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Abstract

This study aims to improve the understanding of geomagnetic storms by utilizing machine learning models and analyzing several heliophysical
variables, such as the interplanetary magnetic field, proton density, solar wind speed, and proton temperature. Rather than relying on traditional
correlation-based methods, we employ advanced machine learning techniques to examine the complex relationships between these factors and
geomagnetic storms. Our analysis covers a large dataset spanning six solar cycles, including the current 25th cycle, to provide comprehensive
insights into the dynamics of these storms.

Our study highlights the significance of the interplanetary magnetic field as a key predictor of geomagnetic storms, challenging previous
beliefs that primarily focused on sunspot activity. By using high-resolution data, we uncover new patterns and provide a more detailed analysis
of the factors influencing geomagnetic storms. We emphasize the importance of considering a range of heliophysical variables, such as proton
temperature and flow pressure, which offer new insights into the complex dynamics driving these storm events.

The application of machine learning models, particularly Random Forest and Gradient Boosting, demonstrated superior predictive accuracy
compared to traditional methods. Our results reveal that the Dst-index MIN, scalar B, and alpha/proton ratio are among the most influential factors,
accounting for a significant portion of the prediction model’s accuracy. These findings underscore the utility of machine learning in identifying
critical drivers of geomagnetic activity and enhancing forecast precision.

Additionally, our research underscores the need for comprehensive models that can accurately predict geomagnetic storms by integrating var-
ious data sources. This machine learning approach not only improves predictive accuracy but also enhances our understanding of the underlying
mechanisms of space weather. The insights gained from this study have important implications for both scientific research and practical applica-
tions, such as improving early warning systems for geomagnetic storms and mitigating their potential impacts on Earth.
© 2024 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction1

