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Abstract10

This study investigates the relationship between geometry and nonlinear dynamics in time series of cosmic ray counts
recorded at neutron monitors at ground stations. Using advanced geometric and topological analysis techniques, we
construct complex networks from the time series and calculate curvature measures such as Ollivier-Ricci curvature,
Forman-Ricci curvature, and Ricci flow for each series. The analysis reveals significant correlations between these
curvature metrics and key parameters such as geomagnetic cutoff rigidity and detector latitude. In particular, Forman-
Ricci curvature exhibits a robust negative correlation with cutoff rigidity (Pearson r = −0.85, Spearman ρ = −0.86,
p-value< 10−5), while Ricci flow also shows a strong and highly significant inverse relationship with cutoff rigidity
(Pearson r = −0.92, Spearman ρ = −0.89, p-value< 10−7). These results suggest that the geometrical structure of
the networks, influenced by geomagnetic conditions, plays a crucial role in the variability, complexity, and fractality
of cosmic ray time series. Furthermore, the study underscores the importance of considering network topology and
curvature metrics in the analysis of cosmic ray data, offering new perspectives for understanding space weather phe-
nomena and improving predictive models. This integrative approach not only advances our knowledge of cosmic ray
dynamics, but also has important implications for mitigating risks associated with space weather conditions on Earth.
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1. Introduction12

Cosmic rays (CRs) (Grieder, 2001; Ziegler, 1996), consisting mainly of protons and atomic nuclei, are high-energy13

(106–1020 eV) charged particles that constantly bombard the Earth’s atmosphere from outer space. They originate14

from extremely energetic events in the universe, such as supernova explosions and coronal mass ejections from the15

Sun. As these particles collide with the Earth’s atmosphere, they trigger cascades of secondary particles—including16

neutrons, muons, and electrons—which can be detected by sensitive instruments on the Earth’s surface and in space17

(Tatischeff et al., 2021).18

The characterization of CRs is fundamental to understanding their impact on various aspects of life on Earth and19

modern technology. CRs are closely related to space weather, as variations in their flux can influence solar activity20

and near-Earth space weather (Dorman, 2021; Guhathakurta, 2021). These effects can have significant implications21

for ground-based technology (Simonsen et al., 2020), including satellite navigation systems such as GPS, orbiting22

satellites (Höeffgen et al., 2020; Köksal et al., 2021), radio communications, and mobile communications networks23

(Sharma and Lamba, 2017). Furthermore, CRs can affect human health (Singh et al., 2011), especially at high altitudes24

where exposure to cosmic radiation is higher, affecting air flight and manned space missions (Lim, 2002; Cucinotta25

and Durante, 2006).26

Previous studies have analyzed CRs time series in relation to various contributions in several emerging fields27

seeking additional insight. For example, Sierra-Porta (2022) investigated the fractal properties of CRs and their cross-28

correlations with solar dynamics. The study examined CRs measurements obtained by a neutron monitoring station in29

Moscow, along with ten heliospheric parameters, including sunspots, solar activity rates, Alfven number, geomagnetic30

storm rates, proton temperature, and interplanetary magnetic field magnitude. Using multifractal detrended cross-31

correlation analysis (MFDCCA) (Zhou, 2008), the study identified positive long-term correlations with multifractal32

behavior in CRs time series and the heliospheric parameters, implying effective correlations between cosmic radiation33
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and space weather, particularly in relation to the dynamics of the interplanetary medium (Kudela and Venkatesan,34

1995; Gopinath and Prince, 2017).35

Geomagnetic Cutoff Rigidity (Rc), a critical measurement in CRs detection, is intricately related to the geographic36

latitude of CRs detectors. This rigidity refers to the minimum amount of linear momentum that a charged particle37

must possess to penetrate the Earth’s atmosphere and be detected by a surface detector. Essentially, Rc represents38

the energy threshold below which cosmic particles cannot reach the Earth’s surface, being deflected by the Earth’s39

magnetic field. The value of Rc depends on both the strength and orientation of the Earth’s magnetic field at the40

detector location, leading to significant variations based on latitude. Generally, the Earth’s geomagnetic cutoff rigidity41

is higher at lower latitudes (around the equator), effectively deflecting lower-energy particles more efficiently, and42

decreases toward the poles, where more low-energy cosmic rays can penetrate (Herbst et al., 2013; Smart and Shea,43

2005; Danilova et al., 2023; Comedi et al., 2020; Gerontidou et al., 2021). This variation in Rc is closely tied to the44

geometry of Earth’s magnetic field and has significant implications for cosmic ray detection at different latitudes.45

A recent study explored the relationship between CRs intensities and cutoff rigidity through multifractal detrended46

fluctuation analysis (MFDFA) (Sierra-Porta and Domı́nguez-Monterroza, 2022; Kantelhardt et al., 2002). The re-47

search investigated how magnetic cutoff rigidity relates to variability and multifractal behavior in CRs flux time series48

detected by neutron monitors on Earth’s surface. Since Rc is strongly dependent on the geographical latitude of the49

detectors, not all detectors record the same number of CRs counts (see also: Giri et al. (2024) and Yu et al. (2009)).50

The study’s findings suggest a bias in the chaotic nature of the CRs series associated with the latitude of the monitoring51

stations. A significant relationship was established between Rc, the behavior variations, and the Hurst exponent of the52

series corresponding to the counts at the neutron monitoring stations. Notably, an inverse relationship was observed,53

where a higher Rc correlates with a lower Hurst exponent, highlighting how geographical and geomagnetic factors54

interplay in CRs monitoring.55

A recent study by Sierra-Porta (2024) examined the relationship between Rc and chaotic behavior in CRs time56

series using visibility graph analysis (VGA) (Stephen et al., 2015; Lacasa and Toral, 2010) and network analysis tech-57

niques. In this study, the time series of CRs flux measured by neutron detectors at 16 monitoring stations distributed58

worldwide were analyzed. By applying visibility graph analysis, the relationship between geomagnetic cutoff rigidity59

and fractality exhibited by the CRs time series topology was explored. The results revealed a significant association60

between Rc and CRs time series fractality. Specifically, the analysis of visibility graphs and network properties of time61

series identified a relationship between Rc and fractality, providing insights into the chaotic nature of CRs variations62

and their potential applications for predictability.63

A recent study investigated Forbush Decrease (FD) events across different solar cycles and examined their correla-64

tion with geomagnetic storm conditions using multifractal detrended fluctuation analysis (Sierra-Porta, 2024). In that65

work, the amplitude of the multifractal spectrum was compared between FD series associated with stronger geomag-66

netic storms (maximum storm index exceeding 6) and those linked to weaker or negligible storms. It was found that67

