
RAPID MAPPING OF WATERBODY VARIATIONS IN THE CENTRAL RIFT VALLEY, 

ETHIOPIA, USING THE DIGITAL EARTH AFRICA OPEN DATA CUBE 

 

Peppa M.V.1, Solano-Correa Y.T.2, Mills J.P.1, Haile A.T.3 

 
1School of Engineering, Newcastle University, Newcastle upon Tyne, UK 

(maria-valasia.peppa, jon.mills)@newcastle.ac.uk 
2Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia 

(solanoy@utb.edu.co) 
3International Water Management Institute (IWMI), Addis Ababa, Ethiopia 

(A.T.Haile@cgiar.org) 
 

ABSTRACT 

 

Mapping waterbodies variations through time is only 

possible thanks to the use of in-situ hydrometric sensors or 

remotely sensed data. Few areas around the world count 

with a functional in-situ sensor’s network, but all areas can 

be observed with satellite imagery. Several previous studies 

have mapped waterbodies by means of optical satellite 

imagery. Combining both optical and radar data is an 

alternative to avoid high cloud coverage or low data 

availability. This work presents a workflow for mapping 

waterbodies variations of lakes, spatially and temporally, 

located in the Central Rift Valley, Ethiopia by considering 

Landsat-based analysis-ready data alongside Sentinel-1/2 

imagery, and comparing automatic thresholding methods. 

The workflow is simple, yet effective, and makes use of the 

Digital Earth Africa Open Data Cube, for the very first time 

in Ethiopia to accelerate time-series processing with the 

potential to extend this analysis to a national scale, 

addressing water security challenges. 

 

Index Terms— Digital Earth Africa, Open Data Cube, 

remote sensing, Sentinel-1 and 2, Ethiopia 

 

1. INTRODUCTION 

 

A lack of long-term in-situ hydrometric records constitutes a 

major challenge in Ethiopia, adversely affecting the 

sustainable management of water resources [1]. Damaged 

gauges, uncertainty and suboptimal quality of recorded data, 

missing data records, arise due to lack of maintenance and 

infrastructure, limiting the understanding of water scarcity 

and the accurate estimation of water storage of inland 

waterbodies [2]. Furthermore, over the last four decades a 

considerable decrease in the size of the main large Ethiopian 

waterbodies has been observed, particularly in the Central 

Rift Valley (CRV) basin (Figure 1.). The area of Lake 

Abijata has shrunk significantly [3] and Lake Ziway’s water 

level has decreased [4, 5]. This is caused by increasing 

population growth, irrepressible industrial and agricultural 

activities, unregulated water abstraction, land use land cover 

changes, and extreme climate variability [5, 6]. Monitoring 

the spatio-temporal variations of those waterbodies is 

therefore crucial to measure water scarcity and support 

stakeholders to effectively manage water access, which is 

important for livelihoods and agricultural activities across 

the entire country of Ethiopia. 

 

 

Figure 1: Central Rift Valley sub-basin in Ethiopia including 

the main towns, rivers and lakes. 

With the advancement of high performance cloud-based 

computing platforms (e.g. [7]) and open Earth Data Cubes 

such as Digital Earth (DE) Australia [8] and DE Africa [9], 

it is now possible to access and analyse time-series of Earth 

Observations derived from freely-available optical and radar 

satellite imagery without the need to download high volumes 

of data and/or install commercial software for post-

processing [8]. Moreover, open Earth Data Cubes provide 

Analysis-Ready satellite Data (ARD) (e.g. Landsat-based 

water observations from space (WOfS); [10, 11]), as well as 

satellite imagery that have been geometrically and 

radiometrically corrected, including for actual surface 
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reflectance [8], which is useful for rapid mapping 

applications. Relevant previous studies have investigated the 

use of open DE Australia for mapping water surface extent 

changes since 1987 using Landsat [12], developing a 

supervised classification workflow using radar satellite 

imagery to extract waterbodies [13] and delineating 

Australia’s coastline over 28 years using Landsat imagery 

[14]. However, only one recent study [9] demonstrated the 

advantages of using the DE Africa open Data Cube and its 

Sandbox (a python-based cloud-computing environment 

[7]), via a single example of mapping wetlands with 

Sentinel-1 along the Buba river in the Lagoas de Cufada 

Natural Park, Guinea-Bissau [9]. The DE Africa Sandbox is 

a relatively recent cloud-computing platform (established in 

2020 [7]), and has not yet been fully explored for the entire 

continent of Africa, and has never before been used in 

Ethiopia to address water security related challenges. 

The presented study maps and monitors the spatio-

temporal variations of waterbodies and inform the 

management of the scarce water resources in the CRV sub-

basin. It focuses on extracting the water surface extent of 

Lake Abijata over the last five years. This study leverages 

the built-in functions of the DE Africa Sandbox cloud-

computing environment, the WOfS ARD, and Sentinel-1 and 

2 products to rapidly generate a time-series of water surface 

area observations to aid further understanding of lake 

change dynamics. 

 

2. METHODOLOGICAL WORKFLOW 

 

The methodological workflow consists of eight steps, 

processed in the DE Africa Sandbox python environment, as 

follows: 

1. Create a maximum water extent;  

2. Remove speckle noise only on Sentinel-1; 

3. Calculate water indices;  

4. Define automatic threshold;  

5. Create monthly time-series;  

6. Apply the threshold to extract only water pixels;  

7. Validate with benchmark datasets and calculate 

evaluation metrics Intersection over Union (IoU), 

precision, recall and F1-score;  

8. Calculate the waterbody surface area [km2]. 

 

The maximum water extent, extracted from the annual 

WOfS ARD [11], corresponds to those image pixels with the 

highest temporal frequency of pre-classification as wet using 

Landsat imagery between 1984 and 2022. It is assumed that 

wet observations correspond to a waterbody when a pixel is 

wet at least 20% of the time during a year [11]. The 

extracted maximum water extent was converted into a 

polygon, with its geometric extent served as the region of 

interest for the presented workflow. In particular, the 

maximum and minimum water extents of Lake Abijata 

observed in 1984 and 2019 respectively. Figure 2 shows the 

estimated difference of the water extent between 1984 and 

2019 with a 108 km2 dramatic decrease of the size of the 

lake based on the WOfS ARD. Such decrease could be 

attributed to land use land cover changes in the CRV [5] and 

to water extraction for industrial activities [15].  

