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Abstract

Let f : M — M be a continuous map on a compact metric space M equipped with a
fixed metric d, and let T be the topology on M induced by d. We denote by M(7) the
set consisting of all metrics on M that are equivalent to d. Let mdimy (M, d, f) and
mdimy (M, d, f) be, respectively, the metric mean dimension and mean Hausdorff
dimension of f. First, we will establish some fundamental properties of the mean
Hausdorff dimension. Furthermore, it is important to note that mdimy (M, d, f) and
mdimg (M, d, f) depend on the metric d chosen for M. In this work, we will prove
that, for a fixed dynamical system f : M — M, the functions mdimy (M, f) :
M(t) - RU{oo} and mdimy(M, f) : M(r) — R U {oo} are not continuous, where
mdimy (M, f)(p) = mdimu(M, p, f) and mdimg(M, f)(p) = mdimu(M, p, f)
forany p € M(t). Furthermore, we will present examples of certain classes of metrics
for which the metric mean dimension is a continuous function.
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1 Introduction

The mean topological dimension of a dynamical system (M, f), denoted by
mdim(M, f), where M is a compact topological space and f is a continuous map, is
an invariant under topological conjugacy. This concept was introduced by Gromov in
1999 [11]. It serves as an essential tool for understanding systems with infinite topo-
logical entropy. In 2000, Lindenstrauss and Weiss [16] demonstrated that the left-shift
map defined on ([0, 1]")% has a mean topological dimension equal to n, where n is a
positive integer. We define the mean topological dimension in Sect. 2.

The concept of mean topological dimension is closely related to problems involving
the embedding of minimal dynamical systems. The works [12, 13, 16, 19] demon-
strate that any minimal system with a mean topological dimension less than 7 can
be embedded into the shift map on ([0, 1]")2. It is worth noting that the value % is
optimal in this context. In [8], the author constructed minimal subshifts on a countable
infinite amenable group with arbitrarily mean topological dimension. It is also worth
mentioning that calculating the mean topological dimension is a challenging task.
Consequently, it becomes crucial to obtain upper bounds for the mean topological
dimension of a dynamical system.

The metric mean dimension for dynamical systems defined on compact metric
spaces, introduced by Lindenstrauss and Weiss in 2000 [16], offers upper bounds for
the mean topological dimension. Since its introduction, the notion of metric mean
dimension has been extensively studied, as we can see in the works [4, 5, 7, 15, 20,
25], among other works.

In 2019, Lindenstrauss and Tsukamoto [18] introduced a new tool that provides a
better upper bound for the mean topological dimension: the mean Hausdorff dimen-
sion. However, it is important to note that both the metric mean dimension and mean
Hausdorff dimension are not invariant under topological conjugacy; they depend on
the chosen metric for the space.

In summary, the metric mean dimension and mean Hausdorff dimension depend
on three variables: the dynamics represented by f, the space denoted as M, and the
metric d employed on M. We denote by mdimy (M, d, f) and mdimg(M, d, f) the
metric mean dimension and the mean Hausdorff dimension of f, respectively.

Several works explore the metric mean dimension concerning the dynamics and
the invariant space in which these dynamics operate. For instance, in [6], the authors
establish that, for C*-generic homeomorphisms acting on a compact, smooth, bound-
aryless manifold M with dimension greater than one, the upper metric mean dimension
concerning the smooth metric coincides with the dimension of the manifold. Fur-
thermore, in [3] it is proved the set of all homeomorphisms on M with metric mean
dimension equal to a fixed @ € [0, dim(IM)] is dense in Hom (M), where dim(M) is the
topological dimension of ML. These results are similarly demonstrated in [2] for the case
of the mean Hausdorff dimension. Moreover, in [1] it is proved that if dim(M) > 2,
the mapping

mdimy (M, -, d): Hom(M) — Rf +— mdimy(M, f, d)

is not continuous anywhere.
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The dependence of the metric mean dimension on the metric has been explored in
various works. For instance, in [16] it is proven that for any metric d on M, we have

mdim(M, ) < mdimy(M, d, f).