FD series falling under the stronger storm category exhibited a notably greater spectrum amplitude, suggesting that68

the fractal complexity of these events is closely tied to the severity of geomagnetic activity. This finding underscores69

the importance of geometric and topological approaches in shedding light on the intricate interplay between cosmic70

ray phenomena and space weather conditions.71

In addition, it is important to highlight the growing interest in the analysis of network geometry, a field that has72

experienced a remarkable boom in recent times. Network geometry focuses on the study of the geometric and topo-73

logical properties of complex networks, which can represent a wide variety of dynamic systems and relationships74

between interconnected entities (Boguna et al., 2021; Mulder and Bianconi, 2018; Salanti et al., 2008). This approach75

has found applications in various fields, including finance (Samal et al., 2021; Yen et al., 2021), wireless communi-76

cations (Haenggi, 2012), epidemic studies (de Souza et al., 2021), and time series analysis of biological and social77

systems (Albert et al., 2014). In finance, network geometry is used to analyze the interconnectedness between fi-78

nancial institutions and predict the propagation of systemic risks (Marti et al., 2021; Yen et al., 2021; Granados and79

Vargas, 2022). In economics, it is used to study the structure of trade and collaboration networks between countries. In80

time series analysis, network geometry provides tools to visualize and analyze the time evolution of complex dynamic81

systems. This innovative approach has opened new perspectives for understanding the complexity inherent in a wide82

range of phenomena, from economic interactions to climate dynamics, and its application in signal and data network83

analysis continues to be an active and promising area of research.84

The relationship between curvature measures with chaos and nonlinear dynamics is established through differential85
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geometry, topology, and dynamical systems theory (Donner et al., 2011). In nonlinear dynamical systems, chaos can86

arise due to sensitivity to initial conditions and bifurcations in system behavior. Curvature measurements and Ricci87

flow can provide information on how the geometry and topology of the network influence the sensitivity to initial88

conditions and the occurrence of bifurcations (Baptista et al., 2023; Jin, 2013; Golubitsky and Stewart, 2015).89

Moreover, chaos is often associated with fractal structures and fractal dimensions in the phase space of a dynamical90

system. Curvature measurements and Ricci flow can help characterize the fractal geometry of the lattices or varieties91

associated with the dynamical system, providing information about the complexity and fractal nature of the system92

(El-Nabulsi, 2022; de Souza et al., 2021). Finally, there are theoretical connections between chaos theory and complex93

network theory. Curvature measures and Ricci flow can be used to characterize the structure and dynamics of complex94

networks, providing insight into how chaotic phenomena emerge in complex interconnected systems.95

In this contribution, we explore the importance of understanding variations and characterizations of CRs and96

their impact on space weather, ground-based technology, and human life related topic. The focus of this study is on97

investigating the relationship between CRs intensity dynamics and the geometric structure of networks constructed98

from time series of CRs counts. This study use geometric and topological analysis techniques to examine how the99

geometry of these networks influences the variability of CRs counts and provide a new perspective to understand the100

complexity of these cosmic phenomena and their impact on our terrestrial environment. Specifically, we will employ101

advance methods of topological and network geometry analysis, focusing on features derived from the network’s102

Ricci curvatures and Ricci flow, to provide insights from a unique viewpoint concerning the relationships identified in103

previous studies.104

2. Data available105

The data used in this study came from two main sources. First, data on CRs count intensities were obtained from106

the Institute of Terrestrial Magnetism, Ionosphere and Pushkov Radio Wave Propagation of the Russian Academy of107

Sciences (IZMIRAN, https://www.izmiran.ru/) (Gaidash et al., 2017) which is a scientific institution founded in108

1939 and has been engaged in research in the field of terrestrial magnetism, ionosphere and radio wave propagation. In109

addition, data from the Neutron Monitor Database (NMDB, https://www.nmdb.eu/), a real-time database for high-110

resolution neutron monitor measurements (Mavromichalaki et al., 2010, 2011), were used. NMDB provides access to111

neutron monitor measurements from stations around the world and aims to provide easy access to all neutron monitor112

measurements through a user-friendly interface. It is important to note that the data retrieved through NMDB are the113

property of the individual data providers and are free for non-commercial use within the restrictions imposed by the114

providers.115

The data consist of cosmic ray count intensities recorded by neutron monitoring stations located across the globe.116

For this study, observations collected during solar cycle 24 (2008–2019) were used, ensuring that the selected time-117

frame included the largest possible number of stations without significant gaps in their respective datasets. By choos-118

ing this interval, it was possible to minimize missing data and reduce the need for imputation methods, thereby119

preserving the integrity of the original measurements. Each record represents the amount of cosmic rays detected by120

a station in a specific time interval, enabling an examination of the temporal variability of cosmic ray intensity during121

this solar cycle.122

It is important to note that both the IZMIRAN database and the NMDB database contain measurements of CRs123

count intensities from multiple neutron monitoring stations distributed around the world. However, some of these124

stations may have missing data due to malfunction or because they are no longer operational. Therefore, as part of the125

data preparation process, a selection of stations retaining less than 5% missing data was made. This selection ensures126

the integrity of the data used in the study.127

In this study, the time series were originally available in various temporal resolutions, ranging from 5-minute128

to monthly data. To maintain consistency across all stations and to concentrate on long-term trends, each dataset129

has been resampled to a one-month average. This approach effectively excludes short-scale events such as Forbush130

decreases, which often arise from coronal mass ejections, as well as variations related to corotating interaction regions131

(on timescales of the solar rotation period), ensuring that only longer-term cosmic ray modulations are captured.132

Consequently, this methodology highlights the contribution of solar cycle variations in the heliospheric magnetic field133

to cosmic ray dynamics, rather than transient or local phenomena. Additionally, the monthly aggregation helps reduce134
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computational overhead and simplifies comparisons across stations. Still, the raw data at higher resolutions (hourly135

or finer) remain available for any future study aimed at investigating short-lived or more event-specific effects.136

Additionally, a data engineering process was carried out to standardize and correct the data, as well as to build137

a complete database from the two original sources. This process included the integration of variables related to the138

height, latitude, longitude and country of location of each neutron monitoring station. These additional variables139

provide important contextual information that may be relevant for data analysis and interpretation of the results.140

Table 1, shows the neutron monitors considered in this study specifying their localization, latitude, longitude,141

geomagnetic cutoff rigidity and altitude.142

Table 1: Comparative characteristics of 22 neutron monitor data used in this study. Columns in table refer to Monitor (code name of the instrument
used in this study), Lat (geographic latitude measured north), Lon (geographical longitude measured east), Alt (altitude measured in meters above
sea level) and Rc at monitor station localization).

