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ABSTRACT

This study delves into the agricultural landscape of Bahia,
Brazil, employing the Mask R-CNN deep learning model
with satellite imagery to detect three crop growth stages
(early, mid-growth and maturity stage). This model is suited
to the region’s complex terrain and diverse crop patterns, pro-
viding accurate instance segmentation crucial for monitoring
crop development. Remarkable results have been achieved
with a limited dataset of just 54 images for training, under-
scoring the model’s efficiency in scenarios where extensive
data collection is challenging. The validation metric chosen
for this study is the Intersection over Union (IoU), preferred
for its ability to quantify the pixel-wise overlap between the
predicted and actual segmentations, offering a clear measure
of accuracy in spatial contexts. An IoU of 90% was obtained,
demonstrating Mask R-CNN’s robustness and potential for
precision agriculture in challenging environments.

Index Terms— Crops Growth, Deep Learning, Image In-
stance Segmentation, Remote Sensing, Mask R-CNN.

1. INTRODUCTION

In precision agriculture, the seamless integration of cutting-
edge technologies has ushered in a new era of data-driven
decision-making. One of the pivotal aspects in this domain
is the accurate monitoring and assessment of crop growth
stages, a task traditionally reliant on labor-intensive field ob-
servations [1, 2]. Timely and precise information about crop
growth enables farmers to make informed decisions regarding
irrigation, fertilization, pest control, and harvesting [3]. The
state of Bahia, Brazil, with its diverse agroecological zones
and varied climatic conditions, presents a microcosm of the
challenges and opportunities inherent in sustainable agri-
culture [4]. From the soybean fields that stretch across the
Cerrado to the cocoa plantations nestled in the Atlantic For-
est; understanding and managing the diverse growth stages
of crops is critical for optimizing yields and ensuring the re-

silience of Bahia’s agricultural sector [5]. The dynamic agri-
cultural landscapes of this state encapsulate the equilibrium
between traditional practices and technological innovation
[6]. The most advanced techniques for detecting crops, crop
types and crop growth stages involve the integration of deep
learning algorithms with high-resolution satellite imagery,
even though there exist simpler approaches that have also
shown to be robust and precise. An example of this can be
seen in [7] and [8], where authors exploited Sentinel-2 (S2)
Satellite Image Time Series (SITS) in order to accurately
map both crop fields and crop-types by exploiting automatic
techniques based on image processing and standard neural
networks and achieving accuracies over 90%. In the context
of automatic detection of crop growth stages, in [9] a model
was trained for Planet images and by exploiting regression
analysis using the Gradient Boosted Decision Tree Technique
(GBDT) to make predictions of cabbage growth stages from
0 to 70 days, with accuracies ranging between 51-74%.

This research presents an application of deep learning
(DL) techniques for the detection, classification and instance
segmentation of crop growth stages in Bahı́a, Brazil by ex-
ploiting S2 images. Similar works are not found over the area
(to the best of authors knowledge).

2. STUDY AREA AND DATA

This research is based in the State of Bahı́a, located in the
northeastern region of Brazil. The state is a highland region
with dramatic landscapes, caves, waterfalls, and hi-king trails
[4]. Bahia has a diverse economy, with contributions from
agriculture, industry, and services. It is a major producer of
commodities such as cocoa, sugar cane, and soybeans. The
studied area is shown in Fig.1 and is covered by nearly 11
S2 tiles. The selected images were acquired on December
15, 2023. To validate the results, the labeling of three crop
growth stages was made: early, mid, and mature; considering
the presence of soybean and rice crops in the area. This task
was done by photointerpretation over the 54 small areas high-
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lighted by green squares in Fig.1 and by making use of a RGB
image. These images offer a spatial resolution of 10 m/pixel,
which aligns perfectly with the extensive nature of the agri-
cultural fields in the region, where individual crops typically
exceed 100 ha. This spatial resolution strikes an ideal balance,
offering sufficient detail for accurate crop growth mapping,
while avoiding the impracticalities associated with process-
ing higher-resolution imagery over such large spatial scales.
Conversely, images with lower spatial resolution would fail to
capture the necessary details for effective analysis.

Fig. 1: Study area location in Bahı́a, Brazil; right panel: real
color image with training areas highlighted in green.