Furthermore, it is conjectured that for any dynamical system (M, f), there exists a
metric d on M such that

mdim(M, f) = mdimpy (M, d, f).

This conjecture has been verified for specific cases of dynamical systems (see [18],
Theorem 3.12). In [18], the authors present an example of a left shift (AZ, o) and two
metrics d and d’ on AZ such that

1
mdimy (A%, d, o) = 5= dimg(A) and mdimy(AZ, d',0) =0,

where dimg (A) denotes the box dimension of A (for the definition of box dimension,
see [9], Section 3.1). In Example 4.1, we will provide an example of a fixed dynamical
system f : [0, 1] — [0, 1] such that for any fixed a € [0, 1] there exists an explicit
metric d, on [0, 1] such that mdimp ([0, 1], dg, f) = mdimy([0, 11, d,, f) = a (see
Remark 4.2).

In [6], Corollary D states that there exist a dense subset of metrics D on [0, 1] and
a generic subset G of CO([O, 1]) such that

mdimp ([0, 1], p, f) = 1 forall f € G, forall p € D.

Next, in [21], Theorem 1.1 states that if A is a finite set, then

2h[0p(‘)€, o1, 02)

mdimy (X, dy, 01) = oga

where o1 (Cm,mmnez) = (Kma1,0)m,nez) and 02(Cm,nmnez) = (Cmn+1)m,nez)
. 2 . 2, .
are defined in AZ", X is a closed subset of AZ" invariant under both o and o, and

dy(x,y) = a—min{lulm:xu;éyu}’

where |u|so = max(|m|, |n|) foru = (m,n) € Z> and« > 1. In Examples 4.4 and
4.5, we will consider a similar metric d,, on the Cantor set C and calculate the metric
mean dimension of some particular maps on (C, dy).

From Examples 7.1 and 7.3, we can conclude that, for any b € [n, 00), there exists
a metric dp on ([0, 11")Z such that

mdimpy (([0, 17)Z, dp, o) = mdimg (([0, 17)%, d),, o) = b

(see (7.2) and (7.3)).
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The purpose of this work is to explore the continuity of the metric mean dimen-
sion on the metric d on M. We will prove that, in general, the functions d +
mdimy (M, d, f) and d +— mdimg(M, d, f) are not continuous anywhere. On
the other hand, we will present examples of certain classes of metrics for which
d — mdimy(M, d, f) and d — mdimg(M, d, f) are continuous functions.

The paper is organized as follows: in the next section, we will introduce the con-
cepts of mean topological dimension, metric mean dimension and mean Hausdorff
dimension. Furthermore, we will present some alternative formulas to calculate the
Hausdorff dimension of any compact metric space, which are more aligned with the
definition of mean Hausdorff dimension for dynamical systems (see Lemmas 2.2 and
2.3).

In Sect. 3, we will establish several properties of the mean Hausdorff dimension,
inspired by properties already known for the metric mean dimension and based on the
foundational concepts of the Hausdorff dimension. For instance, it is well known that,
given two metric spaces (M, d) and (E, d’), we have that

dimg(M x E) > dimg(M) + dimg (E)
(see [9], Chapter 7). In Proposition 3.4, we show that
mdimy(M x E,d x d', f x g) > mdimy(M, d, f) + mdimy(E, d’, g),

for any two maps f : (M,d) — (M, d) and g : (E,d’) — (E, d"). Furthermore, in
Theorem 3.6, we prove that, for K = Z or N,

dimg(M, d) < mdimy(M¥, d, o),

where o : M — MK is the left shift map and d is a specific metric on M® obtained
from the metric d on M (see (3.3)). In order to obtain this result, we use Lemma 3.5,
in which we present an alternative formula to calculate mdimy (MK, d, o).

