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ABSTRACT 

The Las Piedras River sub-basin, located in the department of Cauca, Colombia, is very important for the region, especially 

for the capital (Popayán). This is because this sub-basin contributes around 68.17% of the water supply for the city. To 

guarantee continuity of this resource, good management of the Water Ecosystem Services (WES) must be carried out. To 

this aim, periodic environmental assessments of the water resource in the region are necessary. Such Environmental 

Assessment WES (EAWES) is possible when an accurate and up-to-date land cover map is available. However, obtaining 

such a product is quite complex due to the heterogeneous conditions both in the land cover and orography of the studied 

region. Another impacting factor is the weather conditions of the region, that make it difficult to access the areas and/or to 

acquire information for land cover mapping. This research proposes a robust model, based on deep learning and Sentinel-

2 satellite images, able to perform a land cover classification with reliable accuracy (>90%) at a low computational cost. 

A variant of a LeNet Convolutional Neural Network has been used together with features extracted from original spectral 

bands, radiometric indices and a digital elevation map. Preliminary results show an Overall Accuracy of 95.49% in the 

training data and 96.51% in the validation one. 

Keywords: Deep learning, Convolutional Neural Networks (CNNs), Remote Sensing, Land Use and Land Cover, 

Sentinel-2 

1. INTRODUCTION

Accurate and up-to-date information about Land Use and Land Cover (LULC) classification is essential for a wide range 
of applications, from Earth systems and climate modeling1 to territorial and urban planning2. Both LULC are important 
for understanding the impacts of human activities on the environment and for making informed decisions about how to 
manage and protect natural resources. To obtain a LULC classification product using Remote Sensing (RS), it is necessary 
to assign a class label to every pixel or object of an image3. RS techniques involve the use of satellite or airborne sensors 
to capture information about the electromagnetic radiation emitted or reflected from the Earth's surface4. LULC products 
are continuously developing as RS and methods grow. However, there still exist low consistency among LULC products 
due to heterogeneity conditions, both in the LULC and in the orography of the studied regions2. 

There are various methods to generate LULC maps, each with its advantages and disadvantages. Manual techniques can 
be simple and straightforward approaches, but they become impractical when dealing with large study areas and high 
number of classes5. In such cases, using artificial intelligence algorithms is a more efficient alternative. Among these 
algorithms, traditional Machine Learning (ML) and Deep Learning (DL) are techniques that have gained popularity due 
to their accuracy, robustness, and ability to analyze large datasets with complex features. By utilizing these methods, one 
can obtain a high-quality LULC map with relatively less time and effort6. LULC classifications using ML algorithms have 
been a popular research topic in recent years, with many articles exploring this area7–9. Traditional ML algorithms usually 
work very well when the study area is small and the classes to be mapped are relatively few. Pencue-Fierro et al.9 presented 
a hybrid approach for the LULC classification of multitemporal, multiregion, and multisensor Landsat data using 
classification and regression trees (CART) decision tree and a SVM-based clustering in cascade in order to get a total of 
11 classes (including clouds and shadows). Swetanisha et al.10 presented a study on the use of ML models to classify 
LULC in 7 classes. The study provides useful insights into the application of multiple ML models, including RF, SVM 
and KNN for LULC classification and presents a comprehensive evaluation of different models. All the above works 
proposed methods that rely on traditional ML supervised or unsupervised techniques, which may not be sufficient to 
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capture complex relationships within the data. Also, the spatial resolution of Landsat imagery is not enough if you want 
to perform a detailed LULC classification. Therefore, a better option in terms of spatial resolution is to use Sentinel 2 (S2) 
images. In the research done by Park et al.11, they applied ML algorithms like RF, XGBoost, and a LightGBM to LULC 
classification, and presented the model tuning process for each algorithm using S2, Landsat and a normalized digital 
elevation model. Razafinimaro et al. 12 used supervised classification with 6 traditional ML models. Analysis factors were 
used to further investigate their importance for S2, Landsat 8 and other RS information. The results showed that the KNN 
achieved the higher accuracy during the analysis of medium and low spatial resolution images with spectral bands lower 
or equal to 4. The RF completely dominated the other analysis cases. The previous works used S2 images, which allowed 
them to obtain detailed LULC products. Nevertheless, those studies only focused on a limited number of LULC categories, 
and it is unclear how well the algorithms would perform in classifying more complex or diverse LULC types. In this cases, 
DL techniques, such as convolutional neural networks (CNNs), have shown promising results in this field3. Sánchez et 
al.13 compared different traditional ML and CNN algorithms to identify 19 LU classes using sequences of S2 images 
around a relatively small area. In this research they showed that the best results were achieved by a deep neural network 
containing two-dimensional convolutional layers (Conv2D) and principal component analysis (PCA). A common 
limitation of the above work, as others in the literature6,14,15, is the high computational resources needed, especially when 
dealing with large and complex datasets, this due to complex CNNs architectures6,14,15. High computational resources are 
not always available for all research centers, making the task of LULC classification harder, if not impossible. 