Geomagnetic storms (GmS) are temporary disturbances of2

the Earth’s magnetic field originating mainly from solar activ-3

ity. As a transient and dynamic phenomenon, GmS arise from4

the interaction between the solar wind and the Earth’s magne-5

tosphere (Gonzalez et al., 1994; Reyes et al., 2021; Lakhina &6

Tsurutani, 2016). These disturbances vary in intensity y du-7

ración y can have a significant impact on both space and ter-8

restrial environments (Mandea & Chambodut, 2020). Conse-9

quences include prolonged interruptions in radio communica-10

tions (Eid et al., 2022; Love et al., 2023), disruptions to power11

grids (Taran et al., 2023), damage to satellites and space sys-12

tems (Abraha et al., 2020), northern and southern lights at lower13

latitudes, and various technological challenges such as satellite14

collisions and disruptions in GPS navigation systems (Miteva15

et al., 2023; Zhang et al., 2020). Additionally, there are po-16

tential effects on human health and animal behavior (Sarimov17

et al., 2023; Kiznys et al., 2020; Hall & Johnsen, 2020).18

GmS are typically classified by intensity using indicators19

like the Disturbance Storm Time (Dst) index, which measures20

the intensity of the disturbance in the equatorial region, and the21

AE index for auroral activity. The Kp index, often used to mea-22

sure global geomagnetic activity, is considered less suitable for23

severe storm analysis compared to Dst and SYMH indices.24

A GmS, in terms of Dst index, is commonly defined as an25

event where the Dst index drops below a certain threshold, such26

as -50 nT or -100 nT, as initially described by Sugiura (1960)27

but now widely accepted (Gonzalez et al., 1994). The Dst index28

measures the disturbance in the Earth’s magnetic field, and its29

minimum value during a storm serves as a benchmark for clas-30

sifying the storm’s intensity. According to a categorization by31

Loewe & Prölss (1997), geomagnetic storms are divided into32

categories based on their intensity. Weak storms have Dst val-33

ues between -30 nT and -50 nT, indicating relatively minor dis-34

turbances. Moderate storms, with Dst values between -50 nT35

and -100 nT, represent a more significant disruption. Strong36

storms, marked by Dst values between -100 nT and -200 nT, in-37

dicate a considerable impact on the Earth’s magnetosphere. Se-38

vere storms have Dst values ranging from -200 nT to -350 nT,39

showing substantial disturbances, while great storms, character-40

ized by Dst values below -350 nT, represent the most extreme41

geomagnetic events.42

There is no official classification based on duration alone, but43

general categories are often used: (a) brief storms (< 6 hours),44

typically less intense; (b) moderate storms (6-24 hours); (c) pro-45

longed storms (> 24 hours), such as the Halloween Storm of46

2003 (Lopez et al., 2004; Hady, 2009); and (d) extreme storms,47

rare historic events such as the Carrington event of 1859 (Tsu-48

rutani et al., 2003; Siscoe et al., 2006).49

Previous studies have examined GmS occurrences through50

various approaches. In a first study Tsurutani et al. (1995),51

delves into the interplanetary origins of geomagnetic activity,52

highlighting the significance of high-speed solar wind streams53

and the interplanetary magnetic field (IMF) during the declin-54

ing phase of solar cycles. The study reinforces the critical influ-55

ence of these factors on geomagnetic storms. Also, Abe et al.56

(2023) analyzed GmS occurrences using Dst and Sunspot Num- 57

ber (SSN) data during solar cycles 20-24, showing that GmS 58

occurrence rates are higher during descending phases. It pri- 59

marily employs statistical methods to analyze these trends and 60

identifies similar key drivers, such as coronal holes and solar 61

wind streams. Furthermore, Hajra et al. (2021) highlights long- 62

term variations in geomagnetic activity, noting that strong solar 63

cycles tend to exhibit more frequent and intense geomagnetic 64

storms compared to weak cycles. The authors emphasize the 65

role of high-speed solar wind streams from coronal holes, par- 66

ticularly during the declining phases of solar cycles, in driving 67

geomagnetic activity. 68

Collectively, these studies underscore the importance of he- 69

liospheric conditions, particularly during the declining phases 70

of solar cycles, in influencing geomagnetic storm activity. They 71

consistently highlight the role of high-speed solar wind streams 72

and the IMF as significant contributors to geomagnetic phe- 73

nomena. Additionally, it is revealed that severe and extreme 74

GmS (Dst < -250 nT) seldom occur during low solar activity 75

but rather during periods of very high solar activity and are 76

mostly associated with coronal mass ejections (CMEs) when 77

they occur. It has also been revealed that all high-intensity GmS 78

(strong, severe, and extreme) are mostly associated with CMEs 79

(Echer et al., 2008; Gonzalez et al., 2011; Echer et al., 2013). 80

The results have shown that CMEs are the primary cause of 81

GmS in the ascending, maximum, and descending phases of 82

cycles 23 and 24, followed by CMEs and High-Speed Solar 83

Wind. 84

Other studies have used correlational analyses to investi- 85

gate solar and interplanetary factors influencing GmS (Le et al., 86

2013; Miteva et al., 2023; Rathore et al., 2012; Samwel & 87

Miteva, 2023; Singh Chauhan et al., 2010; Yacouba et al., 88

2022), with many focusing on specific predictors such as 89

sunspots (Abe et al., 2023; Reyes et al., 2021) and CMEs (Sri- 90

vastava & Venkatakrishnan, 2002; Nitta et al., 2021). 91

In this study, we aim to contribute this field in several ways. 92

First, by using monthly resolution data to understand more 93

broadly the conditions that lead to geomagnetic storms. Sec- 94

ond, by incorporating the interplanetary magnetic field and 95

other heliophysical variables like proton density, solar wind 96

speed, and temperature, flow pressure and interplanetary mag- 97

netic field, to expand the scope of previous research. Third, 98

by using long-term data spanning six solar cycles, including 99

the ongoing 25th cycle, to analyze trends and variability across 100

multiple solar cycles. 101

Our approach involves robust statistical models, including 102

multiple linear regressions and machine learning models, to 103

capture the non-linear dynamics between the number of GmS 104

and predictor variables. This offers a more comprehensive un- 105

derstanding of the factors influencing GmS and enhances pre- 106

dictive accuracy beyond traditional correlational analyses. 107

2. Data used in this study: predictors for geomagnetic 108

storms 109

The data used in this study are from the OMNI2 dataset, 110

which is available in the https://omniweb.gsfc.nasa. 111

https://omniweb.gsfc.nasa.gov/
https://omniweb.gsfc.nasa.gov/
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gov/ directory of the NASA OMNIWEB website. These data112