No. Name, Loc Monitor Lat Lon Alt Rc Operated by
1 Barentsburg, Spitzbergen/PGIA BRBG 78.07 14.21 51 0.01 Polar Geophysical Institute
2 Mirny, Antarctica/Russia MRNY 66.55 93.01 30 0.03 Pushkov Institute of Terrestrial Magnetism
3 Inuvik, Canada/Bartol INVK 68.36 133.72 21 0.30 Bartol Research Institute
4 Fort Smith, Canada/Bartol FSMT 60.02 111.93 180 0.30 Bartol Research Institute
5 Thule, Greenland/Bartol THUL 76.55 68.70 26 0.30 Bartol Research Institute
6 Nain, Canada/Bartol NAIN 56.55 61.68 46 0.30 Bartol Research Institute
7 Apatity, Russia APTY 67.57 33.40 181 0.65 Polar Geophysical Institute
8 SANAE, Antarctica SNAE 71.67 2.85 865 0.73 South African National Antarctic Programme
9 Oulu, Finland OULU 65.05 25.47 15 0.80 Sodankyla Geophysical Observatory
10 Kerguelen, Antarctica/France KERG 49.35 70.25 33 1.14 French polar institute
11 Newark, USA/Bartol NEWK 39.68 75.75 50 2.40 Bartol Research Institute
12 Moscow, Russia MOSC 55.47 37.32 200 2.43 Pushkov Institute of Terrestrial Magnetism
13 Irkutsk2, Russia IRK2 52.28 104.27 2000 3.64 Institute of Solar-Terrestrial Physics Russian Academy of Sciences
14 Lomnický štı́t, Slovakia LMKS 49.20 20.22 2634 3.84 Institute of Experimental Physics, Košice, Slovakia
15 Jungfraujoch NM64, Switzerland JUNG1 46.55 7.98 3570 4.50 Physikalisches Institut of the University of Bern
16 Jungfraujoch IGY, Switzerland JUNG 46.55 7.98 3570 4.50 Physikalisches Institut of the University of Bern
17 Hermanus, South Africa HRMS 34.43 19.23 26 4.58 South African National Space Agency
18 Baksan, Russia BKSN 43.28 42.69 1700 5.60 Institute of Nuclear Physics Russian Academy of Sciences
19 Almaty, Kazakhstan AATB 43.25 76.92 3340 6.69 Institute of Physics and Technology in Almaty, Kazakhstan
20 Mexico City, Mexico MXCO 19.33 99.18 2280 8.20 Geophysical Institute, National Autonomous University of Mexico
21 Tsumeb, Namibia TSMB 19.20 17.60 1240 9.29 Geological Survey of Namibia
22 Doi Inthanon, Thailand PSNM 18.59 98.49 2565 16.80 Mahidol University, Chulalongkorn University

3. Materials and methods: Network geometry143

Network geometry is an interdisciplinary field that focuses on the study of the geometric and topological properties144

of complex networks (Boguna et al., 2021). These networks can represent a wide range of dynamic systems and145

relationships between interconnected entities, and their analysis provides crucial information about the structure and146

dynamics of these systems. In recent years, network geometry has experienced increasing interest due to its ability to147

address a variety of problems in fields as diverse as physics, biology, computer science, and the social sciences.148

In this study, we focus on three key curvature measures in network analysis: Ollivier-Ricci curvature, Forman-149

Ricci curvature, and Ricci flow. These measures provide invaluable information about the intrinsic geometry of150

networks and have proven to be particularly useful in characterizing the structure and dynamics of complex systems.151

Given that we have established geometry applied to topological networks as a potent methodology for information152

extraction, one of our initial tasks with the dataset is constructing a network from each time series using a visibility153

graph analysis algorithm. Consequently, each time series corresponds to a network. Subsequently, we analyze each154

constructed network and compute two types of curvatures: Ollivier-Ricci curvature and Forman-Ricci curvature. As155

we are transitioning from a continuous object (time series) to a discrete one (network), curvature concepts can be uti-156

lized seamlessly. Moving forward, we apply two distinct types of discrete Ricci curvatures to CRs counting networks157

across various latitudes globally. Their definitions and applications are extensively documented in relevant literature.158

Discrete Ricci curvature provides valuable insights into network structure, making it highly relevant for both Network159

Science and Machine Learning. By connecting with numerous established network metrics and analytical approaches160

(Weber et al., 2017), it has been employed to investigate network data across a variety of domains, including biolog-161

ical (Tannenbaum et al., 2015; Weber et al., 2017; Sandhu et al., 2015), chemical (Leal et al., 2021), and financial162
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transaction networks (Sandhu et al., 2016). In Machine Learning, discrete curvature has been leveraged to alleviate163

oversquashing in Graph Neural Networks (Topping et al., 2021; Nguyen et al., 2023) and to guide the selection of164

embedding spaces for Representation Learning (Weber, 2020). For completeness, we briefly outline their definitions165

here.166

Ricci-curvature, for example, quantifies the intrinsic curvature of a network at each of its nodes, making it possible167

to identify regions of high curvature that may play a crucial role in network connectivity. On the other hand, the168

Forman-curvature provides an alternative measure of curvature that takes into account both the geometry and the169

topology of the network, allowing it to capture important features of its structure.170

Taken together, these curvature measures offer a unique perspective for understanding the complexity of networks171

and their dynamic behavior. In this study, we will explore how these measures can be applied to the time series172

analysis of CRs counts and how they can provide relevant information about the dynamics and structure of these173

complex systems.174

3.1. Ollivier-Ricci curvature175

Consider a graph or network G = (V, E), where V denotes the set of vertices and E the set of edges. To define176

Ollivier-Ricci curvature, we utilize the framework proposed by Ollivier (2009, 2007), which is based on the concept177

of optimal transport of probability measures between graph vertices.178

Define a probability distribution over the vertex set V(G). For a vertex x ∈ V , the probability measure mαx : V →179

[0, 1] is defined as follows:180

mαx (v) =


α if v = x,

1−α
deg(x) if v is a neighbor of x,

0 otherwise.
(1)

Here, deg(x) represents the degree of vertex x, and α ∈ [0, 1] is a parameter that modulates the distribution between181

the locality of x and the broader graph structure.182

The transport distance between two probability measures mαx and mαy , where x, y ∈ V , is defined as the first-order183

Wasserstein distance (Vaserstein, 1969; Anderes et al., 2016; Panaretos and Zemel, 2019):184

W1(mαx ,m
α
y ) = inf

π∈Π(mαx ,mαy )

∑
u,v∈V

π(u, v)d(u, v), (2)

where, π(u, v) represents the probability mass transported from vertex u to vertex v, while d(u, v) is the shortest path185

distance between u and v. The coupling measure π(u, v) ensures that the total mass distribution is conserved and186

satisfies the conditions defined by the probability measures mαx and mαy . Finally, the Ollivier-Ricci curvature between187

two vertices x and y is defined as:188

κα(x, y) = 1 −
W1(mαx ,m

α
y )

d(x, y)
, (3)

where W1 refers to the first-order Wasserstein distance between the probability measures mαx and mαy . It is also com-189

monly known as the Earth Mover’s Distance, which quantifies the cost of transporting one probability distribution190

into another.191

This formula quantifies the deviation of the graph from being a Euclidean metric space in terms of how the cost192

of optimal transport between probability distributions differs from the geometric distance between points.193

