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Abstract— High-resolution (HR) satellite image time series
(SITS) are a valuable data source for analyzing land cover
change (LCC) due to their large amount of spatial, spectral,
and temporal information. However, most existing LCC detection
methods focus on binary change detection (CD) within a single
year and fail to provide detailed information about the specific
type of change. In this study, we propose a multiannual CD
approach that identifies changes occurring between consecutive
years and provides information about the type of LC transition.
The proposed approach exploits multiannual and multispectral
SITS to generate a hypertemporal feature space (FS). This
FS is analyzed to create a set of CD maps that indicate the
time, probability, and type of change. To measure the similarity
between pixel time series, we use dynamic time warping (DTW)
in the space of hypertemporal features. A hierarchical clustering
technique is exploited to develop a set of class prototypes (CPs)
that represent the characteristics of different LC classes. The
CPs are then used to identify the most probable LC transition
for each changed pixel. Two test areas were selected to evaluate
the effectiveness of the proposed approach. The first one is located
in Amazon and spans the years 2015 to 2019; and the second one
is located in Sahel-Africa and covers the years 2015 and 2016,
using multiannual Landsat 7 and 8 SITS. The results demonstrate
that the proposed approach is effective in detecting multiannual
changes and in identifying the LC transitions.

Index Terms— Dynamic time warping (DTW), hypertemporal
feature, land cover change (LCC), land cover (LC) transition,
multiannual, remote sensing (RS).

I. INTRODUCTION

LAND cover (LC) analysis is a very attractive research
field that aims to support the proper planning and uti-

lization of natural resources and their management. There
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is a direct link between the availability of information and
adequate LC planning for successful and sustainable LC
management.

Due to the increased number of remote sensing (RS) satel-
lites and the availability of high spatial and temporal resolution
(HR) images, a new era is initiated in the area of satellite
image time series (SITS) analysis. Detailed spatial, spectral,
and temporal information provide capabilities for effective
monitoring of landforms, vegetation, and land use (LU) to
support climate modeling research [1], [2]. Moreover, the pos-
sibility of using multiannual multispectral SITS opens the door
to properly characterize the LC features between the extreme
instances (years) and analysis of climate change causes and
effects such as urbanization [3], industrial operations, natural
disaster [4], and deforestation [5]. Several studies have been
carried out to analyze and monitor LU and LC on Earth
surface by utilizing multitemporal satellite images. Some of
them focused on analyzing the multitemporal behavior of the
LC and extracting important phenological features. A tool
developed in [6] that produces phenological information from
satellite vegetation index time series. The method extracts the
main growing season information, estimates double growth
season parameters, and can select temporal regions of interest.
A study exploited multitemporal satellite images for crop
mapping together with the estimation of the crop dynamics [7].
The method performs a boundary detection to separate the
crop fields based on their phenological behavior and estimates
of phenological parameters, such as the number of cropping
cycles, the length of season, the middle of season, and the
maximum value of temporal signature. The study focuses
on agricultural areas characterized by irregularly sampled
seasonal time series data, specifically targeting small-scale and
intensively cultivated crop fields.

Some methods detect LC Change (LCC) by developing
algorithms that can process longer temporal samples and
thus better model temporal evolution [8], [9]. Others deal
with the long-time scale high temporal resolution case (i.e.,
multiannual SITS), by analyzing changes over consecutive
years [10]. The research in [11] used normalized difference
vegetation index (NDVI) to find changes in the mountain
using Landsat images. Each image in multitemporal SITS
underwent supervised classification based on the extracted
features. Some methods involve separate images for each time
period to generate object-based maps of the study area. These
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maps are compared to detect changes in the objects using
a change detection (CD) index based on the difference fea-
tures [12]. In this context, a CD algorithm is proposed in [13]
that compares the classified images of different time periods
to detect changes associated with LULC. Wang et al. [14]
introduced a CD method based on the normalized difference
indices (NDI) of fused multitemporal images. The method
combines fused images and spectral distortion measures to
increase the accuracy of CD.