comprise hourly mean values of the interplanetary magnetic113

field (IMF), solar wind plasma parameters, and various geo-114

magnetic and solar activity indices, as well as energetic proton115

fluxes.116

OMNI2 was developed at the NSSDC (National Space Sci-117

ence Data and Services Center) in 2003 as an evolution of the118

OMNI data set, initially created in the mid-1970s. These data119

are collected from various NASA space missions, including:120

IMP 1, 3, 4, 5, 6, 7, 8 (Fairfield et al., 1981; Paularena & King,121

1999), these space probes, also known as Explorers, have con-122

tributed significantly to the collection of data on the interplan-123

etary environment near Earth orbit; WIND (Ogilvie & Desch,124

1997; Wilson III et al., 2021), is a space mission equipped with125

a magnetometer, has provided detailed measurements of the so-126

lar wind and the interplanetary magnetic field; ACE (Advanced127

Composition Explorer) (Garrard et al., 1998; Chiu et al., 1998)128

which is a space probe that has collected precise measurements129

of solar wind and energetic particles from its orbit around the130

L1 Lagrange point; and Geotail (Frank, 1994; Schmidt et al.,131

1995), a joint mission between JAXA (Japan Aerospace Explo-132

ration Agency) and NASA; among others.133

Variables selected for this study include year; decimal day;134

time; the hourly average of the magnitude of the IMF, ex-135

pressed in nanoteslas (nT); proton temperature (PT) and den-136

sity (PD) in the solar wind, measured in degrees Kelvin and137

protons/cm3; plasma wind speed (PS) of the solar wind plasma,138

measured in kilometers per second (km/s); Alpha/Proton ratio139

(A/P), the ratio of alpha particles to protons in the solar wind,140

flow pressure (FP) represents the density of protons in the so-141

lar wind, measured in nanopascals (nPa), geomagnetic index142

Kp, sunspot number (R) which is a measure of the number of143

sunspots present on the Sun at a given time, Dst index provides144

a measure of the intensity of the Earth’s magnetic field in the145

magnetic tail region during GmS; and F10.7 index for solar ac-146

tivity at wavelength 10.7 centimeters, expressed in solar flux147

units (sfu).148

We use the Dst geomagnetic index, which measures the149

Earth’s ring current and is expressed in nanoteslas (nT). The150

Dst index is a global measure of geomagnetic storm intensity151

and is calculated from magnetic deviations recorded at various152

magnetic stations near the equator. Negative values of the Dst153

index indicate a greater disturbance in the magnetosphere, and154

the lower the value, the more intense the storm. It is commonly155

used to determine the number and intensity of geomagnetic156

storms, as it is one of the primary indicators for this purpose.157

In this study, it is important to note that the Sunspot Num-158

ber is recorded with daily resolution, since we are interested in159

correlating this number with the occurrence of GmS, we need160

to homogenize the resolution of the data so that they are all on161

the same time scale. Therefore, we perform a resampling of162

the data to group them into day intervals, which allows us to163

consistently compare the sunspot number with other variables164

measured at an hourly resolution.165

In addition, this study makes use of data collected over six166

solar cycles, starting from 1964 (solar cycle 20) to the present167

(solar cycle 25, which is still in an rising phase). This broad168

time window allows us to examine long-term trends in solar ac- 169

tivity and their relationship to the occurrence of GmS. By span- 170

ning multiple solar cycles, we can get a more complete picture 171

of how solar activity varies and how this affects the incidence 172

of storms over time. 173

Finally, the number of GmS (Total ST) per day is defined as 174

the number of records where the Dst index falls below -50 nT, 175

a threshold that signifies the presence of a geomagnetic storm. 176

This threshold allows for the capture of all storms, from mod- 177

erate to severe, and provides a comprehensive analysis of geo- 178

magnetic activity during the study period. By using this crite- 179

rion, we can effectively capture and analyze the frequency and 180

intensity of GmS based on the Dst index (Borovsky & Shprits, 181

2017; Loewe & Prölss, 1997). 182

The temporal distribution of geomagnetic storms according 183

to the Dst index across solar cycles 20 to 25 reveals several pat- 184

terns in storm frequency is shown in Figure 1. The data shows 185

significant variability between cycles. These differences high- 186

light the unique characteristics of each solar cycle and the im- 187

portance of considering long-term trends when analyzing geo- 188

magnetic activity. 189

In addition to considering the Dst index to obtain the num- 190

ber of geomagnetic storms, we are also including the follow- 191

ing variables to develop machine learning regression models 192

that serve as predictor variables: sunspot number (R), solar ra- 193

dio flux at 10.7 cm (F10.7), proton temperature, proton density, 194

plasma speed, alpha/proton ratio, flow pressure, and field mag- 195

nitude average (|B|). These variables have been selected based 196

on their relevance and potential influence on geomagnetic storm 197

activity as indicated by prior research. 198

The inclusion of these additional heliophysical variables al- 199

lows for a more comprehensive analysis, capturing the complex 200

and nonlinear interactions within the solar-terrestrial environ- 201

ment. By leveraging these diverse datasets, we aim to improve 202

the predictive power and accuracy of our models, ultimately 203

providing deeper insights into the mechanisms driving geomag- 204

netic storms. 205

3. Methods and techniques 206

This section details the methodology used for the implemen- 207

tation of the regression models and the selection of the best 208

models. Five different regression models were employed: Mul- 209

tiple Linear Regression (MLR), Random Forest (RF), Gradi- 210

ent Boosting (GB), AdaBoost (AB), and ExtraTrees Regressor 211

(ET). All implementations were carried out using the Python 212

3.10 library ecosystem, specifically the sklearn module, in a 213

development environment running on an Intel Core i7 8-core 214

processor computer. 215

The objective of this approach is to develop more robust 216

regression models to understand the relationships between the 217

number of geomagnetic storms and certain solar dynamics pa- 218

rameters, and to identify which of these parameters most sig- 219

nificantly influence the modeling of geomagnetic storms. 220

https://omniweb.gsfc.nasa.gov/
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Fig. 1. Temporal distribution and evolution of geomagnetic storms according to Dst index, for cycles 20 to 25 (still in progress) from the data collected and processed.
Additionally, the temporal distribution of the heliopheric dynamics supporting variables is shown. The figure shows a clear correlative trend between the number of
geomagnetic storms and some solar indices, particularly sunspots and interplanetary magnetic field.

3.1. Data and model preparation221

In the preparation of the data, we chose not to normalize or222

standardize the data. Instead, the models were constructed us-223

ing the typical magnitudes and values of each variable. This224

decision was made considering that the characteristics of the225

predictor variables presented scales and ranges of values inher-226

ent to their respective domains, which allowed the models to227

more accurately capture the relationships and variations within228

the original data. Consequently, the introduction of artificial229

biases or distortion of intrinsic relationships between variables230

was avoided by maintaining the natural scale and distribution231

of the data during the modeling process.232

Prior to the implementation of the regression models, the233

data were properly prepared. A partitioning of the data set into234

training and test was applied, using a test length ratio of 70:30235

(30% test size from whole dataset). This partitioning was per-236

formed randomly to ensure representativeness of both sets.237

Each of the regression models was implemented using the238

sklearn library. The parameters used for the selection of the239

best model in each case are described below.240

For the Multiple Linear Regression model, the implemen-241

tation was carried out using the default settings of the sklearn242

library (Pedregosa et al., 2011). For the machine learning mod-243

els Random Forest, Gradient Boosting, AdaBoost, and Ex-244

tra Trees, hyperparameter optimization was conducted using245

TPOT (Olson & Moore, 2016; Moore et al., 2023), which246

automates the machine learning pipeline design by leverag-247

ing genetic programming. The hyperparameter tuning (Ad-248

nan et al., 2022; Alibrahim & Ludwig, 2021) with Cross-249

Validation strategy (Schaffer, 1993; Nti et al., 2021) explored250

various settings for the number of trees (n_estimators), learn-251

ing rate (learning_rate), maximum tree depth (max_depth), 252

and other relevant parameters specific to each model. The pa- 253

rameters tested for the Random Forest and Gradient Boost- 254

ing models included n_estimators = [100, 200, 300, 500, 255

700, 1000, 1200, 1400, 1600, 1800, 2000], max_features = 256

[’auto’, ’sqrt’, ’log2’], max_depth = [50, 100, 150, 200, 500], 257

min_samples_split = [2, 5, 10, 14, 16, 18], min_samples_leaf = 258

[1, 2, 4, 6, 8, 12, 16, 20], criterion = [’absolute_error’, ’fried- 259

man_mse’, ’squared_error’, ’poisson’], and ccp_alpha = [0.0, 260

0.01, 0.1, 0.001, 0.0001]. For the Gradient Boosting Regres- 261

sor, additional parameters such as loss = [’squared_error’, ’ab- 262

solute_error’, ’huber’, ’quantile’] and learning_rate = [0.001, 263

0.005, 0.01, 0.05, 0.1, 0.5] were evaluated. TPOT’s genetic 264

algorithm was configured with parameters such as generations 265

(=6), population size (=35), offspring size (=30), and an early 266

stopping criterion (=12) to optimize model selection and pa- 267

rameter tuning. 268

This approach allowed for an efficient exploration of the hy- 269

perparameter space, ultimately identifying the best-performing 270

models and configurations for each algorithm. The perfor- 271

mance of the optimized models was evaluated on an indepen- 272

dent test set, ensuring robust generalization and reliability of 273

the predictive capabilities. 274

To calculate the number of geomagnetic storms, we resam- 275

ple the Dst variable from its original minute resolution by 276

counting all events within 30-day intervals where Dst is less 277

than -50 nT. This approach aggregates the data into a more 278

manageable form while capturing the frequency of significant 279

geomagnetic storm events over time. During these periods, we 280

also compute the average values for other variables of interest, 281

including sunspot number, solar radio flux, proton temperature, 282
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proton density, plasma speed, alpha/proton ratio, flow pressure,283