 

Figure 2: Calculated water extent change of Lake Abijata 

between 1984 and 2019 from WOfS ARD. 

Within the maximum water extent, Sentinel-1/2 

products, already radiometrically and geometrically 

corrected, were retrieved for the monitoring period 01/2018-

01/2023. Specifically for the Sentinel-2 imagery a pixel 

quality filtering mask was applied to select cloud free 

datasets. The Sentinel-1 water index (SWI) was calculated 

according to [16], as follows: 

 

SWI = 0.1747∙βvv+0.0082∙βvh∙βvv+0.0023∙βvv
2 –

0.0015∙βvh
2 +0.1904  

(1) 

 

where βvh and βvv refer to the backscatter coefficients in VH 

and VV polarisations respectively, converted from 

Sentinel-1 digital number (DN) as follows: 

 

β = 10 ∙ log10(DN) (2) 

 

The Sentinel-2 modified normalized water index 

(MDWI; [17]) was also calculated as follows: 

 

MNDWI = (ρGreen – ρSWIR) / (ρGreen + ρSWIR) (3) 

 

where ρGreen represents the reflectance of the green B3 band 

and the ρSWIR represents the reflectance of the shortwave 

infrared B11 band of Sentinel-2. To ensure a consistent 

Sentinel-1 and 2 time-series, imagery was resampled to a  
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Figure 3: Monthly time-series of waterbody surface area of Lake Abijata, estimated with Sentinel-1 (SWI) and 2 (MDWI) 

imagery over the last 5 years. The 27 dashed lines correspond to the dates of the delineated benchmark lake shorelines. 

Calculated surface area from benchmark datasets shown in black star.  

 

Figure 4: September 2020 waterbody resulted from a) benchmark data, b) SWI and c) MNDWI proposed workflow.  

 

20 m spatial resolution. To define optimal automatic 

thresholds for the monthly time-series, two methods were 

examined: a) the Li [18]; and the Otsu’s method [19]. Both 

methods were tested separately for Sentinel-1 and 2 average 

monthly imagery. The thresholds were then applied and 

speckle noise was removed. Results were validated against 

benchmark datasets that were delineated by 

photointerpretation around the lake’s shoreline using very 

high spatial resolution Planet imagery [20] for 27 individual 

dates. 

 

3. RESULTS AND CONCLUSIONS 

 

The five-year image-series initially consisted of 147 and 363 

Sentintel-1 and 2 images respectively, which were then 

aggregated in a median monthly time-series. Threshold 

values defined with the Li method were within the range of 

0.44- 1.52 and -0.09-0.06 for Sentinel-1 and 2 time-series 

respectively. Regarding the Otsu’s method, the threshold 

values were within the range of 0.94-1.88 and -0.02-0.18 for 

Sentinel-1 and 2 time-series respectively. Even though 

threshold values were different per each monthly image, 

evaluation against the delineated benchmark lake shorelines 

showed relatively small discrepancies. For Sentinel-1 and 2 

the differences between the evaluation metrics were all 

smaller than 0.23 and 0.07 respectively for the two methods. 

Finally, the Otsu’s method was chosen for further analysis. 

The calculated surface area of Lake Abijata, over the 

last five years is shown in Figure 3. A relatively good fit is 

observed between the two time-series, also reflected by the 

evaluation metrics. Among all metrics, IoU provided the 

lowest values of 0.78 in September 2020 and 0.79 in April 

2019 for Sentinel-1 and 2 respectively. Waterbody outputs 

for September 2020 are shown in Figure 4. Sentinel-2 

MNDWI captured wet regions around the rivers’ flow, not 

included in Sentinel-1 SWI output. During the 2020 and 

2021 monsoon periods, both Sentinel-1/2 results 

underestimated the lake’s actual surface area. However, 

Sentinel-1 provided a better fit during the 2018 and 2019 

dry seasons than Sentinel-2 outputs (Figure 3). Furthermore, 

differences between Sentinel-1/2 during March-June 2022 

are also observed (Figure 3). Benchmark datasets for the 

remaining months in 2022 will be generated, to further 

understand these discrepancies. A significant increase in 
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surface water area is observed after July 2020 while a 

significant decrease in rainfall is observed in the years 2021 

and 2022 compared to the previous years, according to the 

CHIRPS (Rainfall Estimates from Rain Gauge and Satellite 

Observations [21]) precipitation datasets (Figure 3). 

However, to further investigate the observed discrepancies 

publicly-available water level datasets will be included into 

the analysis.  

The presented work has demonstrated the advantage of 

implementing the DE Africa services for rapid mapping of 

waterbodies, using a conventional remote sensing 

methodological workflow to complement scarce hydrometric 

in-situ datasets, and fill data gaps. Results can also serve as 

input features for a more advanced deep learning 

segmentation method. After further assessing the 

performance of the workflow for the Lake Abijata, it will be 

implemented in all waterbodies of the CRV to provide a 

holistic overview of the spatio-temporal water surface area 

variations, providing a fundamental basis to water-resource 

management authorities in the CRV, Ethiopia.  
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