3. PROPOSED APPROACH FOR CROP GROWTH
STAGES DETECTION

This study follows the workflow provided in Figure 2. The
methodology comprises several interconnected stages:

Fig. 2: General proposed methodology.

3.1. S2 Data Collection and Pre-processing

S2 images were systematically chosen and downloaded from
the Copernicus Data Space Ecosystem. The original S2 tiles,
with 10980x10980 pixels, were partition into smaller, more
manageable segment,s of 1024x1024 pixels. This segmen-
tation facilitated the efficient processing of the data, ensuring
that the robustness of the Mask R-CNN framework did not re-
sult in prohibitively heavy computational loads. This is done
for all the images required to analyze the studied area. At
the same time, homogenization stages are applied in order to
guarantee similar spectral responses across different images.

3.2. Data Labeling

Images were annotated by means of photointerpretation and
using the Computer Vision Annotation Tool (CVAT) [10], an
open-source web-based tool that is known for its user-friendly
interface and powerful functionalities. CVAT was specifi-
cally chosen for this task due to its efficiency in handling
large datasets and its ability to provide precise annotation
tools which are vital for identifying the nuanced differences
between various crop growth stages. Annotations were per-
formed by delineating polygons indicative of distinct crop
growth stages. For model training, 42 images were annotated
with crop growth stages. The validation set contained 120
images for parameter tuning and overfitting prevention. Ad-
ditionally, 5 images were annotated for the testing dataset to
assess the model’s generalization to new data.

3.3. Model Training

A variation of the Mask R-CNN frameworwk [11] was em-
ployed using the training and validation dataset. This DL
model is adept at instance segmentation, which is crucial for
distinguishing between different growth stages on a per-pixel
basis. During training, we leveraged transfer learning tech-
niques, using a pre-trained model to initialize the weights,
which we then refined using our agricultural dataset.

3.4. Model Inference

In the final stage, the trained Mask R-CNN model was de-
ployed to infer the growth stages on the testing dataset. The
model inference provided us with instance segmentation
objects, indicating the classified crop growth stages. The
model’s performance was validated using the Intersection
over Union (IoU) metric, which is particularly effective in
spatial validation scenarios as it quantifies the overlap bet-
ween predicted segments and ground truth labels.

4. PRELIMINARY RESULTS AND DISCUSSIONS

A successfully Mask R-CNN model was trained for crop
growth stage detection, achieving promising results with a
relatively small dataset, an indication to the effective use of
transfer learning. Despite the complexity of the task and
the complexity of the DL framework, the implementation of
transfer learning allowed the model to learn from only 54 ima-
ges: 42 for training and 12 for validation. This distribution
ensured that overfitting was minimized during the training
phase. During the inference stage, 5 additional unseen ima-
ges were used. The inference outcomes were encouraging,
as the model demonstrated a high level of accuracy in the
predictions made. The visual result of 3 out of the 5 test
images are detailed in Figure 3. These preliminary findings
suggest that the model has generalized well, offering robust
predictions even with a limited dataset.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Results of the model inference and corresponding
RGB images for selected test areas.

Figure 3 shows the instance segmentation process for the
three mapped crop growth stages, yielding visually good out-
comes. These qualitative assessments are supported by the
IoU metric. The IoU metric provides a ratio of overlap be-
tween the predicted segmentation and the ground truth, which
is a reliable indicator of precision in spatial analysis. Figure
4 presents the IoU results for the five evaluated images. The
specific outcomes for the early growth, mid-growth, and ma-
ture stages were 0.92, 0.90, and 0.94, respectively. This gives
an average IoU of 0.92 which indicates a substantial degree of
overlap and alignment with the actual growth stages, thus ev-
idencing the model’s generalization capabilities. This score,
with a complex model like Mask R-CNN and a limited train-
ing dataset, underscores the efficacy of the transfer learning
approach and the model’s robustness in accurately classifying
and segmenting different stages of crop growth.