In Sect. 4, we will calculate the metric mean dimension of several continuous maps
f : M — M changing the metric on M, when M is the interval [0, 1] or the Cantor
set.

In Sect. 5, we will prove that both the metric mean dimension and the mean Haus-
dorff dimension are not continuous with respect the metric.

In Sect. 6, we will consider certain classes of metrics and explore how the metric
mean dimension behaves when these metrics vary within these classes. More speci-
fically, we will generate metrics using composition of subadditive continuous maps
with a fixed metric on M.

We conclude this work by presenting some illustrative examples in Sect.7.
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2 Mean Dimension, Metric Mean Dimension and Mean Hausdorff
Dimension

Throughout this work, we will fix a metrizable compact space M and we will fix a
metric d on M, compatible with the topology on M. In this section we will present the
notions of mean topological dimension, metric mean dimension and mean Hausdorff
dimension, introduced in [16, 18], respectively.

We briefly present the definition of mean topological dimension. Let « = {A;}; be
an open cover of M and define ord(er) = sup,cx D 4. ¢y 14; (x) — 1. A refinement of
a is an open cover 8 = {B;}; such that for any B; € B, there exists A; € a, such that
B; C A;. When B is a refinement of o, we write 8 > «. Set D(a) = ming,., ord(8),
where o runs over all finite open covers of M refining «. The fopological dimension
of M is

dim(M) = sup{D(x) : « is a cover of M}.

Consider any continuous function f : Ml — M, the mean topological dimension
is defined as follow

D@V f @V v "l
mdim(M, f) = sup lim ( S @ / ( )),
o h—>0 n
where « runs over all finite open covers of M. The sequence a V f~!(a) vV --- Vv
f —n+l () is subadditive for n > 1, and the above limit exists.
Fix a continuous map f : M — M and a non-negative integer n. For any x, y € M,
set

dy(x, y) = max {d(x, ). d(F @), FOD - d (7 @, 7 oD

We say that A C M is an (n, f, €)-separated subset if d,(x,y) > ¢, for any two
distinct points x, y € A. We denote by sep(n, f, ¢) the maximal cardinality of any
(n, f, e)-separated subset of M. We say that E C M is an (n, f, €)-spanning set for
M if for any x € M there exists y € E such that d,(x,y) < e. Let span(n, f, ¢)
be the minimum cardinality of any (n, f, ¢)-spanning subset of M. Given an open
cover o of M, we say that « is an (n, f, €)-cover of M if the d,-diameter of any
element of « is less than ¢. Let cov(n, f, €) be the minimum number of elements in
any (n, f, e)-cover of M. Set

e sep(f,e) =limsup,_, o % logsep(n, f,¢);
e span(f, &) =limsup,_, o, %log span(n, f, €);
e cov(f,e) =limsup,_, o % logcov(n, f,¢).

Definition 2.1 We define the lower metric mean dimension of (M, d, f) and the upper
metric mean dimension of (M, d, ) by

SR ) _ piing PANULE) e SOV ©)

mdim,, (M, d, = lim inf
mdimy P 1a—>0 | log €| e—0 | log ¢ e—0 |loge|
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and

mdimpy (M, d, f) = limsup M = lim sup M = lim sup M
e—0 | 10g8| e—0 | 10g8| e—0 | 10g8|

’

respectively (see [16], Section 4).

Now, we present the definition of the Hausdorff dimension given in [18]: for s > 0
and ¢ > 0, set

e E, with diamE, < eforalln > 1¢.