The value of the hyperparameter α used in the calculation of Ollivier-Ricci curvature (using Eq. (3)) depends on194

the specific context and application. In the Ollivier-Ricci curvature framework, α typically represents a parameter that195

controls the sensitivity of the curvature calculation to the underlying geometric structure of the space being analyzed.196

The choice of α can influence the interpretation and behavior of the curvature measurements.197

“Typically, α is a positive scalar value that can be adjusted based on the desired properties of the curvature analysis198

and the specific context in which the method is applied (Ollivier, 2009; Ni et al., 2019). Common choices for α include199

values such as 0.5, 1.0, or other numbers, depending on the extent to which one wishes to focus on local neighborhoods200

versus broader connections in the graph. In our analysis, we select α = 0.5, a choice that balances local and global201

influences in order to provide a more well-rounded interpretation of the underlying structure.”202
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In the computational analysis of network structures, the shortest path distances d(u, v) between nodes are cru-203

cial for the calculation of the optimal transport distance (Wasserstein distance), which underpins the assessment of204

Ollivier-Ricci curvature. Two primary methodologies are employed for determining these shortest path distances:205

• All-Pairs Shortest Path (APSP): For comprehensive network analyses where repeated distance queries are ex-206

pected, an all-pairs shortest path approach is utilized. This method leverages the efficient graph processing207

capabilities of NetworKit (Angriman et al., 2023; Staudt et al., 2016) to compute and store the shortest path208

distances between all node pairs in the graph. The resulting distance matrix, obtained using NetworKit’s APSP209

function (Kuhn and Schneider, 2020; Vaid et al., 2017), provides a readily accessible source of shortest path210

data, facilitating efficient curvature calculations across the entire network.211

• Pairwise Shortest Path: In scenarios where specific node pair distances are required, a pairwise approach is212

adopted. This method uses the Bidirectional Dijkstra algorithm (Rahayuda and Santiari, 2021; Vaira and213

Kurasova, 2011) from NetworKit to compute the shortest path between any given pair of source and target214

nodes directly. This targeted approach avoids the computational overhead of calculating and storing shortest215

paths for all node pairs, optimizing performance when only a subset of distances is needed.216

3.2. Forman-Ricci curvature217

In the study of simple network structures such as graphs, where only nodes and edges are present without more218

complex topological features, understanding curvature becomes more straightforward. In these settings, each edge219

directly connects two nodes without involving additional hierarchical relationships. This simplicity is advantageous220

when applying concepts of Ricci curvature, making it easier to analyze and visualize. Particularly, we explore the221

Forman-Ricci curvature, which is especially suited for analyzing networks that are structurally straightforward. The222

Forman-Ricci curvature adapts well to such basic topologies, providing valuable insights into the geometric properties223

of networks.224

In this case, the Forman-Ricci curvature (Weber et al., 2017; Sreejith et al., 2016) is defined as:225

ςα(x, y) = ωα

ωx

ωα
+
ωy

ωα
−

∑
αx,αy∼α

(
ωx

√
ωαωαx

+
ωy

√
ωαωαy

) , (4)

where ωα, ωx, and ωy denote the weights of the edge α, the nodes x and y, respectively. In addition, αx and αy denote226

the set of edges connecting x and y, respectively, but excluding the edge α.227

Because we use unweighted network graphs in this study, we use a simplified mathematical formulation version228

of the Forman-Ricci curvature calculation (Forman, 2003; Sreejith et al., 2016), in which:229

• Definition of Neighbors and Sets: we define α0
x and α0

y as the sets representing the neighbors of nodes αx and αy,230

respectively. These sets include both the predecessors and successors of αx and αy if the network is directed, or231

simply the neighbors of αx and αy if the network is undirected. Additionally, f is defined as the set containing232

the common neighbors between α0
x and α0

y , i.e., the nodes that are neighbors of both. On the other hand, p is233

defined as the set containing the neighbors of α0
x or α0

y that are not common between them.234

• Finally, the calculation of the Ricci-Forman Curvature for the Edge (αx, αy) is defined as F (αx, αy) = | f |+2−|p|.235

This concept of curvature is inherently linked to edges, making Forman curvature particularly well-suited for236

networks. Unlike other approaches, Forman curvature does not require any additional methods to extend curvature237

measurements from nodes to edges. However, although Forman curvature is primarily defined on edges (as a dis-238

cretization of Ricci curvature), it can be gracefully extended to nodes as follows.239

For each node n in the graph, the Ricci-Forman curvature is calculated as the average of curvatures of edges240

adjacent to node, i.e.,
∑

(αx,αy) adjacent to n F (αx, αy)/deg(n).241
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3.3. Discrete Ricci Flow242

Discrete Ricci flow (Ni et al., 2018, 2019) in graph theory is an innovative approach to iteratively adjust edge243

weights to achieve a uniform distribution of Ricci curvature across a network. This method is inspired by the continu-244

ous Ricci flow introduced by Richard S. Hamilton, which has significantly influenced geometric analysis by enabling245

the modification of a manifold’s metric to evenly distribute curvature (Hamilton, 1982).246

In the analysis of networks, we define discrete Ricci flow as a sequence of edge-weighted graphs (V, E, ω(ϵ)),247

where ϵ ∈ Z≥0 denotes discrete time steps (for this study ϵ = 50). The weights of edges at each step are ω(ϵ)
xy , and248

d(ϵ)(x, y) is the shortest path length between vertices x and y under these weights. The evolution of edge weights is249

governed by the Ricci curvature κ(ϵ)(x, y) at each edge xy as follows:250

ω(ϵ+1)
xy = (1 − κ(ϵ)(x, y))d(ϵ)(x, y), (5)

where κ(ϵ)(x, y) is calculated from the Ollivier-Ricci curvature, previously defined in Eq. (3).251

For unweighted graphs G = (V, E), the Ricci flow process begins with all initial edge weights ω(0)
xy set to 1.252

This iterative application of the Ricci flow tends to contract subgraphs with positive Ricci curvature and expand253

those with negative curvature, mimicking the heat diffusion behavior observed in Riemannian manifolds. As the254

flow progresses, edges between different communities increase in weight, potentially approaching infinity, while255

those within communities decrease towards zero, thereby partitioning the network into distinct communities. This256

segmentation of the network is akin to the edge removal strategy employed in the Girvan-Newman algorithm, which257

is based on betweenness centrality (Girvan and Newman, 2002).258

However, Ricci flow offers advantages over betweenness centrality as it does not require global information about259

the network and is computationally less intensive. It adjusts edge weights based solely on local curvature and adjacent260

node distances, providing a simpler and potentially more efficient mechanism for detecting and refining community261

structures in large networks, particularly those with hierarchical community structures.262