To deal with the different issues highlighted above, in this research we propose a simple but robust CNN architecture, 
capable of mapping 11 LULC in Andean and mountainous areas. We use a simple architecture that overcomes several 
challenges associated with more complex CNN architectures, such as high hardware costs15 and longer wait times for 
results. By using this approach, we aim to provide an efficient and accessible solution for LULC classification using DL 

techniques16. 

2. METHODOLOGY 

The proposed approach is presented in Figure 1 and consists of several stages that help to achieve an accurate and reliable 

result while guaranteeing a low computational time/cost. In summary, the method: (i) downloads S2 satellite images, here 

we talk about multiple images due to the high cloud coverage over the area that does not allow to cover it with a single S2 

image; (ii) pre-processes data to guarantee homogeneity across different S2 images; (iii) creates a feature set by combining 

the pre-processed bands, radiometric indices, and a Digital Elevation Map (DEM), providing a more comprehensive 

representation of the LULCs; (iv) creates a training samples dataset that is used to both train and validate the proposed 

model; and (v) generates a LULC map for the studied sub-basin. Details about each of the steps is provided in the next. 

 

Figure 1. General block scheme of the proposed approach for LULC classification of Andean sub-basins in Colombia. 

2.1 Data pre-processing  

After downloading and clipping the S2 images to the area of interest, an outlier removal is conducted to eliminate pixels 

with values that are significantly different from the rest of the pixels in the image. This means removing pixels that have 

values out of expected ranges due to factors such as sensor errors, atmospheric disturbances, and other components. Next, 

a filtering of clouds and shadows is performed by making use of the ESA’s Sen2Cor algorithm that helps to filter clouds 

and shadows automatically17. After completing the previous steps, images from different dates/tiles are radiometrically 

homogenized by means of histogram matching. The use of this step will allow us to use the proposed method in a more 

generic way for other sub-basins in the Andean region. Images are rescaled in the range [0,1], instead of keeping them in 

the [0,10000] one, for DL models to work in the required configurations. 
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2.2 LULC classes and Feature Set construction 

A total of 11 LULC classes were considered for the studied area: Shrubs, Mineral extraction areas, Mixed Forest, Dense 

Forest, Agricultural Areas, Natural Grassland, Pasture, Planted Forest, Urban Areas, Páramo and Water. To differentiate 

these LULCs, supplementary features were required, in addition to the original 10 bands from S2, the B1, B9, and B10 

bands were excluded from consideration, as they are specifically intended for atmospheric correction purposes. Such 

features were radiometric indices and DEM. Indices specific for identifying areas with vegetation, water, urban areas, and 

bare soil were considered to enhance DL models accuracy and efficiency18. A total of 16 indices were considered. For 

instance, the Adjusted Transformed Soil Adjusted VI (ATSAVI) and Soil Adjusted Vegetation Index (SAVI) are useful 

in distinguishing between natural grassland and agricultural areas19,20, while the Green Leaf Index (GLI) and Enhanced 

Vegetation Index (EVI) can detect differences in forest density21. The Chlorophyll Index Red Edge (CIRedEdge) and 

Coloration Index (CI) are particularly useful in identifying different vegetation types such as páramo, shrubs, and 

forest22,23. The Normalized Difference Water Index (NDWI), the Simple Ratio - Ferrous Minerals (FM), and the Simple 

Ratio - Iron Oxide (IO) are effective in detecting water bodies, urban areas and mineral extraction areas24,25. Additionally, 

the DEM is also used to provide additional information. 