One of the most popular techniques in multiannual data
analysis is segmenting the time series into piecewise linear
parts [15]. The time span is divided into intervals, correspond-
ing to the repetitive LC trends in the observed data [16], [17].
The number of intervals is determined by the number of
expected trend changes, and it can be related to seasons,
years, or multiyears. Among others, we recall the exponen-
tially weighted moving average EWMACD [18], a harmonic
regression-based kernel approach for detecting any persistent
deviation from a steady pattern seen over the temporal period.
In areas where the LC variation is periodic in the time series,
this technique performs very well. However, it has limitations
when applied to time series with aperiodic changes and/or
unstable training periods. Breaks for additive seasonal and
trend (BFAST) [19] is more general and models both linear
trends and seasonal variations. BFAST periodic linear model is
more accurate since it recursively evaluates the possibility of
every single time point being a breakpoint, and then chooses
the optimal set of breakpoints. BFAST is mainly exploited
on medium spatial resolution SITS and in the most cases,
it considers the NDVI or a few vegetation indices [20].
It provides information on the time of the occurrence of abrupt
changes, without detecting the LC transitions. An effort is
required to design a LC CD technique that can effectively
process HR SITS to derive information on both the presence
of the changes and the LC transitions between the years at
multiannual scale.

Developing a methodology that is able to illustrate the LC
transitions requires complex algorithms that properly detect
the evolution of LC classes. Efforts have been placed on
methods utilizing distance measurements to discern differences
between LC categories and identify transitions, such as the
approaches based on the Euclidean and the Mahalanobis
distances [21]. In response to the need for improved distance
measurement methods, a variant of change vector analysis
(CVA) has been developed to specifically account for both the
magnitude and direction of change vectors, with a particular
focus on bitemporal CD scenarios [22]. Traditional distance
measurement techniques, such as standard CVA, often struggle
to effectively capture the dynamic behavior of LC over time.
In such cases, incorporating alternative approaches like mod-
ified CVA [23] and dynamic time warping (DTW) can more
effectively handle and interpret the complexities inherent in
time series data. In time series data mining research, methods
based on DTW have shown to be effective in a variety of
applications [24], [25]. Because of its capacity to define the
optimal alignment of radiometric trends, DTW can mitigate
the temporal distortions and compare shifted RS time series
even if they are irregularly sampled [26]. In [26], the author
demonstrates its relevance in handling cloud-contaminated

SITS. It shows how DTW can jointly cluster data from
different years, exploiting the cyclic behavior of land surface,
generate clusters for 1 year and apply them to another year
with different acquisition dates. Moreover, it can handle high
temporal resolution SITS. It has been successfully applied to
SITS analysis in critical conditions such as inadequate training
samples and irregular phenological behavior of LC [27], [28].
An object-based time-weighted DTW is developed in [29] that
investigates the DTW performance for cropland mapping using
objects as spatial analysis units. However, given the DTW
unique capacity to determine sequence similarity metrics,
a few DTW-based LC-driven CD techniques on multiannual
satellite images have been developed.

In this article, we propose an effective LC CD technique
for processing HR multiannual multispectral SITS to derive
LC transition information between consecutive years. The
proposed approach employs three datasets, one for training
and the others for testing. The CD process is performed
based on the assumption that there is a change over the
time series. Thus, two LC maps that represent the initial and
final dates of the time series are exploited to generate a post
classification comparison (PCC) map to identify candidate
changed and unchanged pixels and reduce the computational
burden. Additionally, the proposed technique incorporates
abrupt CD to further detect changed pixels. The candidate
changed pixels are used in the testing steps to proceed with LC
transition detection for testing datasets. The approach assigns
samples in the training dataset to specific class clusters and
generates a set of CPs to map LC transitions in the testing
datasets. The CPs model the behavior of LC transition classes
assuming stationarity over time. These samples are associated
with a label derived from PCC map. To generate the CPs,
the training step performs a similarity analysis by using a
hierarchical clustering using DTW. DTW is exploited to merge
or split class clusters by calculating the similarity metrics
in multiannual SITS accounting for temporal differences like
seasonal variations that affect LC transition interpretation. The
CPs are then used to determine the LC class associated with
each changed pixel in the testing dataset for each time interval
corresponding to each year. Recognition of the LC class for
each year leads to identification of the LC transitions within
multiannual SITS.

The proposed method can be summarized in five steps:
1) information extraction from multiannual multispectral SITS;
2) multifeature time series regularization to have a uniform
and denser time sampling; 3) abrupt CD using multifeature
hypertemporal CVA (MHCVA) followed by a break point
detector; 4) CPs evaluation based on DTW; and 5) CD maps
generation considering the LC transitions for each changed
pixel. The proposed approach provides information of the
time of changes, the probability of a given change, and the
yearly LC transition for each pixel with an abrupt change in
long-term SITS. We evaluated our proposed approach using
Landsat data in South America where deforestation occurred
between 2015 and 2019 and in Sahel-Africa from 2015 to
2016 with various kinds of LC changes. The rest of this article
is organized as follows.