3.4. Visibility Graph Analysis Algorithm263

We have employed Visibility Graph Analysis (VGA) to transform the time series of CRs counts into complex264

networks. This process involves calculating the proximities and visibilities of each node in the series relative to all265

others. As a result, we obtain a complex network that preserves the topological and geometric information of the266

original time series.267

The VGA algorithm (Lacasa and Toral, 2010; Stephen et al., 2015) operates by treating each data point in the time268

series as a node in the network. Connections between nodes are established based on a visibility criterion: a direct269

line of sight from one data point to another must not be obstructed by any intermediate data points. Specifically, two270

nodes a and b in the time series are connected if a straight line drawn from a to b does not intersect the vertical line271

extending from any intermediate data point. This transformation allows the intrinsic properties of the time series to272

be studied through the lens of network theory, analyzing aspects such as the network’s topology and connectivity to273

uncover patterns and behaviors inherent in the original data.274

VGA serves as a similarity algorithm by establishing the importance of each node in the series as a measure of275

its relationship with previous or subsequent nodes in terms of unobstructed distance. Although it is not strictly a276

similarity metric, the visibility criterion effectively captures the local and global structural relationships within the277

time series.278

The algorithm can be described mathematically as follows. Consider a time series {x(t)}Nt=1, where x(t) represents279

the data value at time t. Each data point x(t) is treated as a node in the visibility graph. Two nodes x(ti) and x(t j) are280

connected if they satisfy the following visibility criterion:281

x(tk) < x(ti) +
tk − ti
t j − ti

(x(t j) − x(ti)) ∀ ti < tk < t j, (6)

where ti, t j, and tk are indices such that ti < t j and ti < tk < t j. This criterion ensures that the direct line of sight282

between x(ti) and x(t j) is not obstructed by any intermediate data point x(tk). By applying VGA, the algorithm convert283

the temporal information into a spatial network representation, allowing for a more comprehensive analysis of the284

time series through the interconnected relationships among nodes. This criterion ensures that a direct line of sight285

between x(ti) and x(t j) is not obstructed by any intermediate data point x(tk).286
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Next, we proceed to extract geometric and topological features from this network to analyze the structure and287

properties of the CRs count data. By applying VGA, we convert the temporal information into a spatial network288

representation, allowing for a more comprehensive analysis of the time series through the interconnected relationships289

among nodes.290

3.5. Availability of Python Codes for Ricci Curvature Measurements291

Despite the relative complexity and algorithmic intricacy of the aforementioned measures, several Python codes292

have already been developed to facilitate these tasks on discrete complex networks. In this work, we leverage a set293

of algorithms and libraries specifically designed for this purpose by Ni et al. (2019), which are readily accessible to294

all users. These tools are available for public use and can be found at the following web address: https://github.295

com/saibalmars/GraphRicciCurvature. In other words, for the VGA algorithm, I have developed a custom code296

based on a Python library that is publicly available at https://pypi.org/project/ts2vg/.297

4. Results and discussions298

We present both the distribution of time series counts and the complex network derived from these time series for299

several neutron monitors considered in this study in Figure 1. The counts are displayed for four stations located at high300

and mid-latitudes across both northern and southern hemispheres, illustrating the temporal variability in CRs counts301

at each location. Moreover, the complex network representation, constructed based on similarities in time series data,302

elucidates the interconnection structure among the neutron monitoring stations.303
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Figure 1: Distribution of the time series counts and the complex network generated from them. The plots on the left show the temporal evolution
of cosmic ray counts for four neutron monitors at various latitudes (both northern and southern hemispheres). In the network plots on the right,
each node represents a data point (or time step) from the corresponding time series, while edges denote a direct ‘line of sight’ or similarity relation
among data points based on the visibility criterion. This network visualization highlights how the patterns in cosmic ray counts connect individual
data points within each neutron monitoring station, offering insights into their proximity and mutual visibility as a function of recorded cosmic ray
counts.

Figure 1 illustrates both the temporal variation of CRs counts at four representative neutron monitoring stations304

and the corresponding network representation derived from their time series. In the plots (a1), (b1), (c1), (d1), each305

station’s count data are displayed over the same time interval, revealing distinct fluctuations associated with its geo-306

graphic location and local geomagnetic conditions. On the plot (a2), (b2), (c2), (d2), a force-directed layout is used to307

position the stations as nodes, where edges reflect similarities or “visibilities” in their respective time series. Stations308

that share more closely correlated fluctuations are drawn closer together or exhibit denser connections, underscoring309

how patterns in CRs intensity may coincide across different latitudes or geomagnetic environments. By juxtapos-310

ing the raw time series with the network representation, the figure demonstrates that the construction of a complex311

network from the data captures non-linear hidden intrinsic relationships among stations. This approach provides an312

intuitive visualization of how variations in CRs counts lead to varying degrees of interconnectedness, with each edge313

indicating a significant temporal correspondence rather than mere geographic proximity.314

The summary statistics for CRs intensity counts at the neutron monitor stations reveal several important insights315

shows in Table 2 for descriptive statistics about time series counts.316
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Table 2: Descriptive and network-based statistics for the time series data analyzed in this study. The columns in the table report the mean and
standard deviation of the observations (MEAN, STD), the minimum and maximum values (MIN, MAX), skewness and kurtosis (SKEW, KURT),
the entropy and fractal dimension correlation (ENTROPY, FRACTAL), and several graph-theoretical measures such as Average Degree Centrality
(ADC), Average Clustering Coefficient (ACC), Average Path Length (APL), and Density.