H: (M, d) = inf i (diamE,)* : Ml = U
" 2.1
By convention we consider 0% = 1 and diam(%)* = 0. Let © > 0. Take
dimg(M, d, &, ®) = sup{s > 0: H‘;(M, d) > O}.
The Hausdorff dimension of (M, d), presented in [18], is given by

dimg(M, d) := lirr(l)dimH(M, d,e, 1).
e—

By simplicity in the notation, if ® = 1, we will set
dimg(M, d, €) := dimg(M, d, ¢, 1).
The usual definition of the Hausdorff dimension in the literature it is as follows: let
H' M, d) = c}gr%) H} (M, d).
The Hausdorff dimension of (M, d), denoted by dim{;(M, d), is given by
dimjj(M, d) = sup{s > 0: H* (M, d) > 0} = sup{s > 0 : H* (M, d) = o0}.
Lemma 2.2 For any ® > 0, we have that

dim (M, d) := lim dimyy (M. d. ¢, ©) = dimp (M. d) = dimf; (M. d).
E—>

Proof First, notice that if ¢ > 0 in (2.1) decreases, the class of permissible covers of
M, with diameter less than ¢, decreases. Therefore, for any s > 0, H} (M, d) increases
as ¢ decreases. Hence,

H(M, d) <H*(M,d) foranye > 0.
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Thus, if s > 0is such that Hf (M, d) > ©®, we have that H* (M, d) > 0. Consequently,

dimg(M, d, &, ®) = sup{s > 0: H}(M, d) > ©} <sup{s > 0: H' (M, d) > 0}
= dimp;(M, d).

Taking the limit as ¢ — 0, we obtain that
dim (M, d) < dim};(M, d). (2.2)
Next, notice that, if dimjj(M, d) = 0, then dimI@{) (M, d) = 0. Suppose that
dimj;(M, d) > 0. From the definition, for each § > 0 there exists ss > 0 such
that
dimfj(M, d) — 8 < 55 < dimj5(M, d) and H* (M, d) = oo.
Thus, there exists g9 > 0 such that H}* (M, d) > 0, for every 0 < & < g9. Hence,
dimg(M, d, ¢, ®) > s5 > dimj;(M, d) — 3.
Taking the limits as ¢ — 0 and § — 0, we conclude that
dimf} (M, d) > dimj;(M, d). (23)

From (2.2) and (2.3) we have that dimg (M, d) is independent of ® > 0 and further-
more

dimy (M, d) = dim{ (M, d) = dim;(M, d),
as we want to prove. O
Lemma 2.3 Suppose that (M, d) is a compact space. For s > 0 and ¢ > 0, set
Bi(M,d) =inf { g (diam(By))* : {Bn}_, is a cover of M by open balls with
n=1

diam(B,) < ¢ }

Setting
dimj;(M, d, €) = sup{s > 0: Bi(M, d) > 1},
we have that

dimgy (M. d) = lim dimfy (M. d. ¢).
£—>
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Proof We can prove that
HI(M, d) <Bi(M,d) < ZSHi/Z(M, d) 2.4)
(see [9], Section 2.4). It follows from the first inequality in (2.4) that
dimg(M, d, ¢) < dimj(M, d, ¢). 2.5)

Next, if 7 is such that 1 < BL(M, d), then by (2.4) we have 2% < H’g/z(M, d).
Therefore,

dimjy(M, d, ¢) < dimg(M, d, £/2, 1/2"). (2.6)
From (2.5), (2.6) and Lemma 2.2, we have that

dimg(M, d) = lim dimj;(M, d, ¢),
e—0

as we want to prove. O

Definition 2.4 The upper mean Hausdorff dimension and lower mean Hausdorff
dimension of (M, d, f) are defined respectively as

I 1
mdimy(M, d, f) = 1im <hm sup dlmH(M d,, 8))

n— 00

= hm lim sup dlmH(M dn,a)),

n— 00

n—o0 n

mdimy (M, d, f) = 11m <hm inf —dimH(M, d,, 8))
R
<11m inf —dimg;(M, dj,, 8))
- n

(see [18], Section 3).

Remark 2.5 Denote by mdim(M, f) the mean dimension of a continuous map f :
M — M (see [16]). The inequalities

mdim(M, f) < mdimy(M, d, ) < mdimy(M, d, f) < mdimy (M, d, f)
< mdimpy(M, d, f)

always hold (see [18]).