The proposed approach to CD in SITS based on DTW
algorithm is presented in Section II. Section III illustrates
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Fig. 1. Block scheme of the proposed DTW-based approach to CD in SITS.

the study area and the experimental results. Section IV
provides the discussion and conclusion on the scope of future
development.

II. PROPOSED APPROACH TO CD IN SITS BASED ON DTW

The proposed approach aims to establish a multiannual
class similarity analysis for identifying LC transitions. Let
SITS = {Y1, Y2, . . . , Ym, . . . , YM} be a SITS comprising
M years being preprocessed to filter out cloudy pixels (e.g.,
exploiting Google Earth Engine - GEE [30]). Each year Ym =

{X1, X2, . . . , Xn, . . . , X N } consists of several images over the
same geographical area with nonuniform time sampling. Let
B = {b1, b2, . . . , bK } be the set of K bands that compose the
multispectral images. Each image Xn ∈ Ym has a total number
of P pixels and represents the surface reflectance in a given
spatial position at a given time. Fig. 1 shows the block scheme
of the proposed approach. It uses the preprocessed SITS
from Landsat 7 and 8 sensors to extract the spectral–temporal
features of different sets of LCs. Assuming that two LC maps
are available for the first and the last year of the analyzed time
interval, the changed pixels are identified by a PCC technique
and are exploited in the MHCVA and the break point detector
to produce an abrupt CD map. DTW LC-driven training
identifies the LC trends, and finally LC-driven classification
and CD produce the final LC transition map that indicates the
year of change and identifies the LC transition for each time
frame.

A. Feature Extraction and Reduction

The first stage is crucial and consists of determining a
suitable feature space (FS) to distinguish the spectral trends
of various sets of LCs. The combination of the spectral bands
acquired by the optical sensor provides suitable information
to analyze the LC behavior in SITS [31]. Each combination
is sensitive to specific LC properties or phenomena, such as
vegetation cover, water bodies, or bare soil, and combining
them can capture a wider range of LC changes and tran-
sitions. This stage transforms the B-dimensional FS into a
F-dimensional FS. In our approach, all possible couples of
the available sensor bands are considered to compute a set of
normalized difference indices NDISITS

f , f = 1, . . . , F being

able to highlight the interaction between singular bands in
emphasizing specific kinds of change, are calculated as follows
(The NDI indices assume values in the [−1, 1] interval):

NDISITS
f =

bi − b j

bi + b j
, f = (1, . . . ,F) (1)

where bi , b j ϵB

F =
1
2
(K−1)×K . (2)

Equation (1) when applied to numerous spectral bands of
satellite images, yields a huge number of NDIs. Most of them
have either unrelated or redundant information. Thus, a feature
reduction method is implemented to keep the most informative
and reliable features. It is based on the kernel principal
component analysis (KPCA) [32] that considers nonlinear
relationships in the data while retaining interpretability. In this
step, an appropriate kernel function is selected to calculate
the kernel matrix for the eigenvalues and eigenvectors com-
putations. Sorting the eigenvalues in descending order and
choosing the top FR eigenvalues represent the most variance
in the features. Thus, a FR-dimensional features is generated
to preserve the most informative information (FR < F).

B. Abrupt CD

Abrupt CD distinguishes between pixels that have under-
gone changes and those that did not. Assuming the availability
of LC maps for the initial and final year within the processing
period, a PCC map is generated to segregate unchanged and
changed pixels in the pair of Y1 and YM . The selection
process improves the reliability of the CD maps while reducing
the overall computational burden. The changed pixels are
exploited in the testing step for the time series reconstruction
module that helps to identify potential intraannual changes.
The method involves regularizing the time series to generate a
sequence of values with uniform sampling that is denser than
the original signal and MHCVA is used to further identify
candidate changed pixels.

C. Time Series Reconstruction

Clouds, cloud shadows, and radiometric effects generate
missing data and introduce irregularity in the SITS. The gaps
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in the SITS decrease the data quality and thus the capability
of performing LCC detection. To have continuous and regular
SITS in time, a time series reconstruction technique is applied
to NDISITS

f , f = 1, . . . , F . The choice of the appropriate
interpolation approach is critical in this case since it has a
direct impact on the CD accuracy [33]. To this end, preliminary
symmetrical and consistently sampled NDISITS

f , f = 1, . . . , F ,
are created by filling in the gaps with a linear combination
of nearby values. Then, a time series reconstruction method
is applied in two steps: 1) NDISITS

f data imputation by upper
envelope and withdrawn strategy and 2) adaptive nonparamet-
ric regression of augmented NDISITS

f based on a multilayer
perceptron neural network (MLP-NN) [33]. The use of an
MLP-NN allows to capture the unique temporal behavior of
ground responses as well as precisely model class behavior
complexity that parametric models do not capture. The result
is a smooth, regular, and continuous time series.