and field magnitude average (|B|).284

Averaging these variables over intervals helps to smooth out285

short-term fluctuations and reduces the impact of outliers and286

noise, which is important given the high variability of helio-287

physical data. This strategy provides a clearer view of the re-288

lationships between variables and enhances the robustness of289

our regression models, allowing for more reliable predictions290

of geomagnetic storm activity.291

At the end of this process, we obtain a dataset that con-292

tains information for each variable measured within the same293

time intervals. This ensures that all variables correspond ac-294

curately to the same 15-day periods, providing a consistent295

temporal framework for analysis. By aligning the data in this296

manner, we can directly compare the different variables and297

their influence on geomagnetic storm activity within the same298

time frames. This harmonized dataset facilitates the develop-299

ment of regression models by ensuring that each observation300

includes a comprehensive set of predictor variables, all mea-301

sured over identical intervals. Additionally, this approach al-302

lows for more straightforward integration and comparison of303

different datasets, which might have varying original resolu-304

tions, by standardizing them to a common temporal scale. The305

resulting dataset is thus not only comprehensive but also tai-306

lored to maximize the analytical robustness of our machine307

learning models, enhancing our ability to identify and under-308

stand the relationships between heliospheric conditions and ge-309

omagnetic storms.310

3.2. Machine Learning models311

In the study, five regression models were implemented, each312

with its own characteristics and philosophy of use. Starting with313

MLR, this model is an extension of simple linear regression314

and seeks to establish a linear relationship between a depen-315

dent variable and multiple independent variables. It is a classic316

model that assumes a linear relationship between the variables317

and is useful when seeking to understand the relative contribu-318

tion of each predictor variable to the target variable. Although319

it is simple and easy to interpret, it may not capture nonlinear320

relationships between variables.321

In contrast, RF (Breiman, 2001; Hastie et al., 2009; Biau &322

Scornet, 2016) is a more complex model that combines multiple323

decision trees to make predictions. Each tree is independently324

trained on a random sample of the data and produces a predic-325

tion. By averaging the predictions of all the trees, RF reduces326

variance and overfitting, making it robust to noisy data or data327

with high dimensionality. In addition, RF is capable of handling328

missing data and categorical variables, making it a versatile and329

powerful option for regression.330

Another ensemble is GB (Natekin & Knoll, 2013; Benté-331

jac et al., 2021; Friedman, 2002) model that combines multiple332

decision trees, but unlike RF, the trees are added sequentially,333

gradually improving the accuracy of the model. At each itera-334

tion, GB adjusts a new tree to correct the prediction errors of335

the existing model. This boosting technique allows building a336

highly predictive model, especially suitable for regression prob-337

lems with high dimensionality data. However, GB can be more338

prone to overfitting than RF and may require careful parameter 339

tuning. 340

On the other hand, AB (Ying et al., 2013; Schapire, 2003; 341

Drucker, 1997) is a boosting algorithm that combines multiple 342

weak classifiers to form a strong classifier. Unlike GB, which 343

focuses on reducing model bias, AB focuses on reducing vari- 344

ance by giving more weight to misclassified instances at each 345

iteration. AB is robust to overfitting and can handle unbalanced 346

or noisy data, making it suitable for regression problems with 347

complex data sets. 348

Finally, the ET (Geurts et al., 2006) is a variant of the Ran- 349

dom Forest algorithm that is characterized by making random 350

decisions during the construction of each decision tree. This 351

randomness can lead to greater diversity among trees and, in 352

some cases, better predictive performance than RF. ET is par- 353

ticularly useful when seeking to reduce overfitting and increase 354

model stability in small or noisy data sets. 355

The hyperparameter optimization and training times for the 356

machine learning models varied significantly depending on the 357

complexity of each algorithm and the size of the hyperparam- 358

eter search space. Using an Intel Core i7 processor with 16 359

GB of RAM running Ubuntu, the training and hyperparameter 360

tuning times were recorded as follows: Random Forest (RF) 361

took approximately 27.56 minutes (1653.61 seconds), Gradient 362

Boosting (GB) required approximately 85.17 minutes (5110.21 363

seconds), HistGradientBoosting (HGB) completed in approx- 364

imately 4.08 minutes (244.94 seconds), Extra Trees (ET) fin- 365

ished in approximately 2.12 minutes (127.75 seconds), and Ad- 366

aBoost (AB) required approximately 24.07 minutes (1444.15 367

seconds). The total execution time for all models was approxi- 368

mately 60 minutes. 369

These differences in training time can be attributed to the 370

inherent computational complexity of each model and the ex- 371

tent of the hyperparameter space explored. For instance, Ad- 372

aBoost and Gradient Boosting involve sequential training pro- 373

cesses and often require more time to converge to an optimal 374

solution, whereas algorithms like Extra Trees benefit from par- 375

allel training processes, resulting in faster execution. The use 376

of TPOT’s automated pipeline optimization and its genetic pro- 377

gramming approach also contributed to the differences in train- 378

ing times, as TPOT dynamically explores various model archi- 379

tectures and hyperparameter configurations to identify the most 380

effective solutions. 381

This trade-off between model accuracy and computational 382

efficiency is a critical consideration when deploying machine 383

learning models in production environments, particularly for 384

applications requiring real-time or near-real-time predictions. 385

The computational resources and time required for training 386

must be balanced with the expected performance improvements 387

achieved through hyperparameter tuning. 388

3.3. Evaluation techniques for models 389

To select the best model describing the number of geomag- 390

netic storms as a function of the predictor variables, several 391

evaluation metrics will be used to compare the performance of 392

the models in a comprehensive manner. These metrics include 393

mean absolute percentage error (MAPE), r2-score, root mean 394
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squared error (RMSE), Akaike information criterion (AIC),395