2.3 Training samples selection  

Training samples that will help to train the proposed model are selected by photointerpretation. To help with a better 

selection of them, the feature set composed of the 10 S2 preprocessed bands, 16 radiometric indices, and the DEM was 

used. The selected samples are used to automatically clip small 3x3 images for each of the 11 classes of interest in this 

research. These training samples present an imbalance, as shown in Table 1, due to the naturally unequal distribution of 

coverages in the Andean sub-basin. Therefore, an artificial balancing of the original samples is necessary to bias in the 

learning process. Hence, the initial samples were augmented to 26000 samples per LULC. The size of the final dataset is 

determined by several factors, such as the number of bands present in the original images and the number of classes used 

for classification. It is crucial to carefully consider these factors when building a dataset, as a larger dataset may result in 

more accurate classification results, but it may also require more computing power and storage space2. 

Table 1. Original distribution of the 11 LULC training samples. 

LULC Number of samples 

Shrub 2148 

Mineral Extraction 286 

Mixed Forest 22371 

Dense Forest 25809 

Agricultural Areas 10958 

Natural Grassland 19811 

Pasture 17258 

Planted Forest 15536 

Urban Areas 15748 

Páramo 13901 

Water 3399 

 

2.4 Proposed model setup and classification  

According to the state of the art6,14,15, increasingly complex CNN architectures are being developed to achieve highly 

accurate results. Such CNNs require of high computational resources to train, resulting in an increase in the economic cost 

of acquiring the necessary hardware to manage these models6,26. Therefore, in this research, we propose a robust yet simple 

architecture that solves these issues. The proposed model is based on the LeNet architecture27, which is a very simple CNN 

with few convolutional layers, causing the computational cost associated with training this CNN to be very low. Through 

several experimental tests, a balance was reached between the complexity of the architecture and the robustness of the 

model, achieving results that outperformed larger and more complex architectures in similar tasks6,14,15,26,28. 

The construction of the CNN is done using Tensorflow API, Keras. In addition to its ease of use, Keras also provides a 

range of tools for monitoring and visualizing model performance29. This includes built-in metrics for evaluating model 

accuracy and loss, as well as support for callbacks that allow researchers to monitor training progress and adjust model 

parameters in real-time. The proposed architecture for this research comprises a total of 7 layers, which include 4 
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convolutional layers and 3 fully connected layers. To optimize the performance of the model, several hyperparameters 

were carefully selected. The batch size was set to 16, whereas the number of epochs was set to 150. Additionally, the 

learning rate was set to 0.0005. It is important to note that the selection of hyperparameters can significantly impact the 

performance of the model, and as such, they should be carefully tuned to achieve optimal results. Other parameters such 

the activation function was set with a ReLU for all convolutional layers. A kernel size of 3x3 was considered, padding 

was set to “Same”, pooling was set to “Max Pooling” and learning rate to 0.25 for all convolutional layers. 

3. STUDY AREA AND DATA 

The study area selected for this research is the Las Piedras River sub-basin, located in the southwest part of Colombia (see 

Figure 2). The Las Piedras River sub-basin30 covers an area of approximately 66 km2 and is part of the larger Cauca River 

basin18. This sub-basin is characterized by a rugged topography, with steep slopes and narrow valleys. The main river, Las 

Piedras River, originates in the high Andean mountains and flows towards the southwest before merging with the Cauca 

River. The sub-basin is home to a rich array of flora and fauna, including several endemic species, and provides important 

ecosystem services such as water supply for agricultural and domestic use30. 

 

Figure 2. Study area location. 

The proposed approach is developed for its application over images acquired by the S2 series satellite (up to 10m spatial 

resolution)31. The study area is located within the intertropical convergence zone, which is an area near the equator where 

trade winds from the northern and southern hemispheres converge. This convergence often results in the formation of 

cumulus clouds, which can lead to high levels of cloud cover in the region32. Therefore, obtaining clear images of the area 

of interest is challenging due to the frequent presence of clouds. The most recent images of the study area, without 

significant cloud coverage were obtained in 2020 and were used in the study. To generate images that cover the entire area 

without any cloud or shadow interference, it was essential to merge two images: S2A in orbit R068 from February 2nd of 

2020 and S2B in orbit R025 from August 1st of 2020. Both images correspond to the T18NUH tile. The images were 

downloaded from the European Space Agency (ESA) website at Level-2A33. Additionally, a DEM with a resolution of 

12.5 meters (acquired by ALOS PALSAR) was downloaded from the Japan Aerospace Exploration Agency (JAXA)34. 