D. MHCVA

The abrupt CD is based on a MHCVA method [23] that
calculates the difference feature magnitude to find the differ-
ences between couples of NDISITS

f in consecutive years. Let us
assume NDISITS

f is divided into records acquired in the same
years as NDISITS

f = {NDI1
f , . . . , NDIYm

f , . . . , NDIYM
f }, f =

1, . . . , FR. Let NDIYm
f and NDIYm+1

f be the sets of NDIs of
feature f for the years Ym and Ym+1 within the SITS. The
length of NDIs depends on the frequency of the time series
reconstruction (i.e., daily, weekly, or monthly). A difference
hyper temporal vector is calculated for each feature by sub-
tracting NDIYm

f and NDIYm+1
f as

NDIY m,Y m+1
f = NDIYm

f − NDIYm+1
f . (3)

The features magnitude
∥∥NDIYm ,Ym+1

∥∥ is computed from the
difference multifeature hyper temporal vectors as∥∥NDIYm ,Ym+1

∥∥ =√∑ f=FR

f=1

(
NDIY m,Y m+1

f

)2
. (4)

The magnitudes for the neighboring years are stacked one
after the other to generate the multiannual feature magnitude
NDISITS. The NDISITS is exploited as an input for the break
point detection based on the BFAST methodology. BFAST has
been tested mostly on NDVI and was developed using MODIS
data with a focus on forest CD. In this study, we developed
the abrupt CD method using an extended version of BFAST
that works with both vegetation and nonvegetation classes in
NDISITS.

The output of this step has two change properties: the years
of changes and the probability of change. This step further
increases the reliability of the CD processing chain since it:
1) filters out the unchanged pixels for a better estimation of the
class trend model and 2) filters out changed pixels to produce
more reliable change maps representing LC transitions.

E. DTW LC-Driven Training

Once the NDISITS has been computed, the DTW LC-driven
approach is utilized to model the evolution of LC classes

and predict the class of the change. Let T ST r
=

{T S1, . . . ,T S p, . . . ,T SV } be the training set including V time
series training samples. All the training samples are associated
with one LC class among L possible classes. When dealing
with a large amount of data, representing the trend of T ST r

classes often indicate subtrends that can be categorized by
subclusters within the classes [34]. The LC training phase aims
to prototype alternative trends for the same class by forming
clusters of similar T S p. Then, a set of CPs is created that
models the trend of LC clusters and classes. The generation
of CPs starts with a similarity measure calculation based on
DTW. A similarity matrix SM is generated by computing
DTW between all the training samples in T ST r . A maximum
shift value has been established to limit the total number
of links between two training sample sequences during the
DTW calculation [35]. This is achieved by adjusting the global
constraint in the algorithm. A smaller maximum shift value
can lead to faster computation but less precise alignment,
whereas a larger maximum shift value can result in slower
computation but more accurate alignment. It is important
to carefully select an optimal value for the maximum shift,
considering the trade-off between computational speed and
alignment accuracy. The similarity matrix SM is computed
as follows:

SFR
p,q = DTW(T S p, T Sq), 1 ≤ p ≤ V

1 ≤ q ≤ V, p ̸= q (5)

SMFR
=

∣∣∣∣∣∣∣∣∣∣
0 SFR

1,2 SFR
1,3 . . . SFR

1,V
SFR

2,1 0 SFR
2,3 . . . SFR

2,V
SFR

3,1
. . .

SFR
V ,1

SFR
3,2

. . .

SFR
V ,2

0
. . .

SFR
V ,3

. . .

. . .

. . .

SFR
3,V
. . .

0

∣∣∣∣∣∣∣∣∣∣
(6)

where T S p, T SqϵT ST r . The matrix is normalized with ele-
ment values in the [0, 1] as follows:

SMFR
=

max
(

SMFR)
−SMFR

max(SMFR)
. (7)

Large values in the matrix indicate high similarity, whereas
small values indicate low similarity. All diagonal elements
become equal to 1. SM is used to calculate the set of similarity
thresholds T h = {T h1, . . . , T hi , . . . , T hL} for each LC class.
The similarity threshold T hi for class i ∈ {1, . . . , L} is
calculated considering the following equation:

T hi
= max

[
T hi, j]i, j = 1, . . . ,L, i ̸= j (8)

where T hi, j is defined as the similarity threshold between
class i and j . To start with similarity analysis, let us consider
the vectors in SM belonging to class i (defined as SM i,i with
size a × a). We use Gaussian probability density function
(PDF) [36] to simplify the approximation of the similarity
threshold. It is determined as PDFi being the PDF of SM i,i .