No Monitor Rc MEAN STD MIN MAX SKEW KURT ENTR FRAC ADC ACC APL Dens
1 BRBG 0.01 9910.83 379.60 9206.59 10523.53 -0.14 -1.44 0.64 4.26 11.15 6.85 2.91 1.11
2 MRNY 0.03 7328.90 278.07 6723.56 7804.29 -0.21 -0.97 0.47 18.84 9.59 6.76 3.03 0.96
3 INVK 0.30 3582.81 128.27 3342.30 3789.45 -0.15 -1.30 0.50 -2.16 9.39 6.82 4.09 0.94
4 FSMT 0.30 6623.60 267.19 6106.27 7079.76 -0.05 -1.20 0.64 -0.16 9.54 7.00 2.98 0.95
5 THUL 0.30 123.68 4.63 115.20 131.91 -0.00 -1.28 0.72 3.87 8.96 6.97 3.16 0.90
6 NAIN 0.30 6566.66 232.76 6109.20 6989.02 -0.16 -1.18 0.56 -12.01 10.20 6.98 3.07 1.02
7 APTY 0.65 3953.06 151.24 3678.19 4198.45 -0.12 -1.26 0.58 -20.98 9.67 7.02 3.06 0.97
8 SNAE 0.73 168.12 6.65 155.32 179.91 -0.15 -1.10 0.60 -0.62 8.81 6.96 3.38 0.88
9 OULU 0.80 3279.69 116.36 3059.01 3481.06 -0.16 -1.23 0.60 14.49 10.31 6.93 3.20 1.03
10 KERG 1.14 225.68 8.02 210.30 237.90 -0.17 -1.34 0.53 -20.06 8.76 6.83 2.87 0.88
11 NEWK 2.40 1784.84 81.56 1633.04 1909.57 -0.16 -1.29 0.76 -0.59 8.91 7.25 3.50 0.89
12 MOSC 2.43 9298.18 285.48 8752.56 9769.25 -0.20 -1.30 0.65 -30.84 8.59 7.21 3.00 0.86
13 IRK2 3.64 5786.29 248.22 5319.07 6196.61 -0.26 -1.06 0.43 9.07 8.65 7.45 3.01 0.87
14 LMKS 3.84 1561.78 44.52 1457.79 1652.98 0.12 -0.54 0.87 -1.24 7.46 6.86 3.36 0.75
15 JUNG1 4.50 369.21 15.27 336.04 401.55 -0.07 -0.51 0.89 2.86 7.93 7.01 3.04 0.79
16 JUNG 4.50 160.66 4.85 149.41 169.00 -0.18 -0.98 0.63 1.35 7.67 6.65 4.08 0.77
17 HRMS 4.58 122.13 3.00 116.10 127.00 -0.22 -1.10 0.66 1.87 7.91 7.00 3.75 0.79
18 BKSN 5.60 7316.94 196.47 6867.91 7816.77 -0.05 -0.42 0.61 2.42 8.03 7.50 2.71 0.80
19 AATB 6.69 1405.67 35.12 1296.19 1452.20 -1.31 1.21 0.91 9.27 6.57 7.24 3.42 0.66
20 MXCO 8.20 13637.55 216.36 13112.05 13990.88 -0.22 -0.84 0.93 -2.99 7.82 7.37 2.99 0.78
21 TSMB 9.29 330.26 5.07 317.41 339.90 -0.06 -0.62 0.52 -9.56 7.23 7.32 3.08 0.72
22 PSNM 16.80 18743.96 124.60 18366.52 18948.99 -0.81 0.27 0.98 14.72 6.89 7.30 3.38 0.69

From the data in Table 2, it is evident that neutron monitoring stations located in regions with higher Rc tend to317

exhibit greater kurtosis and reduced skewness in their time series, whereas stations at lower rigidity display more318

pronounced skewness coupled with lower kurtosis (and often negative) values (Takalo, 2022; Sierra-Porta, 2024;319

Koeksal et al., 2021). One possible explanation for this pattern lies in the varying degrees of geomagnetic filtering:320

higher-rigidity stations may experience occasional surges or sharp peaks in CRs counts—raising the likelihood of more321

pronounced, short-duration extrema—thus increasing kurtosis and reducing overall asymmetry in the distribution. In322

contrast, stations subject to lower rigidity likely record a broader range of moderate fluctuations, producing flatter323

distributions with heavier tails shifted in one direction (more negative skewness), as the reduced geomagnetic shielding324

allows for smoother but more diverse variations in detected CRs. These contrasting profiles highlight the impact of325

local geomagnetic conditions on the statistical properties of CRs time series, suggesting that the interplay between326

Rc and the underlying CRs flux dynamics leads to distinctly different distributional shapes across neutron monitoring327

stations.328

Aditionally, from direct inspection on Table 2, it is possible to discern that stations at higher Rc generally exhibit329

higher entropy in their CRs time series, suggesting a wider or more disordered range of fluctuations. This tendency330

is particularly noticeable in stations with Rc ≥ 5 GV, which cluster toward entropy values exceeding 0.8 and, in some331

cases, approach 1.0. By contrast, stations with lower rigidity (e.g., below 1.0–2.0 GV) display moderate to lower332

entropy, indicating a less varied distribution of CRs counts. The entropy and fractal dimension measures also offer333

valuable information about the complexity and irregularity of the time series. Stations with higher entropy values, such334

as MXCO and PSNM, indicate greater unpredictability and complexity in CRs counts. On the other hand, stations335

with lower entropy values, such as INVK, FSMT and MRNY, suggest more regular and predictable patterns.336

In other words, depicting fractal dimension correlation, the values span a broader range—some stations with low337

rigidity can exhibit both positive and negative extremes—while higher-rigidity stations tend to cluster at more negative338

values. Although no strict linear relationship is immediately apparent, the overall pattern suggests that as rigidity339

increases, the CRs series may assume a more “peaked” or sharply fluctuating structure (captured by higher entropy),340

but also exhibit lower fractal dimension correlation. These dual tendencies imply that geomagnetic conditions not341

only influence the breadth of variability in CRs fluxes, as reflected by entropy, but may also dampen long-range342

correlations or scaling behaviors, leading to a decrease in fractal-like complexity in regions of elevated geomagnetic343

cut-off rigidity.344

Additionally to statistical properties of CRs time series, we quantitatively assess the network structure of neutron345

monitoring stations by analyzing graph centrality measures (see Figure 2). These measures include: degree centrality346
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(ADC), betweenness centrality (ABC), closeness centrality (ACC), eigenvector centrality (EC), clustering coefficient347

(CC), diameter (Dia), average path length (APL), assortativity (AC) and density (Den).348
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Figure 2: Graph centrality measures across neutron monitoring stations, arranged from lowest to highest Rc. The figure illustrates average degree
centrality, average betweenness centrality, assortativity, and mean degree distribution, revealing patterns of connectivity and network structure
influenced by geomagnetic cutoff rigidity effects.

In terms of network measures derived from the visibility graph and network analysis, the ADC, ACC, EC, and349

Denity provide insights into the structural properties of the networks.350

Actually, the ADC (Fig. 2(a) indicates the immediate connectivity of a node within the network. We observed351

higher ADC values at stations with lower cutoff rigidities, generally located at higher latitudes. This suggests denser352

connectivity at these sites, potentially due to the lower Rc against CRs, which allows for more extensive and frequent353

CRs interactions. In contrast, stations positioned at higher latitudes, which experience lower Rc, exhibit lower average354

degree centrality, reflecting a sparser connectivity pattern. This pattern aligns with the protective effect of Earth’s355

magnetic field, which intensifies with latitude and influences CRs penetration. Higher ADC values, as seen in BRBG,356

MNRY and FSMT, indicate a more interconnected network, suggesting that these stations have more similar patterns357

of CRs counts with other stations but also coincide with stations a lower Rc. Conversely, stations with high Rc have358

more dispersed and less interconnected nodes (e.g. AATB, TSMB and PSNM).359

In other words, high ACC values (see Fig. 2(e)), such as those observed in MXCO, TSMB, and PSNM, indi-360

cate a strong tendency for stations to form tightly knit clusters within the network. The ACC is a measure of the361

degree to which nodes in a network tend to cluster together, capturing the local interconnectedness of the network.362