Recently, in [17], the authors introduce the concepts of mean packing dimension and
mean pseudo-packing dimension for dynamical systems. They proved that the mean
Hausdorff dimension of a dynamical system is lower than its mean packing dimen-
sion and its mean pseudo-packing dimension. Hence, the mean Hausdorff dimension
remains a more accurate approximation of the mean topological dimension.
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3 Some Fundamental Properties of the Mean Hausdorff Dimension

Let f : M — M be a continuous map, and let A C M be a non-empty closed subset
that is invariant under f. It is straightforward to observe that:

mdimg(A, d, f|4) < mdimg(M, d, f) and mdimy(A,d, f4) < mdimy(M, d, f).
Next, it is well-known that for any p € N, we have
mdimy (M, d, fP) < pmdimy(M, d, f).
In [1], Corollary 3.4 provides a formula for mdimy (M, d, f?) for a certain class of

continuous maps on the interval (see Remark 4.3). For the mean Hausdorff dimension,
similar relationships apply.

Proposition 3.1 Ler f : Ml — M be a continuous map. For any p € N, we have

mdimy(M, d, fP) < pmdimg(M, d, f) and
mdimy (M, d, f7) < pmdimy(M, d, f).

Proof For any positive integer m, we know that
max d(f7(x), f/P(y) < max d(f/(x), ().
O0<j<m 0<j<mp
Hence, for each s > 0 and ¢ > 0, we have

o
H;(M, dy,, f?) = inf { %}o (diamkE,)* : M = U E, with diamE, < ¢ for all nzl}
n=1 dy, sp n=1 dm,pp

< inf { %}O (diamkE,)’ : M = oLj E, with diamE,, < ¢ for all nzl}
n=1 dpp,f n=1 dmp. f
= H;(IML dmp, f)7

where diamy,, , represents the diameter with respect to the dynamic metric dy, asso-
ciated to f. Therefore,

dimH(M7 dﬂ’h 81 fp) S dimH(M7 dmp’ 8, f)

and hence

1 1
lim sup —dimg(M, d,,, &, f7) < plimsup —dimg (M, dmp, €, f).
mp

m—oo M m— 00

This fact proves the proposition. O
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Next, consider two continuous maps f: M — M and g: E — E, where (M, d)
and (I, d") are compact metric spaces. We will endow the product space M x E with
the metric

(d x d)((x1, y1), (x2, y2)) = max{d(x1, x2), d'(y1, y2)}, 3.D

for x1,x; € M and yj, y» € E. This metric is uniformly equivalent to (see Remark
5.1) the both metrics

(dxd')* ((x1, y1), (x2, y2)) = d(x1, x2) +d'(y1, y2), for xi, x2 € Mand y, y; € E.

(d x d")((x1,y1), (x2, 2)) = \/d(xl,xz)z +d'(y1, y2)?, forxj,x, € Mand yi, y» € E.

It is well known that
dimg(M x E) > dimg(M) + dimg (E)

(see [9], Chapter 7). In Proposition 3.4 we will prove the analog result for mean
Hausdorff dimension. We will use the next lemmas.

Lemma 3.2 Let (M, d) be a compact metric space and € > 0. Suppose there is a Borel
measure (L on (M, d) such that u(M) > 1 and for any open ball E; withdiamg E; < ¢,
we have that
w(E;) < (diamy(E;))* foranyi > 1.
Then,
dimj;(M, d, ) > s.

Proof Fix ¢ > 0 and take a finite cover {E;}/"_; of M, by balls E; with diamgy (E;) < e.
We have that

m m m
> iamg(E)) = ) w(Ei) = (,}31 E,-) = uM) = 1. (3:2)
i=1 i=1 N

Hence, B (M, d) > 1 and therefore dimj;(M, d, &) > s (see Lemma 2.3). O

The Lemma 3.2 is an adaption of the Mass Distribution Principle (see [9], Chapter
4), which states that if there is a mass distribution & on (M, d) and for some s there
are numbers ¢ > 0 and ¢ > 0 such that u(E;) < c(diamy(E;))* for any set E; with
diamg(E;) < e, we have that

dimg(M, d) > s.