The similarity threshold T hi, j between class i and j (i ̸= j)
is computed considering following Algorithm 1: The algorithm
is applied to all the classes in the training set to define a
similarity threshold for each class. The clustering algorithm
employs T h = {T h1, . . . , T hL

} to separate different clusters.
Moreover, a predefined similarity index Sidx is considered
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Algorithm 1 Similarity Threshold
PDFi ← probability density function of SM i,i with size
a × a
PDF j ← probability density function of SM i, j with size
a × b
meani ← mean value of Gaussian PDFi
mean j ← mean value of Gaussian PDF j
Sd ← decrease step value for the similarity measure
Th← similarity threshold
for each n∈ {1, 2, . . . , a} do

if meann
i ≥ meann

j then
while PDFi [meann

i ] − PDF j [meann
j ] ≥ 0 do

meann
i = meann

i –Sd
end
Thi j
= meann

i
end

end

which is determined based on the maximum similarity value.
The Sidx is an adaptive value that starts as the maximum
similarity value and gradually decreases until it reaches the
convergence threshold, T h. The parameters PA and PB impose
the minimum number of samples per cluster and the maximum
number of clusters per class (which is determined considering
the total number of training samples for each class), respec-
tively. The clustering process includes the following steps.

1) The first training sample creates a new group. Let 2i
=

{2i
1, 2

i
2, 2

i
3, . . . ,2

i
Q} be the present set of clusters for

the class i .
2) The similarity measure between each training sample

and the cluster prototype is computed. If it exceeds
Sidx , then the sample can be included in the cluster
(in the case of multiple suitable clusters, the one with
the highest average similarity is selected). Else, a new
cluster will be created.

3) The process is iteratively repeated until all the samples
have been assigned to clusters.

4) After processing all the samples, the clusters 2i are
evaluated to determine if the generated group of samples
satisfies the specified parameter constraints PA and PB .

If the parameter check is unsuccessful, then the Sidx is
decreased by Sd and a new set of clusters is produced.
Else, the clusters drive the computation of the CPs.

5) For each cluster 2i
q , the sample values are averaged

to create a set of clusters for class i as {CPi
=

CPi
1, . . . , CPi

q , . . . , CPi
Q}.

The class prototype (CP) generation is performed for
all the classes to have a set of prototypes CP =

{CP1, . . . ,CPi , . . . ,CPL
} with several clusters for each class

representing the different behaviors of LC classes. This
ensures the creation of prototypes for the innerclass behaviors,
as well as the recognition of different LC trends within classes.

F. LC Classification and CD

The CPs created during the LC training stage are employed
as a class trend model to identify the LC transition of each
pixel associated with a spatial position in the testing dataset.
This stage qualifies the reliability of the CPs in determining

the LC classes. The assumption is that the characteristic of
the testing dataset is almost similar to the training dataset
to be able to properly classify different LC classes asso-
ciated with CPs. Let T ST e

= {T S1, . . . ,T S p, . . . ,T SW}

be the testing set including W samples. Assume T ST e
p ={

T SY1
p , . . . , T SYm

p , . . . , T SYM
p

}
is a candidate change pixel in

the testing dataset with a time series of values from Y1 to YM .
All T ST e

p are associated with a LC class for each Ym , ensuring
the availability of at least one LC transition during the whole-
time span. The DTW similarity measure is evaluated between
CPs and each T SYm

p , 1 ≤ m ≤ M to detect the similarity
between the unknown pixels and known LC behaviors.

Given T SYm
p and CPi

q for class i and cluster q , the DTW
similarity measure Si

p is defined as

Si
p = DTW

(
T SYm

p , CPi
q

)
, 1 ≤ m ≤ M

1 ≤ i ≤ L , 1 ≤ q ≤ Q. (9)

The operation is repeated for all L classes and Q clusters,
generating a class similarity vector Sp. The maximum value
of Sp indicates the class to which the pixel p belongs for the
year Ym . The process is continued for all years to determine
the LC classes of pixels in T ST e. The procedure concludes
with the creation of a series of CD maps that highlight LC
transitions from one class to another over specific yearly time
intervals.