Bayesian Information Criterion (BIC) and the correlation co-396

efficient (CC) between the actual values (data) and those pre-397

dicted by the models.398

The MAPE is an error measure that calculates the average399

percentage error between the actual values and the values pre-400

dicted by the model. It is calculated as the average of the ab-401

solute value of the difference between the actual values and the402

predicted values, divided by the actual value, and multiplied by403

100,404

MAPE =
1
n

n∑
i=1

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ , (1)405

where yi is the actual value and ŷi is the predicted value. Their406

difference is divided by the actual value. The absolute value407

of this ratio is summed for every predicted point in time and408

divided by the number of fitted points n.409

The r2-score, also known as the coefficient of determination,410

is a statistical measure that indicates the proportion of the vari-411

ance in the dependent variable that is predictable from the inde-412

pendent variables. It is calculated as the proportion of the vari-413

ance explained by the model to the total variance in the data. In414

other words, The RMSE is a measure of the root mean squared415

error between the actual values and the values predicted by the416

model. This metric provides a measure of the accuracy of the417

model predictions in terms of the scale of the original data.418

RMSE =

√∑n
i=1(yi − ŷi)2

n
. (2)419

The Akaike information criterion (AIC) and Bayesian infor-420

mation criterion (BIC) are measures used to compare statistical421

models based on their fit and complexity. These measures pe-422

nalize more complex models, favoring those that achieve a good423

fit with a smaller number of parameters.424

Finally, the correlation coefficient between the actual values425

and those predicted by the models provides a measure of the426

linear relationship between these two variables. A correlation427

coefficient close to 1 indicates a strong positive correlation be-428

tween model predictions and actual values, while a coefficient429

close to -1 indicates a strong negative correlation. A coefficient430

close to 0 indicates a weak or no correlation between the vari-431

ables. This coefficient provides a measure of the validity of the432

model predictions relative to the actual data.433

4. Results and discussions434

Occurrence of geomagnetic storms in solar cycles435

The table 1 provides a detailed analysis of the number of436

GmS in each solar cycle and in different phases of the cycles.437

Generally, it is observed that the declining phases of solar438

cycles tend to have a higher frequency of geomagnetic storms439

compared to the ascending phases. The number of geomagnetic440

storms in the declining phases of solar cycles is nearly double441

that of the rising phases (see Table 1) is supported by several442

studies in the scientific literature (see for example (Abe et al.,443

2023) and Echer et al. (2013)) for a discusion about larger num- 444

ber of storms in the descending phase of solar cycle may be re- 445

lated to moderate storm occurrence). This can be attributed to 446

several factors, such as the increased activity of coronal holes 447

that emit high-speed solar wind streams, and the more favorable 448

configuration of the interplanetary magnetic field for magnetic 449

reconnection during the descending phases (Gonzalez et al., 450

1994). 451

During the declining phases of the solar cycle, long-lasting 452

coronal holes are more common, which emit high-speed solar 453

wind streams contributing to a higher frequency of geomag- 454

netic storms. Additionally, in the descending phase, the orienta- 455

tion and structure of the interplanetary magnetic field tend to be 456

more favorable for magnetic reconnection with the Earth’s mag- 457

netic field, facilitating the conditions for geomagnetic storms 458

(Verbanac et al., 2011). In other word, the IMF Bz component is 459

a significant driver of geomagnetic activity due to the magnetic 460

reconnection mechanism. When the IMF Bz is oriented south- 461

ward, it interacts with the Earth’s northward magnetic field at 462

the dayside magnetopause, facilitating magnetic reconnection. 463

This process allows solar wind energy to penetrate the magne- 464

tosphere, which can lead to enhanced geomagnetic activity and 465

the development of geomagnetic storms (Gonzalez et al., 1994). 466

For instance, Richardson et al. (2001) note that the frequency 467

of severe space weather events, including geomagnetic storms, 468

tends to be higher during the descending phases of the solar cy- 469

cle. Similar observations have been reported by Tsurutani et al. 470

(1992, 1995) and also by Ji et al. (2012), who also found that 471

the declining phases are associated with increased geomagnetic 472

activity. These findings underscore the importance of consider- 473

ing the phase of the solar cycle when studying and predicting 474

geomagnetic storm occurrences. 475

It is observed that, in general, the heliospheric variables 476

show a more notable correlation with the number of geomag- 477

netic storms compared to more common variables such as 478

sunspot number or solar flux. A correlation coefficient for num- 479

ber of GmS in terms of predictor variables can be found in 480

2 providing an additional visualization of the correlation be- 481

tween the predictor variables and the total number of GmS, 482

as well as their specific correspondence with the total number 483

of storms in each class, from moderate to severe. Specifically, 484

the correlation coefficients for PT, IMF Alpha/Proton ratio and 485

sunspot are generally higher, indicating stronger (positive) re- 486

lationships with the number of GmS. For instance, the correla- 487

tion coefficients (CC) PT, IMF, A/P ratio and sunspot are 0.49, 488

0.71, 0.56 and 0.51, respectively. This observation suggests that 489

solar wind and interplanetary magnetic field conditions may 490

have a more direct influence on geomagnetic activity, however, 491

sunspot has a high alignment with the number of solar storms 492

assuming strong relationships. This finding highlights the im- 493

portance of considering a wide range of heliophysical variables 494

when studying and predicting geomagnetic activity, as these 495

less conventional variables may provide a better understand- 496

ing of the underlying mechanisms involved in GmS genera- 497

tion. It is observed that, as the intensity of the storms increases, 498

the correlation with the predictor variables tends to systemat- 499

ically decrease. This finding suggests that predictor variables 500
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Table 1. Statistics and count of total GmS for both phases of cycle for each cycle considered in this study.
Cycle Phase Start End Weak Moderate Strong Severe Extreme

20 rising 1964-10 1968-11 508 234 46 2 1
declining 1968-11 1976-03 1585 603 85 1 0

21 rising 1976-03 1979-12 1074 496 61 0 0
declining 1979-12 1986-10 2089 968 163 5 0

22 rising 1986-10 1989-11 964 501 68 4 2
declining 1989-11 1996-08 2276 1228 203 6 0

23 rising 1996-08 2001-11 1236 525 121 4 0
declining 2001-11 2008-12 1488 574 111 6 2

24 rising 2008-12 2014-04 604 232 21 0 0
declining 2014-04 2019-12 880 262 25 6 1

25 rising 2019-12 2025-01 450 132 15 0 0

Weak
Moderate Strong

Severe
Extreme

Total storms
Scalar B, nT

BZ, nT (GSE)

RMS_magnitude, nT

RMS_BZ_GSE, nT

SW Plasma Temperature, K

SW Proton Density, N/cm^3

SW Plasma Speed, km/s

Alpha/Prot. ratio
sigma-T,K

sigma-n, N/cm^3

sigma-V, km/s
sigma-ratio

Kp index MAX

R (Sunspot No.)

Dst-index, nT MIN
ap_index, nT

f10.7_index

Weak
Moderate

Strong
Severe

Extreme
Total storms
Scalar B, nT

BZ, nT (GSE)
RMS_magnitude, nT

RMS_BZ_GSE, nT
SW Plasma Temperature, K

SW Proton Density, N/cm^3
SW Plasma Speed, km/s

Alpha/Prot. ratio
sigma-T,K

sigma-n, N/cm^3
sigma-V, km/s

sigma-ratio
Kp index MAX

R (Sunspot No.)
Dst-index, nT MIN

ap_index, nT
f10.7_index

0.84
0.56 0.71
0.22 0.26 0.36
0.098 0.14 0.19 0.55
0.98 0.93 0.67 0.27 0.14
0.67 0.68 0.51 0.25 0.14 0.71

-0.046 -0.081 -0.081 -0.016 -0.073 -0.068 0.066
0.27 0.28 0.23 0.15 0.094 0.29 0.28 0.026
0.58 0.53 0.37 0.2 0.13 0.59 0.79 0.0086 0.46
0.5 0.39 0.26 0.13 0.079 0.49 0.54 0.064 0.29 0.68

0.089 0.097 -0.0024 0.026 0.0044 0.09 0.15 0.098 0.36 -0.0044 -0.1
0.44 0.34 0.26 0.14 0.11 0.42 0.36 0.011 0.28 0.56 0.87 -0.27
0.54 0.52 0.38 0.2 0.066 0.56 0.74 0.086 0.32 0.66 0.52 0.027 0.39
0.46 0.39 0.28 0.15 0.063 0.46 0.52 0.13 0.44 0.59 0.71 -0.051 0.67 0.63
0.24 0.29 0.18 0.12 0.041 0.27 0.38 0.15 0.6 0.23 0.14 0.74 -0.028 0.32 0.36
0.49 0.41 0.28 0.12 0.04 0.48 0.59 0.093 0.36 0.7 0.77 -0.16 0.74 0.65 0.91 0.23
0.48 0.47 0.33 0.15 0.051 0.51 0.67 0.12 0.52 0.61 0.48 0.23 0.29 0.81 0.61 0.56 0.62
0.66 0.77 0.73 0.29 0.17 0.74 0.57 -0.021 0.4 0.5 0.42 0.075 0.4 0.47 0.41 0.28 0.41 0.48
0.47 0.51 0.38 0.19 0.072 0.51 0.73 0.038 0.11 0.56 0.23 -0.11 0.075 0.68 0.3 0.12 0.39 0.58 0.37
-0.77 -0.91 -0.82 -0.3 -0.17 -0.86 -0.65 0.058 -0.27 -0.49 -0.36 -0.07 -0.31 -0.5 -0.36 -0.25 -0.37 -0.45 -0.84 -0.49
0.79 0.76 0.6 0.27 0.16 0.82 0.75 -0.059 0.46 0.73 0.72 0.096 0.67 0.64 0.63 0.34 0.67 0.63 0.77 0.43 -0.73
0.47 0.51 0.38 0.21 0.091 0.51 0.74 0.038 0.064 0.56 0.22 -0.12 0.058 0.68 0.29 0.1 0.37 0.56 0.36 0.98 -0.49 0.42

