7
Analysis of the survey responses for the sadness video.
Reported valence Reported emotion Intensity of sadness Subjects
Sadness, fear, astonishment, impression 3-4 6
Negative Sorrow, surprise, fear 2 6
Intrigue, fear 1 2
. Surprise, impression 3 3
Nor positive . . . .
Nor nesative Aston}shment. bEW}lderment. loneliness, su_rpnse. 1ptr1g}1€. susp_ense o . 2 8
Astonishment, bewilderment, apathy, surprise, anxiety, impression, curiosity, nothing 1 10
. Tension 2 1
Positive Suspense 1 1

|
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Fig. 10. Main emotion evoked by the amusement video (top) and by the sadness
video (bottom) as reported by the subjects in the post-stimuli survey.

It can be seen that the elicitation of the sadness emotion was
more difficult compared to the amusement emotion, as well as the
analysis of the survey responses to identify the evoked emotions.

~<{tation shows a woman that kills her-
s before the end of the video and

View PDF

right after watching the video, the participants answered the sur-
vey. It can be expected that due to its intensity and closeness to the
application of the survey, the subjects would express the surprise
as the prevailing emotion in that moment, over other emotions felt
before and after the surprise emotion. Surprise is known as one
of the briefest emotions (it lasts just a few seconds) and usually
mixes with other basic emotions such as joy and sadness once the
individual understands what is happening [46].

According to Reeve, people often tend not to express certain
emotions that make them feel physically uncomfortable [47]. Fur-
thermore, there are rules for the manifestation of emotions such
as neutralization and masking which are learned socially and their
regulation is given according to social situations. This could explain
the variability and some apparent inconsistencies in the subjects’
responses. Considering that the experiments were developed in
an artificial context under the presence of the examiner, and that
sadness is often considered as an expression of vulnerability or
weakness, the subjects may have found difficult to recognize and
manifestitopenly [48]. However, the responses to the first question
shows that sadness could appear through empathy and compas-
sion, and most of the subjects rated the intensity of sadness as
moderate to intense in the last question.

3.4. Methodology validation
To validate the proposed methodology, we used the DEAP data

set.? Since the procedure for video clip selection in our approach
was label-based, only videos with labels similar to “amusement”

3 https://www.eecs.gmul.ac.uk/mmv/datasets/deap/.
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(joy, happy, fun) and “sadness” (depressing, sadness) were consid-
ered. Four videos were selected for “happy” and two for “sadness”
per subject. Then, the same features extracted in our approach
(except THD1, THD2, THD3, and THD4) were computed for each
video clip in all subjects (32). Heart rate features were computed
only in time domain because the low sampling frequency (128 Hz)
of the signals leads to low resolution in frequency-domain. Due to
problems with the convergence of the EMD algorithm, some obser-
vations were discarded. Finally, a binary imbalanced subset was
obtained with 84 observations for “happy” and 44 observations for
“sadness”. Data was divided in 80% for training and 20% for testing
to obtain a subject-dependent model using the proposed method-
ology. In this case, we chose metrics as the F1 score that are more
informative when data sets are imbalanced. F1 score assesses the
model’s performance based on the ability to recognize TPs and TNs
from the cost associated to recognize each of them [49,50].

Aswith our data set, the RFE subset (hrmode, scrdr, hrdr, hrssdn,
HFnu) is the one with the best global performance. The models that
showed the best global performance were the tree-based models.
The model that maximized the F1 score was TBAG with 81%. This
model also maximized emotion recognition with a mean accuracy
of 74.5% (60.05%, 90.32%) with a confidence interval of 95%. The
work by Ayata et al. used the same data set for arousal and valence
prediction from GSR and PPG signals, and obtained accuracy rates
0f 72.06% and 71.05% respectively [27]. Our results show that even
with the limitations described above, the proposed methodology
can be used to design a system for emotion recognition using a
different data set.

4. Conclusions

This work shows that emotion recognition is possible from the
PPG and GSR signals with high accuracy. The feature selection tech-
niques that were able to maximize the model performance with a
less number of predictors were GAs and RFE. We found that deriva-
tive features of GSR, and energies and zero crossing rates of its EMD
modes allow to correctly classify the target emotional states. For
amusement and sadness recognition, the features evaluated on the
PPG signal showed not to be significant. This was observed in the
ANOVA results too.

Several classification models were trained to select the one that
maximizes the accuracy and ROC. Most of the models showed good
performance over all the subsets except SW-FW. SVML was the
method that provided the best classification performance regarding
to its mean accuracy and ROC, in particular to identify amusement
and sadness.

Even though much progress has been made in methods to detect
emotional states, it is still necessary to work on the identification of
effective stimuli to elicit emotions that are strongly shaped by cog-
nitive aspects such as expectations and perceptions, by processes of
socialization, personal and cultural history, as in the case of sadness
and anger. It is often found that, although the basic emotions are
universal, the stimuli that elicit them with high intensity are not.
Therefore, it is suggested to implement protocols in which each
subject actively and intentionally participates in the selection of
what generates emotion, is informed of the intention of the study
and helps in the process of evoking his/her own emotion.

Future work includes the evaluation of other emotion elicitation
protocols with a higher number of subjects, the addition of other
emotions in the analysis, and the development of a wearable system
for emotion detection in real time.
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