III. STUDY AREA AND EXPERIMENTAL RESULTS

A. Datasets Description

The proposed approach is trained on an area in South
America and tested on two areas, one in South America and
the other in Sahel-Africa.

1) Training Dataset: It is located in the West-Central
Amazonian rainforest area of Brazil. The size of the training
area is 400 × 400 px (12 × 12 km). A total of 136 cloud
free Landsat 7 and 8 images were considered acquired over
a 5-year period from January 1st, 2015 to December 31st,
2019. The location is in close proximity to Anastácio city,
with the Aquidauana river flowing North of the city, ensuring
a diverse range of LC classes [Fig. 2(a) and (b)].

2) Testing Dataset 1: It is located in Paraguay where several
crop fields have been built after deforestation in 2015 (Y1)–
2019 (YM). The prominent change class is the transition from
trees to grassland/cropland that can be easily identified by
comparing images from different years. Overall, 116 Landsat 7
and 8 images with size of 600 × 600 px (18 × 18 km) were
selected [Fig. 3(a) and (b)].

3) Testing Dataset 2: It is located in Sahel-Africa and
shows several kinds of changes and thus more complex
behavior with respect to testing dataset 1. The undergoing
changes are the formation of several central pivot crops, the
construction of buildings, and the transition from crop to bare
land (Fig. 4). The size of the area is 600 × 600 px (18 ×
18 km), and the SITS includes 25 Landsat 8 images acquired
in 2015 (Y1)–2016 (YM). The testing dataset 2 in Sahel-Africa
is used to evaluate the performance of the proposed approach
while processing an area showing different types of LC tran-
sitions from both the training dataset and the testing dataset 1.
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Fig. 2. (a) and (b) Examples of RGB image of the training dataset for the
years 2015 and 2019. (c) and (d) Available LC maps for the years 2015 and
2019.

Fig. 3. (a) and (b) Examples of RGB image of the testing dataset 1 for the
years 2015 and 2019. (c) and (d) Available LC maps for the years 2015 and
2019.

The datasets were obtained directly from GEE [37], which
offers access to the USGS Landsat Collection 2 surface
reflectance dataset. This comprehensive collection contains
atmospherically corrected surface reflectance data captured
by the Landsat 7 ETM+ and the Landsat 8 OLI/TIRS
sensors. Landsat collection 2 includes various enhancements

Fig. 4. Example of RGB images of testing dataset 2 for the years (a) 2015
and (b) 2016.

TABLE I
TRAINING AND TESTING LEGENDS

in geolocation, radiometric calibration, and atmospheric
correction thereby improving efficiently processing Landsat
datasets [38].

The Landsat collection 2 reflectance calibration is main-
tained with a low absolute reflective spectral band calibration
uncertainty, thus allowing to obtain a homogeneous SITS,
even if acquired by different Landsat sensors [39]. Here,
the LC map for the LC-driven training is the one produced
for 2019 as a part of high-resolution LC (HRLC) climate
change initiative (CCI+) project [Fig. 2(d)] [40]. HRLC CCI+
products are freely accessible HR (10/30 m) LC and CD maps
at subcontinental/regional level. The LC-driven training legend
includes the nine classes described in Table I.

The PCC map needed for training was generated exploit-
ing the abovementioned 2015 and 2019 maps [Fig. 2(c)
and (d)]. The same has been used to drive abrupt CD in
testing dataset 1 [Fig. 3(c) and (d)]. To evaluate the method
performance, the dynamic world (DW) LC maps [41] were
employed to generate the reference change/transition maps for
each year in testing dataset 1.

DW is a free global 10 m resolution LC dataset, down-
sampled to 30 m resolution using the majority voting strategy
in 3 × 3 windows. The testing DW LC map legend shows
eight classes, including trees, shrub, grass, crops, flooded
vegetation, bare, built-up, and water (Table I). Therefore, ever-
green broadleaf and deciduous broadleaf classes were merged
into trees class for performance assessment. DW product has
been used to generate the PCC map for abrupt CD and for
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TABLE II
NUMBER OF SAMPLES FOR EACH CLASS IN THE TRAINING SET

the reference change/transition maps for testing dataset 2.
The reference map points out that there are no trees or grass
class in testing dataset 2. The PCC mask is generated between
2015 and 2016 using the first free image of 2015 and the last
one in 2016.