This suggests that these stations, characterized by higher ACC values, may share similar geographical or geomag-363

netic influences and are associated with higher magnetic rigidity (Rc). These tightly connected clusters could reflect364

underlying relationships in cosmic ray dynamics and their interactions with geomagnetic and atmospheric conditions.365

The density metric (Fig- 2(i)) reveals a clear relationship with the Rc. Stations with lower rigidity cutoff val-366

ues exhibit significantly higher density values, such as BRBG and MRNY, which both show densely interconnected367

networks. This suggests that cosmic ray time series at these stations are characterized by more consistent temporal368

correlations, likely influenced by strong geomagnetic shielding effects. As Rc increases, the density decreases, as369

observed in stations like PSNM, TSMB and MXCO. This trend indicates sparser network structures, reflecting the370

impact of broader heliospheric effects and the less localized temporal consistency of cosmic ray intensities at these371

stations.372

This relationship between Rc and density highlights how geomagnetic and heliospheric conditions influence the373

interconnectivity of the underlying network structure, making density a valuable metric for understanding cosmic ray374
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variability across different stations.375

Based on the graph showing EC (Fig. 2(d)) values across neutron monitoring stations ordered by increasing mag-376

netic rigidity (Rc), the following observations can be made. Eigenvector centrality, a measure that reflects the influence377

of a node in a network based not only on its direct connections but also on the importance of the nodes it is connected378

to, exhibits a subtle pattern across the stations. Stations with lower magnetic rigidity (e.g., BRBG, MRNY, INVK,379

FSMT) display relatively higher eigenvector centrality values, suggesting these stations play a more central and influ-380

ential role in the network structure. This centrality might be indicative of their prominence in facilitating connections381

between other highly connected stations, potentially driven by their geomagnetic and geographical characteristics.382

As geomagnetic rigidity increases, eigenvector centrality shows a decreasing trend, with stations like MXCO,383

TSMB, and PSNM exhibiting the lowest values. This pattern indicates that stations with higher Rc tend to be less384

influential in the network’s broader structure. This could result from their peripheral positions in terms of the cosmic385

ray dynamics represented in the network, where their local interactions might dominate over their global influence.386

This analysis suggests a general inverse relationship between eigenvector centrality and magnetic rigidity, high-387

lighting how the structural importance of stations diminishes as Rc increases. This trend may reflect the changing388

dynamics of cosmic ray propagation and geomagnetic shielding across different latitudes and rigidities.389

Additionally, the AC, which evaluates the likelihood of nodes connecting with others that have similar or dissimilar390

degrees, show varying assortativity across the network, which helps in understanding the clustering behavior and the391

propensity of nodes to form tightly knit groups (see Fig. 2(h)). Although there is no clear trend regarding its variation392

with respect to latitude, it differs significantly with respect to the monitor stations, with different behaviors in different393

CRs counting monitors.394

Moreover, the ABC and ACC (Fig. 2(b) and 2(c), respectively) provides insights into the role of specific nodes395

in facilitating communication across the network. No clear trend is evident. APL and Diameter (Fig. 2(g) and 2(f),396

respectively), no clear relationship with Rc is evident from the data.397

The results of the calculation of Ollivier-Ricci, Forman-Ricci, and Ricci Flow metrics for all neutron monitoring398

stations worldwide are presented graphically in Figure 4, showing a bar chart. On the x-axis, the neutron stations are399

ordered from lowest to highest Rc, from left to right. In this representation, the mean value of each of the curvature400

measurements for all stations is observed.401

In the analysis of the neutron monitor stations network, the Ricci flow, along with Olivier-Ricci and Forman-Ricci402

curvatures, serve as discrete local measures for each node. To synthesize these individual metrics into a broader403

perspective of the network’s dynamics, we aggregated these local values through the construction of a histogram404

encompassing measures for all nodes. This method averages the local measures, yielding a global representation that405

effectively captures the overall behavior of the network.406

The Figure 3 shows the variation in Olivier-Ricci curvature, Forman-Ricci curvature, and Ricci flow across a range407

of CRs monitor stations ordered by increasing latitude. Analyzing these metrics provides insights into the topological408

robustness and connectivity differences among these stations.409

The upper panel in Figure 3, displaying the Olivier-Ricci curvature, shows slight variations across the latitude.410

Olivier-Ricci curvature, which typically reflects the edge-based connectivity relative to the network’s average connec-411

tivity, appears to have minor fluctuations that could indicate a relatively uniform network structure with few anomalies412

in connectivity or network density. However, no clear correlation is observed between this Olivier-Ricci curvature413

value and the Rc of the stations, as evidenced by a poor correlation coefficient of 0.28.414

The middle panel in Figure 3 illustrates the Forman-Ricci curvature, which evaluates edge curvature by taking into415

account node and edge weights. Lower values of this measure often suggest stronger and more robust connections.416

As can be seen, there seems to be a tendency for the time series of neutron monitor stations at small latitudes to have417

stronger connections, possibly indicating regions with dense interconnections or a significant group of stations with418

these characteristics.419

Additionally, we observe a slight correlation indicating that as Rc increases, the Forman-Ricci curvature tends to420

rise modestly. Specifically, we calculate a moderate to high correlation coefficient of -0.86 demonstrating an inverse421

relationship between Rc and Forman-Ricci curvature. This finding suggests that stations with higher Rc might exhibit422

more complex or tightly interconnected network structures as measured by the Forman-Ricci curvature.423

The lower panel in Figure 3 depicts Ricci flow values, which are derived from iteratively applying Ricci curvature424

adjustments to refine the network’s topology. This analysis suggests a correlation between the station’s latitude and425

variations in network topology as measured by these Ricci curvatures (correlation coefficient of -0.92). Specifically, it426
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Figure 3: Bar charts illustrating the OR, FR and RF metrics for neutron monitoring stations. The stations are ordered along the x-axis, and
their corresponding curvature metrics are displayed on the y-axis. The OR metric shows generally negative values across stations, with some
variability. The FR metric demonstrates a clear decreasing trend as magnetic rigidity increases from left to right, reflecting its inverse relationship
with geomagnetic rigidity. Similarly, the RF metric exhibits predominantly negative values that decrease further for stations with higher magnetic
rigidity, consistent with the trends observed in our analysis. These patterns emphasize the geometric properties captured by the curvature metrics
in relation to cosmic ray dynamics.

appears that stations at certain latitudes might share more similar network characteristics, possibly due to similar envi-427

ronmental influences or operational factors affecting CRs detection. Stations in closely situated latitudes might show428

similar topological robustness and network integration, possibly reflecting regional clustering in how CRs phenom-429

ena are monitored and analyzed. This analysis provides a quantifiable insight into how the physical and operational430

characteristics of stations influence the overall network dynamics and detection capabilities.431