0.75 0.50 0.25 0.00 0.25 0.50 0.75

Fig. 2. Correlation coefficients between geomagnetic storms (GmS) and various predictor variables across all studied solar cycles and the complete dataset. The
predictor variables include sunspot number, solar radio flux, proton temperature, proton density, plasma speed, alpha/proton ratio, flow pressure, interplanetary
magnetic field strength, and the minimum Dst index. The correlation coefficients are depicted for different intensities of geomagnetic storms categorized as weak,
moderate, strong, severe, and great. The standard deviations of each of the heliophysical variables have been included in the figure for comparison purposes.

may be more effective in predicting lower intensity GmS, while501

their predictive ability may be less accurate for higher magni-502

tude storms. This pattern may have significant implications for503

the development of geomagnetic storm prediction models and504

highlights the importance of considering storm intensity when505

assessing the relationship with predictor variables.506

However, for the total number of storms, which is repre-507

sented as the sum of all storms independent of their inten-508

sity, the correlation is also considered, this has to do with the509

fact that the number of more intense storms is relatively much510

smaller than the smaller or moderate ones, so that the sum is511

dominated mainly by the storms of lower intensity.512

Modeling geomagnetic storms from heliophysical predictors513

The first regression model we employ is a linear multiple514

regression model, which allows us to explore linear relation-515

ships between the number of GmS and a set of predictor vari-516

ables related to space weather. The predictor variables used in517

the model include solar activity represented by sunspot number518

and solar radio, as well as variables related to solar wind prop-519

erties such as proton temperature and density, plasma velocity520

and pressure, alpha/proton ratio, and interplanetary magnetic 521

field magnitude. Tables 2 shows the regression coefficients and 522

their uncertainties. As can be seen from the table, except for 523

the number of sunspots and Proton Density, all predictor vari- 524

ables are statistically significant with a confidence interval of 525

α = 0.05. 526

The regression coefficients provide information on the 527

strength and direction of the relationship between each predic- 528

tor variable and the number of GmS. For example, negative 529

coefficients for temperature, Alpha/Proton ratio and Dst Min 530

suggest an inverse relationship with the number of GmS, while 531

positive coefficients for plasma speed and pressure, as well as 532

magnetic field magnitude, indicate a direct relationship. The re- 533

lationship between sunspots and the number of storms is more 534

complex, with a negative coefficient for sunspots and a posi- 535

tive coefficient for solar radio activity, suggesting a nonlinear 536

relationship between these variables and GmS. 537

The root mean squared error of this model, which indi- 538

cates the discrepancy between observed and predicted values 539

of GmS, is 63.041. This suggests that the model has moderate 540

accuracy in predicting the number of GmS, although there is 541
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Table 2. Parameters and uncertainties for multiple linear regression. R-squared: 0.671, Adj. R-squared: 0.668, Log-Likelihood: -4010.7, AIC: 8037, BIC: 8074.
Variables coef std err t P > |t| [0.025 0.975]
const -472.6417 46.042 -10.265 0.000* -563.036 -382.248
Scalar B, nT 19.9998 3.751 5.333 0.000* 12.636 27.363
SW Plasma Temperature, K -0.0003 0.000 -2.078 0.038* -0.001 -1.92e-05
SW Proton Density, N/cm3 8.9535 1.798 4.978 0.000* 5.423 12.484
SW Plasma Speed, km/s 0.8279 0.124 6.667 0.000* 0.584 1.072
Alpha/Prot. ratio -533.3684 285.013 -1.871 0.062 -1092.933 26.196
R (Sunspot No.) 0.2786 0.063 4.395 0.000* 0.154 0.403
Dst-index, nT MIN -0.7810 0.047 -16.509 0.000* -0.874 -0.688

still room for improvement in model accuracy.542
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Fig. 3. Scatter plot between actual and predicted values for GmS in all solar
cycles with multiple linear regression model. Coeficients in multiple linear
model are displayed in Table 2.