B. Training Phase

To proceed with the LC-driven training, the training dataset
SITS were transformed into NDIs using (1). By considering
the number of Landsat spectral bands (K = 6), (2) produced
a total of F = 15 features. To handle the computational
time and preserve the features more sensitive to change, the
Gaussian KPCA [33] was applied to the 15 features that
transform the features into kernel-induced FS. The weight for
each original feature was calculated by projecting the data
points onto the chosen principal component and then mapping
these projections back to the original FS. The three most
informative features being NDVI, (SWIR1, NIR) and (SWIR2,
Blue) remained for further analysis. The PCC identified pixels
with a high probability of no change during the training phase
and pixels with a high probability of change during the testing
phase.

In the training dataset, there were a total of 149 408
unchanged pixels, out of which approximately 98 500 samples
belong to class 7 (grassland). To alleviate the computational
burden, a random selection of around 21 000 samples from
class 7 was made to model the class trends. As a result,
there were 55 000 samples across nine classes, as shown
in Table II. To transform the original temporal signal into
a harmonized and continues sampling sequence, a weekly
time series reconstruction procedure was implemented as
described in Section II-C. A prior analysis has shown that
reconstruction of one sample per week guarantees a reliable
detection of yearly changes and reduces the computational
time dramatically [42]. Then, multiannual feature magnitude
was calculated using the MHCVA method. For the training, the
similarity matrix SM was computed using the maximum shift
value of 15 weeks. The value was chosen considering possible
moderate seasonal shift. The SM matrix was normalized to
a range of [0, 1]. Following Section II-E, it is possible to
compute T hi for each of the classes in SM . Table III shows
the classes and the similarities threshold values. Optimized PA

and PB values resulted to be 0.005% and 0.01%, respectively.
Sidx starts from the highest value, 1, and decreases by Sd =

0.001 to reach T hi for each class. After all the clusters for

TABLE III
CLASSES AND CORRESPONDENT SIMILARITY THRESHOLD VALUES

TABLE IV
CONFUSION MATRIX. PA, UA, AND OA (%)

Fig. 5. Overall accuracy (%) of sensitivity analysis for PA and PB .

each class were determined, a set of CPs for each cluster was
generated to represent the behavior of each class.

The accuracy of the CP models was evaluated by performing
LC classification. This was done by calculating the DTW
similarity measure between all the samples in T ST r and the
CPs for each class. The maximum DTW similarity value
indicates the class to which the sample belongs. Table IV
shows the confusion matrix for the training set, including the
percentage of producer accuracy (PA), user accuracy (UA),
and the overall accuracy (OA) using the DTW similarity
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Fig. 6. (a) Change reference map with the year of the change. (b) Abrupt change maps with the indication of the year of the change and (c) Probability of
change for BEAST (top) and the proposed approach (bottom).

measure. OA is approximately 68% that represents a good
percentage of accurate predictions for the training set.

PA and PB have been established according to a robustness
analyses. The parameter sensitivity analysis was conducted
using a subset (30%) of samples per class. The optimal value
of the most influential parameters PA and PB were gradually
increased and decreased in the range [10%, 50%] and the
accuracy calculated (Fig. 5). The method resulted to be stable
across varying parameter settings.

C. Results on Testing Dataset 1
To proceed with the detection of the LC transitions, the

steps regarding the feature selection, PCC masking, time
series reconstruction, and MHCVA were implemented on
testing dataset 1. The proposed abrupt CD was applied to
further exclude unchanged pixels from the testing set. For this
analysis, the parameter “h” representing the minimal segment
size between potentially detected breaks, is configured to 0.25,
while the number of breaks is set to 1, and the maximum
number of iterations is restricted to 1. The output of the
abrupt CD together with the reference map are visualized in
Fig. 6 where the year of the change and the probability of
change are reported for each pixel. Considering the sample
images in Fig. 3 and the maps in Fig. 6, the growth of
the crop fields is observable during the considered period.
To assess the performance, a quantitative analysis is provided
in terms of false and missed alarms (Table V). Furthermore,
the abrupt CD module is compared with Bayesian estima-
tor of abrupt change, seasonal change, and trend (BEAST)

TABLE V
OVERALL FALSE/MISSED ALARMS

[43]. Both proposed abrupt CD and BEAST demonstrate a
good performance in detecting the year of change. While
BEAST offers flexible representation and can handle irregular
data, it is not well-suited for dense HR data due to its
computationally intensive Bayesian calculations. The abrupt
CD module not only exhibits lower false/missed alarms but
also showcases a significantly faster processing time, being
approximately three times faster than BEAST, considering a
Python implementation. Furthermore, the reported probability
as a measure of uncertainty associated with detected change
exhibits higher levels of confidence for the proposed abrupt
CD. To produce the LC transition map, the DTW similarity
measure was computed between the T ST e

p discretized into 1-
year period and CPs (Section II-F). Fig. 7 shows the reference
DW LC maps for each year and the generated LC transition
maps for the testing dataset 1. The main transition is from
trees to grassland/cropland, which occurs in various locations
between 2016 and 2019. Fig. 7 clearly shows the changes
(green color to yellow/orange color). In the top left side of
the area, two LC transitions can be observed, characterized
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Fig. 7. Reference maps (top) and CD maps (bottom) of the first testing dataset for (a) 2016, (b) 2017, (c) 2018, and (d) 2019.