In network analysis, “Average Ricci flow” is understood as the mean value of Ricci flow metrics applied across432

all edges of a network over a specified period or throughout different regions of the network. This statistical measure433

offers insights into the network’s structural evolution, reflecting how Ricci flow influences the network’s topology434

over time.435

Networks characterized by small Ricci flow values typically exhibit uniform or minimally varying curvature across436

their edges. Observations from neutron monitor stations at lower latitudes indicate that these stations tend to exhibit437

smaller Ricci flow values, pointing to a more stable and uniform network behavior in these regions. Conversely,438

networks with large Ricci flow values indicate significant variations in curvature across edges, signaling ongoing439

substantial adjustments in the network’s structure.440

Inspired by the previous finding of significant correlations, particularly regarding the Forman-Ricci and Ricci Flow441

metrics, we further explore the complex networks of each neutron monitor station. We now develop and calculate442

simple models to establish an explicit and mathematically established relationship Rc and curvature.443

For the Forman-Ricci metric, a model that fits well consists of Rc = a1 + b1 exp(−c1FR), where FR is the Forman-444

Ricci metric, and a1 = −0.663±0.843, b1 = 26.257±2.340, and c1 = 0.128±0.020. This model achieves a Root Mean445
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Square Error (RMSE) of 0.31 and an r2-score (coefficient of determination) of 0.86, indicating both high predictive446

accuracy and strong explanatory power regarding the observed variability in cosmic ray intensities at the neutron447

monitoring stations under consideration (see Fig. 3(middle panel)).448

However, when establishing the relationship between the Rc of neutron monitoring stations and the Ricci Flow,449

the results indicate a good fit of the form Rc = a2 + b2 exp(−c2RF), where RF is the Ricci flow metric, and a2 =450

−2.866 ± 1.400, b2 = 4.732 ± 1.391, and c2 = 20.577 ± 3.609. This model yields an RMSE of 0.24 and an r2-451

score of 0.92. The results are shown graphically in Figure 3(lower panel). This result is consistent and in line with452

previous results using different methodologies from the studies of Sierra-Porta and Domı́nguez-Monterroza (2022);453

Sierra-Porta (2024).454
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Figure 4: Scatter plot showing the relationship between curvature metrics (Forman-Ricci and Ricci Flow) and geomagnetic cutoff rigidity of neutron
monitoring stations. Mathematical fit relationships are included for each metric, highlighting the trend observed in the data and the quality of the
model fit.

To assess statistical significance of the correlations between the curvature metrics OR, FR, RF and the Rc, Pear-455

son’s correlation, Spearman’s rank correlation, and Kendall’s tau tests at a significance level of α = 0.05 (95%456

confidence) has perform. For Ollivier-Ricci curvature, the Pearson test yielded r = 0.2809 with p = 0.2055, Spear-457

man’s rank correlation showed ρ = 0.1167 with p = 0.6051, and Kendall’s tau yielded τ = 0.0879 with p = 0.5713.458

All of these p-values are greater than 0.05, indicating that there is no statistically significant correlation between OR459

and Rc.460

In contrast, for Forman-Ricci curvature, the Pearson test gave r = −0.8524 with p = 4.76 × 10−7, the Spearman461
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test showed ρ = −0.8570 with p = 3.53 × 10−7, and Kendall’s tau gave τ = −0.6770 with p = 1.30 × 10−5. These462

extremely small p-values provide strong evidence of a highly significant negative correlation between FR and Rc.463

Similarly, for Ricci Flow, the Pearson test resulted in r = −0.9204 with p = 1.32 × 10−9, the Spearman test showed464

ρ = −0.8876 with p = 3.63 × 10−8, and Kendall’s tau gave τ = −0.7298 with p = 2.62 × 10−6. These results also465

indicate a very strong and statistically significant negative correlation between RF and Rc.466

In summary, at the 95% confidence level, Forman-Ricci curvature and Ricci Flow display robust and highly467

significant negative correlations.468

5. Conclusions469

In this research we have applied an innovative RC count time series analysis using advanced topological techniques470

by introducing the construction of complex networks using VGA and network geometry. This approach has allowed471

us to systematically capture interactions between neutron detectors distributed around the world, thus providing a472

structured and understandable representation of the global CR monitoring network.473

By calculating explicit curvature metrics for each generated complex network, we have unearthed two fundamental474

findings. First, we have observed a remarkable and direct correlation between the Forman-Ricci metric and the475

geomagnetic cutoff rigidity of the neutron detectors. This association, characterized by a proportional relationship,476

sheds light on the influence of magnetic stiffness on the topology and curvature of the neutron monitoring network.477

On the other hand, we have found that the Ricci Flow exhibits an inverse relationship with the magnetic stiffness478

of the neutron detectors. This association suggests an interesting dynamic in which detectors with higher rigidity tend479

to have lower Ricci Flow, while those with lower rigidity experience higher Ricci Flow. This observation provides480

valuable insight into the variability and complexity of CRs count time series at different latitudes and geographic481

locations.482

These results underscore the importance of considering network topology and curvature metrics in the analysis483

of CRs count time series. Curvature metrics, especially Forman-Ricci and Ricci Flow, emerge as powerful tools to484

characterize the dynamics of complex neutron monitoring networks and to unravel hidden patterns and underlying485

relationships in the data.486

In conclusion, our study not only advances the understanding of the complex dynamics of CRs counts, but also487

opens new perspectives for improving space weather prediction by including features derived from network topology488

and curvature metrics in more advanced and robust predictive models. This integrative approach promises to provide489

a more complete and accurate understanding of space weather phenomena, which has important implications for490

mitigating risks associated with outer space conditions on Earth.491

6. Final comments492

As a final comment, it should be noted that this study marks the beginning of a deeper and more detailed explo-493

ration of the dynamics of CRs counts and their relationship to space weather. While we have obtained promising494

results in analyzing complex networks and associated curvature metrics, we recognize that much remains to be dis-495

covered.496

A natural next step would be to incorporate data at higher temporal resolutions, such as hourly resolutions, to497

capture more complex elements and rarer, more distinctive phenomena in cosmic radiation. However, this brings with498

it the challenge of handling much longer time series, requiring greater computational power and additional resources.499

In addition, the study could be enriched by introducing new variables associated with space weather, which would500

allow a more complete and accurate understanding of the relationships and patterns observed in the models.501

Finally, an interesting approach that we have initiated is the use of Ricci Flow to detect communities and phenom-502

ena in the time series. From the results obtained in this study, we believe that Ricci Flow could be a powerful tool to503

identify outlier events and associate them with other space weather phenomena and variables. This approach promises504

to open new perspectives for the detection and understanding of rare and potentially important phenomena in cosmic505

radiation dynamics and space weather.506
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