We have generated scatter plots for the regression obtained543

between these parameters for the predictions and the actual val-544

ues. The equation of the linear fit (in table 2) and the Pearson545

correlation coefficient is shown in Figure 3. The scatter plot546

between the GmS Number index and the predicted values is547

shown in Figure 3, indicating a high correlation coefficient of548

0.815 but a determination coefficient of 0.668. It is important to549

note that the Pearson correlation coefficient is not always a re-550

liable estimator of regression quality, as it only measures linear551

relationships and may not capture nonlinear associations that552

could be present in the data.553

4.1. ML models554

ML models play a key role in predicting and understand-555

ing complex geomagnetic phenomena. In this section, we ana-556

lyze the results of applying several machine learning methods,557

including Random Forest regression, Gradient Boosting, Ad-558

aboost, and ExtraTree Regressor, to model and predict the num-559

ber of GmS as a function of selected predictor variables. These560

models were trained using historical GmS data and heliophys-561

ical variables, with the goal of identifying meaningful patterns562

and relationships that can aid in the prediction of future GmS.563

Before starting the training of the models, the data set cov- 564

ering solar cycles 20 to 24 (up to December 2019) was divided 565

into two subsets: a training set (consisting of 70% of this data 566

selected randomly) and a test set (comprising the remaining 567

30%). For validation purposes, we created an external vali- 568

dation set using data from cycle 25 (starting from December 569

2019), which is separate from both the whole set. This approach 570

allows us to validate the model on data that the model has not 571

encountered during training or testing, ensuring a more robust 572

evaluation of its performance. 573

During the training and tuning process of the machine 574

learning models, exhaustive hyperparameter searches were 575

conducted using the GridSearchCV cross-validation strat- 576

egy. For each model, the best estimators and hyper- 577

parameter combinations that minimized evaluation metrics 578

such as RMSE were identified, resulting in optimal mod- 579

els for predicting the number of GmS. For example, the 580

best pipeline for the Random Forest model included a 581

ccp_alpha of 0.001, criterion set to Poisson, max_depth 582

of 500, max_features as log2, min_samples_leaf of 1, 583

min_samples_split of 2, and 1600 estimators. The Gra- 584

dient Boosting model performed best with a ccp_alpha of 585

0.0001, criterion as Friedman MSE, a learning rate of 0.1, 586

loss as squared error, max_depth of 500, max_features as 587

log2, min_samples_leaf of 8, min_samples_split of 16, 588

and 200 estimators. The HistGradientBoostingRegressor 589

achieved optimal results with a learning rate of 0.1, loss set to 590

Poisson, max_bins of 50, max_depth of 200, max_features 591

as 0.7, and min_samples_leaf of 8. The best pipeline for 592

the Extra Trees Regressor included bootstrap set to False, 593

ccp_alpha of 0.0, criterion as squared error, max_depth 594

of 50, max_features as 0.9, min_samples_leaf of 1, and 595

min_samples_split of 2. Finally, the AdaBoost Regressor 596

achieved optimal performance with a learning rate of 0.1, loss 597

set to exponential, and 1800 estimators. These results highlight 598

the importance of hyperparameter fitting in building accurate 599

and efficient machine learning models for predicting geomag- 600

netic activity. 601

The best model we have found is the Random Forest regres- 602

sor model. This model has demonstrated excellent performance 603

across several evaluation metrics (Table 3). For example, on 604

the training set, the RF achieved an RMSE of 4.959 and a co- 605

efficient of determination (R2 score) of 0.994, suggesting that 606

approximately 99.4% of the variability in the number of GmS 607
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Table 3. Performance and evaluation of machine learning models on the training set and the full data set. The root mean square error (RMSE), coefficient of
determination (r2-score), correlation coefficient, Rand-Score, Adj-Rand-Score, AIC and BIC are shown for each model. The best results in terms of RMSE, r2-score
and correlation coefficient are highlighted in bold.

MODEL SET RMSE R2 score MAPE CORRCOEF RANDS ADJ_RANDS AIC BIC

RF

Training 4.959 0.994 0.040 0.997 1.000 1.000 3058.271 3087.829
TEST 11.563 0.964 0.087 0.983 1.000 1.000 1692.158 1715.817
Full 7.578 0.985 0.054 0.993 1.000 1.000 4980.541 5012.606
Validation 8.318 0.921 0.230 0.988 1.000 1.000 367.731 381.115

GB

Training 0.464 1.000 0.003 1.000 1.000 1.000 670.229 699.787
Testing 10.578 0.970 0.076 0.986 1.000 1.000 1653.525 1677.184
Full 5.816 0.992 0.025 0.996 1.000 1.000 4598.933 4630.997
Validation 5.315 0.963 0.188 0.989 0.997 0.000 322.945 336.329

HGB

Training 2.344 0.999 0.019 0.999 1.000 0.000 2302.899 2332.457
Testing 9.784 0.975 0.067 0.988 1.000 0.000 1619.654 1643.313
Full 5.714 0.992 0.034 0.996 1.000 0.000 4573.399 4605.463
Validation 5.675 0.960 0.177 0.985 0.981 0.000 329.509 342.893

ET

Training 0.000 1.000 0.000 1.000 1.000 1.000 -28195.723 -28166.165
Testing 9.484 0.977 0.064 0.989 1.000 1.000 1606.133 1629.793
Full 5.203 0.993 0.019 0.997 1.000 1.000 4438.256 4470.321
Validation 4.933 0.967 0.173 0.990 1.000 1.000 315.490 328.874

AB

Training 13.144 0.954 0.141 0.980 0.999 0.000 4040.850 4070.408
Testing 16.292 0.930 0.152 0.967 0.999 0.000 1840.965 1864.624
Full 14.165 0.946 0.144 0.976 0.999 0.000 5882.530 5914.595
Validation 18.716 0.528 0.401 0.966 0.944 0.000 448.833 462.217

LR

Training 62.403 0.509 0.575 0.816 0.993 0.000 5610.980 5640.538
Testing 64.498 0.508 0.582 0.826 0.996 0.000 2438.140 2461.800
Full 63.041 0.510 0.577 0.819 0.994 0.000 8035.454 8067.518
Validation 39.337 0.607 1.345 0.799 0.986 0.000 523.111 536.496

can be explained by the model.608

In addition, the Random Forest model exhibited a high corre-609

lation coefficient of 0.997 in the training set, indicating a strong610

linear relationship between the predictor variables and the target611

variable. This high level of correlation suggests that the model612

effectively captures the relationship between the input variables613

and the number of GmS.614

The performance of the RF model was further validated on615

the full dataset, where it showed an RMSE of 7.578 and an616

R2 score of 0.985, indicating a robust ability to generalize to617

unseen data. Moreover, the correlation coefficient of 0.993 on618

the full dataset reinforces the predictive quality of the model.619

The RF model has proven to be the most effective for predicting620

the number of GmS based on the selected predictor variables,621

exhibiting a high level of accuracy and generalizability.622

An important consideration in selecting the best model is the623

consistency of performance across different data sets: training,624

testing, full, and validation. The Random Forest model showed625

the smallest difference in metrics such as RMSE, R2 score, and626

correlation coefficient across these datasets. This suggests that627

the RF model is well-balanced, effectively capturing the under-628

lying patterns in the data without overfitting or underfitting. The629

ability of the RF model to maintain stable performance across630

various subsets of data reinforces its suitability as the most reli-631

able model for predicting the number of GmS, highlighting its632

robustness and adaptability.633

Figure 4 shows the scatter plot between the actual and pre-634

dicted values for each of the ML models tested, further exhibit-635

ing the high performance of GB over all the rest.636

While evaluating the models, we also considered the MAPE 637

to assess predictive accuracy in terms of percentage error. The 638

Random Forest model demonstrated good performance with 639

low MAPE values across the training (0.040), test (0.087), and 640

full datasets (0.054). Although the MAPE increased in the val- 641

idation set (0.230), the model’s overall accuracy in the initial 642

datasets underscores its effectiveness. This suggests that while 643

there is some variability in percentage error with unseen data, 644

the RF model remains a strong contender due to its consistent 645

performance in most scenarios. 646

In the RF model, it is observed that the most important vari- 647

able in the prediction of the number of GmS is the Dst-index 648

MIN, with an importance of 30.1%. This is expected since the 649

number of geomagnetic storms is derived from the Dst index. 650

However, it is interesting to note that heliospheric variables 651

such as the scalar B (26.5%) and the alpha/proton ratio (16.2%) 652

occupy prominent positions in terms of importance (See Fig. 5). 653

These three variables account for approximately 72.8% of the 654

total importance in the model’s prediction, indicating that they 655

are the main drivers of the number of GmS according to the 656

model. Additionally, the importance of the sunspot number R, 657

with an importance of 10.3%, underscores the influence of so- 658

lar activity on geomagnetic storms. Other significant variables 659

include the solar wind plasma temperature (9.8%), solar wind 660

proton density (4.5%), and solar wind plasma speed (2.5%), the 661

first of them with almost as much importance as sunspot. 662

In contrast with findings from authors such as Abe et al. 663

(2023), who identified a strong correlation between the number 664

of GmS and sunspot activity, our study highlights the promi- 665
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Fig. 4. Scatter plot of the actual and predicted values by the machine learning
models. Each point on the graph represents a pair of values: the actual value
of GmS on the y-axis, and the value predicted by the model on the x-axis.
Points closer to the diagonal line represent a better prediction, as they indicate
a smaller difference between the actual and predicted values.