The DEM was acquired between 2010 and 2011 and resampled to 10 meters for compatibility with the S2 data. 

4. RESULTS 

A total of four metrics were employed to evaluate the accuracy of the proposed approach: Overall Accuracy (OA), 

precision, recall, and kappa coefficient. The proposed model was trained 30 times using a large dataset and obtaining an 
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OA of 96.06% in the validation data for all the tests. Following the central limit theorem35, the model training process was 

validated. In the best case, our model achieved an OA of 95.49% on the training data and an OA of 96.51% on the validation 

data. Notably, our model was particularly successful in accurately classifying the LULC categories for the study area, 

especially for LULC classes with more artificial samples, such as mineral extraction and agricultural areas. It was expected 

that the model would perform well on LULC categories such as "dense forest" and "mixed forest" because they had the 

most original samples available. However, it turned out that these two categories had the poorest recall scores, which 

indicates that the model encountered challenges in distinguishing between the subtle differences in spectral signatures that 

exist within these classes. Despite the availability of a relatively large number of original samples, these challenges may 

have contributed to the lower recall scores observed for the "dense forest" and "mixed forest" LULC classes. Regardless 

facing these challenges, the DL model performed remarkably well, as evidenced by a kappa coefficient of 0.962, and 

overall precision of 96.58% and an overall recall of 96.52%. 

4.1 Influence of kernel size and LULC map 

To establish the perfect balance between model complexity and dataset characteristics, various parameters combinations 

were tested. The kernel size used to construct the dataset was one of the most influential variables, especially in the 

qualitative result of the LULC classification. It determined whether the images would be small, such as 3x3, or large, such 

as 11x11. When using a relatively large kernel size, such as 11x11 (or larger), the quantitative accuracy was slightly higher 

than when using a small kernel size. However, the time required to process this information increased significantly, and 

the qualitative results accuracy decreased, resulting in an inadequate classification as shown in Figure 3(b). In general, the 

classification failed to reflect the thinner details that can be observed by photointerpretation in the S2 images in that sub-

basin Figure 3(a). LULC such as narrow rivers and narrow roads are not identified by the algorithm under this 

configuration, as these land covers are underrepresented when a dataset with a large kernel size is constructed. Other 

classes such as shrubs, pastures and natural grassland are also inaccurately represented by the algorithm. To improve the 

classification result, other tests were conducted by increasing the kernel size to form the dataset images. However, there 

was no improvement, so the kernel size was reduced to 3x3, resulting in a significant qualitative improvement, shown in 

Figure 3(c). Under this configuration, the model performance was outstanding, even mapping small rivers and small roads 

accurately (OA of 96.51%). Which is a significant advancement in this type of work since in other similar LULC 

classification research, this has not been possible9,36. 

4.2 Performance Evaluation: CPU vs GPU 

To evaluate the performance of the proposed approach for LULC classification using a simple but robust DL model, a 

comparison of applying the model with a CPU vs a GPU was carried out. The proposed model was trained in both a 

cutting-edge GPU (NVIDIA RTX 3090) and a standard CPU (Intel(R) Core (TM) i9-9900K CPU @ 3.60GHz). The 

required time was of ~13h with CPU vs ~5h with GPU. The results show that, for the dataset built for this research and 

with the simple architecture implemented, it is not necessary to have the latest computational resources to train the 

architecture. While using a powerful GPU can significantly reduce the training time, the difference in results was not 

significant enough to justify the cost of a top-of-the-line GPU for this project. 

5. CONCLUSIONS 

A simple, yet robust, DL based LULC classification method that works with S2 images acquired over Andean sub-basins 

has been presented. The results showed that, while DL models do require large amounts of data to be trained in an 

appropriate way, there is no need for complex CNNs architectures to obtain outperforming results. This finding has 

implications for both researchers and practitioners who may be limited by budget, thus showing that accurate results are 

achievable with moderate computational resources. The success of the proposed approach depends largely on the quality 

of the data used, the pre-processing performed, and the careful selection and tuning of the CNN hyperparameters. As future 

developments, it would be interesting to evaluate the operability of the proposed approach over larger Andean sub-basins 

that may bring new challenges (i.e., less cloud free images to work with). 
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Figure 3. LULC result for Las Piedras River sub-basin: (a) Sentinel-2 natural color image; (b) LULC map with a 11x11 kernel; 

(c) LULC map with a 3x3 kernel. 
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