The proficiency of the model, trained on a modest dataset
of images, has shown commendable results, which is particu-
larly noteworthy given the constraints of the training set. The
analysis was conducted using only the RGB bands provided
by S2, without leveraging the additional seven spectral bands
available at 10m and 20m. This approach suggests that there
is substantial room for improvement in model performance.
Furthermore, widely recognized vegetation indices like the
Normalized Difference Vegetation Index (NDVI) were not
used. NDVI is crucial in precision agriculture for its ability to
provide insights into plant health, vigor, and biomass, which
are closely tied to the growth stages of crops [8]. Incorpo-
rating NDVI [12] and other spectral bands could significantly
enhance the model’s sensitivity to the subtle differences be-
tween growth stages, potentially enabling the mapping of a
broader range of crop development phases. However, it is
important to maintain a degree of modesty regarding these

(a)

(b)

(c)

(d)

(e)

Fig. 4: Intersection over Union (IoU) results for the five test
areas.

findings. The inference drawn from a limited set of just 5
images, while promising, requires further improvements and
tests. Future work should not only consider expanding the
dataset to include a wider variety of images but also explore
the integration of additional quantitative metrics. Dissecting
the IoU scores for each individual crop growth stage could
yield deeper insights and further validate the model’s discrim-
inatory power. The preliminary results are encouraging, since
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they represent a foundation upon which further refinement of
the model’s capabilities can be built. The potential for incor-
porating additional spectral data and vegetative indices, along
with a broader dataset for training, validation and inference,
opens the floor for future enhancements and assessments of
the model’s performance.

5. CONCLUSIONS

A framework for detecting different growth stages, together
with sementing crop fields, has been presented. The pro-
posed framework is applied over S2 images, and explores
three different crop growth stages (early, mid-growth and ma-
turity stage). While maps showing the three stages are not
directly provided (due to space constrains), an average IoU
score above 90% reflects the model’s high accuracy (early
growth = 92%, mid-growth = 90%, and mature = 90%), es-
pecially considering the limited size of the training dataset,
which consisted of only 54 small images. This high IoU
score, despite the small dataset, highlights the model’s capa-
bility to learn from a constrained number of samples, show-
casing the potential for deploying DL in precision agricul-
ture with limited resources. The results shown in this re-
search suggest that the model has generalized well, offering
robust predictions and underscore the potential for applying
advanced DL techniques in precision agriculture, particularly
in scenarios where data acquisition is challenging or resource-
constrained. Despite the dataset’s limitations, the model’s
predictions have proven to be robust and reliable. The results
reinforce the viability of utilizing sophisticated DL methodo-
logies in the context of precision agriculture. Moreover, the
model’s success achieved without the aid of additional spec-
tral bands or vegetation indices like NDVI (which are typi-
cally integral to such tasks) opens avenues for further en-
hancements.
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[6] K. G. Engås, J. Z. Raja, and I. F. Neufang, “Decod-
ing technological frames: An exploratory study of ac-
cess to and meaningful engagement with digital tech-
nologies in agriculture,” Technological Forecasting and
Social Change, vol. 190, p. 122405, 2023.

[7] Y. T. Solano-Correa, K. Meshkini, F. Bovolo, and
L. Bruzzone, “Automatic large-scale precise mapping
and monitoring of agricultural fields at country level
with sentinel-2 sits,” IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing,
vol. 15, pp. 3131–3145, 2022.

[8] Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone,
“A semi-supervised crop-type classification based on
sentinel-2 ndvi satellite image time series and phenolog-
ical parameters,” in IGARSS 2019 - 2019 IEEE Inter-
national Geoscience and Remote Sensing Symposium,
pp. 457–460, 2019.

[9] D.-C. Hsiou, F. Huang, F. J. Tey, T.-Y. Wu, and Y.-C.
Lee, “An automated crop growth detection method us-
ing satellite imagery data,” Agriculture, vol. 12, no. 4,
p. 504, 2022.

[10] CVAT.ai Corporation, “Computer Vision Annotation
Tool (CVAT).”

[11] W. Abdulla, “Mask r-cnn for object detection and
instance segmentation on keras and tensorflow.”
https://github.com/matterport/MaskRCNN, 2017.

[12] T. N. Carlson and D. A. Ripley, “On the relation between
NDVI, fractional vegetation cover, and leaf area index,”
vol. 62, no. 3, pp. 241–252.

3620

Authorized licensed use limited to: Pontificia Universidad Javeriana. Downloaded on September 09,2024 at 13:46:17 UTC from IEEE Xplore.  Restrictions apply. 