nence of the Interplanetary Magnetic Field (IMF). This variance666

in results underscores the significance of alternative heliophys-667

ical variables such as the IMF, proton temperature, and flow668

pressure.669

The importance of the mean IMF as a significant predictor of670

the number of GmS is supported by its interaction with the solar671

wind and the Earth’s magnetic field. The IMF is a critical com-672

ponent of the solar wind that interacts with the Earth’s magnetic673

field during geomagnetic events. Variations in the IMF can af-674

fect the Earth’s magnetosphere, triggering GmS. Additionally,675

the IMF transports energy from the Sun to the Earth, and fluc-676

tuations in this field can influence the amount of energy trans-677

ferred during space weather events. This energy transfer plays a678

crucial role in the generation and amplification of GmS (Kane,679

2005; Gonzalez et al., 1999).680

The IMF is a key indicator of solar wind conditions that681

can influence the Earth’s magnetosphere. Variations in solar682

wind speed, density, and direction, all associated with the IMF,683

can trigger responses in the magnetosphere that lead to GmS.684

Therefore, the IMF not only acts as a predictor of geomagnetic685

storms but also highlights the dynamic interactions between so-686

lar and terrestrial environments.687

On the other hand, variables such as proton temperature, al-688

pha/proton ratio, proton density, sunspot number R, and F10.7689

are of minor importance compared to the first three variables690

mentioned. However, they still contribute to the model, ac-691

counting for 10% of the total importance (Boroyev et al., 2020;692

Inyurt, 2020).693

This analysis suggests that magnetic field-related features,694
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Fig. 5. Variable importance for the Random Forest model predicting the number
of geomagnetic storms (GmS). The Dst-index MIN is the most influential vari-
able, reflecting its direct relation to geomagnetic storm quantification. Helio-
physical variables such as the scalar B, alpha/proton ratio, and sunspot number
R also show significant importance, highlighting their role in influencing ge-
omagnetic activity. Other variables, including solar wind plasma temperature,
proton density, and plasma speed, contribute to the model’s predictive capabil-
ity.

plasma speed, and flow pressure are the most influential fac- 695

tors in predicting the number of GmS according to the Random 696

Forest model. These findings may be useful to better under- 697

stand the mechanisms behind GmS and to develop more accu- 698

rate prediction strategies in the future. 699

The primary purpose of using different machine learning 700

models in our study is to identify the most effective approach 701

for predicting the number of geomagnetic storms based on he- 702

liospheric variables. By employing various models, including 703

Random Forest regression, Gradient Boosting, AdaBoost, and 704

ExtraTree Regressor, we can compare their performance using 705

evaluation metrics such as RMSE, R2 score, and correlation co- 706

efficients. This comparison helps us identify the strengths and 707

weaknesses of each model. Different models may capture dif- 708

ferent aspects of the data. For instance, some models may han- 709

dle non-linear relationships better, while others may be more 710

robust to outliers. By testing multiple models, we ensure that 711

our final predictions are robust and reliable. 712

Each machine learning model has its own set of hyperpa- 713

rameters that can be fine-tuned to improve performance. By ex- 714

ploring various models, we can determine the optimal hyperpa- 715

rameter settings for each, leading to better predictive accuracy. 716

Additionally, different models provide different methods for as- 717

sessing the importance of predictor variables. By using multiple 718

models, we can cross-validate the importance of key variables 719

such as the Interplanetary Magnetic Field (IMF), plasma speed, 720

and proton temperature, gaining deeper insights into their roles 721

in geomagnetic storm prediction. 722

The application of various machine learning models in our 723

study highlights the importance of robust model comparison 724

and hyperparameter optimization in developing accurate pre- 725

dictive models for geomagnetic storms. The findings empha- 726

size the significance of heliospheric variables in influencing ge- 727

omagnetic activity and underscore the need for a comprehen- 728
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sive approach in studying and predicting space weather events.729

The insights gained from this research can aid in the develop-730

ment of more effective prediction strategies, contributing to bet-731

ter preparedness and mitigation of the impacts of geomagnetic732

storms.733

5. Conclusions734

After an analysis of the data and the application of various735

machine learning models to predict the number of GmS, several736

significant conclusions can be drawn:737

• The study shows that the number of geomagnetic storms738

(GmS) tends to be slightly higher in odd-numbered so-739

lar cycles compared to even-numbered cycles. This pat-740

tern aligns with the 22-year cycle of geomagnetic activity741

described by Cliver et al. (1996). According to this cy-742

cle, peaks in geomagnetic activity alternate in strength be-743

tween odd and even solar cycles due to the reversal of the744

solar magnetic field’s polarity. This phenomenon results in745

more intense geomagnetic activity during certain phases of746

the 22-year cycle, contributing to the observed differences747

in storm counts between odd and even solar cycles.748

• In addition to the cycle-based variations, our data reveal749

that the number of GmS is significantly higher during the750

downward phases of solar cycles compared to the upward751

phases. This trend is evident across all analyzed solar cy-752

cles and is supported by our visual and tabular analysis.753

The increased geomagnetic activity during the declining754

phases can be attributed to the presence of high-speed so-755

lar wind streams and favorable IMF Bz conditions, which756

facilitate magnetic reconnection processes that drive geo-757

magnetic storms. This aligns with the findings of Gonzalez758

et al. (1994), who emphasized the critical role of south-759

ward IMF Bz in geomagnetic activity.760

• Certain variables, such as mean interplanetary magnetic761

field, plasma speed and flow pressure, have been found762

to have a significant correlation with the number of GmS.763

These variables emerged as the main drivers in predicting764

the number of storms according to the machine learning765

models used.766

• Random Forest models proved to be the most effective767

in predicting the number of GmS, with lower RMSE and768

higher coefficient of determination (R2 score) compared769

to other models. This suggests that Random Forest is the770

most robust and accurate approach for this type of predic-771

tion in our dataset.772

• Analysis of the importance of predictor variables revealed773

that the Dst-index MIN, scalar B, and alpha/proton ratio774

are the most influential factors in predicting the number775

of GmS. These findings provide valuable information on776

the underlying mechanisms that drive GmS and may guide777

future research in this field.778

This study we intent to contribute to a better understanding 779

of the behavior of GmS and has demonstrated the effectiveness 780

of machine learning models, in predicting this phenomenon. 781

These findings have important implications for the prediction 782

and mitigation of the adverse effects of GmS on Earth and tech- 783

nological infrastructures sensitive to space weather variations. 784
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