TABLE VI
JACCARD INDEX AND BF SCORE FOR EACH YEAR BETWEEN THE

REFERENCE MAP AND THE PROPOSED APPROACH

by the initiation of crop field construction in 2016 and its
completion in 2019. Another transition is located in the center
of the area, occurring between 2018 and 2019.

To assess the quantitative performance, two metrics are
considered: Jaccard index (or intersection over union) [38]
and Boundary F1 (BF) score [39]. The indices range in the
[0, 1], where 0 indicates no agreement between the reference
map and the CD map, and 1 indicates complete agreement.
The level of agreement between the reference maps and the
ones generated using the proposed method is represented in
Table VI. The level of agreement for both Jaccard index and
BF score is high meaning that the proposed approach has a
reliable performance.

We performed an additional analysis to evaluate the com-
putational burden of the proposed approach for training and
testing set 1. This is done on an Intel Core i7-7700 CPU
running at 3.60 GHz with 32 GB of RAM, which is detailed
for a 100 × 100 area for each module in the processing chain
(Table VII). The abrupt CD module is quite fast, taking 25 min
to detect changes for 100 × 100 area. The LC transition
detection module computational time takes 205 min. The

TABLE VII
TIME COMPLEXITY FOR THE TRAINING AND TESTING DATASET 1

supervised nature of the method and the volume of processed
pixels contribute to the longer processing times. However,
the prototypes generated through this method can be utilized
to analyze different areas for studying different LC changes.
Moreover, the accuracy and precision of the results make this
approach suitable for applications such as crop monitoring and
climate change studies.

D. Results on Testing Dataset 2

Fig. 8 shows the LC transition map together with DW
reference map for the testing dataset 2. The LC transition
map indicates transitions from bare to build up and crop that
have been properly detected by the proposed approach. The
quantitative analysis in terms of Jaccard index and average BF
score demonstrated a high level of concordance (Table VIII).

This points out that once the CPs or LC models are
established, they can be applied to other areas. This high-
lights the generalizability of the proposed method for broader
applications.
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Fig. 8. (a) Reference map and (b) LC transition map for testing dataset 2.

TABLE VIII
JACCARD INDEX AND BF SCORE BETWEEN THE REFERENCE MAP

AND THE PROPOSED APPROACH FOR TESTING DATASET 2

IV. CONCLUSION

This study has addressed some of the limitations of existing
LCC detection methods by proposing a novel approach that
utilizes HR SITS to analyze LC dynamics over several years.
By exploiting the spatial, spectral, and temporal information
captured in the SITS data, our approach offers a comprehen-
sive understanding of LCCs and provides detailed insights into
the type of LC transition. It uses multiannual multispectral
SITS to construct a multifeature hypertemporal FS, enabling
the generation of CD maps that indicate the timing, prob-
ability, and specific type of changes. Through experimental
evaluations using multiannual Landsat 7 and 8 SITS data
from 2015 to 2019 in an area of the Amazon region and
from 2015 to 2016 in Sahel-Africa, we have demonstrated
the effectiveness of the proposed approach in detecting multi-
annual LCCs and identifying the specific LC transitions. The
outcomes of this research highlight the potential of HR SITS
data and of the proposed approach for comprehensive and
detailed analysis of LCCs. Compared with previous studies,
the proposed abrupt CD method demonstrates superior per-
formance, particularly notable for its reduced time demand.
Additionally, the LC transition detection method sets it apart
from existing methods in properly detecting LC transitions
using multiannual SITS. This has significant implications
for various applications, including environmental monitoring,
urban planning, and climate change.

As future development, we aim to reduce the complex-
ity and computational burden of the proposed approach.
Additionally, we plan to expand the application of the pro-
posed approach to different geographical regions and LC
types to further analyze its generalizability and effectiveness
across diverse environments. Moreover, while this article
focuses on annual LC CD, there is potential to explore
finer temporal resolutions, such as monthly or seasonal
changes.
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