We choose the version in Lemma 3.2, because it is more compatible with the definition
of mean Hausdorff dimension used in this work.
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Lemma 3.3 Let ¢ € (0, 1). There exists eg = eo(c) € (0, 1) depending only on ¢ and
such that: for any compact metric space (M, d) and 0 < ¢ < g there exists a Borel
probability measure u on (M, d) such that

w(E) < (diamy(E))cdimn®.d.e)
forall E C M with diamg (E) < %_

Proof See [18], Lemma 4.5. O

Proposition 3.4 Take two continuous maps f : M — Mand g : E — E. On M x E
consider the metric given in (3.1). We have:

mdimy(M x E,d x d’, f x g) > mdimy(M, d, f) + mdimy(E, d’, g).

Proof First, we will prove for any 0 < ¢ < 1 there is 89 = 8p(c) € (0, 1) such that,
for all § € (0, §p], we have

dimgM x E,d x d’, §/6) > c(dimg(M, d, 8) + dimy(E, d’, §)).
Fix 0 < ¢ < 1. It follows from Lemma 3.3 that there is o = 5o(c) € (0, 1) such
that for all § € (0, §p] there are Borel probabilities measures p and v in (M, d) and
(E, d"), respectively, satisfying
W(M) < (diamg (M) ™LA and  v(E) < (diamg (E) I E40)
forall M C Mand E C E with diamy(M) < £ and diam,/(E) < 2. Observe that

diamyy g (M x E) > max(diamgy (M), diam, (E)).

If B is a ball in Ml x [E with the metric (3.1), then B = M x E, where M C M and

E C E. Next, forall M x E € M x [E such that diamg, (M x E) < %, we have

(1 X V)M x E) = p(M)v(E) < (diamg (M) ™49 diamg (£)) timi @40

< (diamgq (M x EN“ ™A (diamg g (M x E)yetmiEo)

— (diamdxd/(M X E))c(dimH(M,d,6)+dimH(]E,d’,6))'

By Lemma 3.2, we get
dimg(M x E, d x d’, §/6) > c(dimg(M, d, 8) + dimy(E, d’, §)).

Next, for each k > 1, take ¢ € (0, 1) such that cy — 1 as k — oo. It follows from
the above fact there is a 6 (cx) = 8¢ € (0, 1) such that § — 0 as k — oo and

dimy(M x E, (d x d")n, 8¢/6) = cx(dimu(M, dy, 8) + dimp(E, d,,, 5)),
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for all n, k € N. Hence, for each k, n, we have
%dimH(M X E, (d xd)n, 8/6) = Cn—k(dimH(M, dy, 8) + dimy (E, d;,, 8)).
Therefore, taking the limit infimum as n — oo and the limit as k — oo, we have
mdimyg (M x E,d x d', f x g) = mdimy(M, d, f) + mdimy(E, ', g),

which proves the result. O

LetK=NorZ.Forx = (x),y = () € MK, set

1
AT, 5) = 3 557 Cxie 30)- (3.3)
jek

Let o : M® — MK be the left shift map. In [16], Theorem 3.1 proves that
mdim(MK, o) < dim(M). This inequality can be strict (see [23]).
Furthermore, in [24] it is proved that

mdimy;(M*, d, o) = dimg (M, d) and mdimy(M¥, d, o) = dimp (M, d).

We address these facts for the case of the mean Hausdorff dimension. We will need
the following lemma:

Lemma3.5 Let o : MK — MX be the left shift map, with K = N or Z. Let T be the
set consisting of all finite open cover {C;}i" | of MK, such that each C; has the form
Ci=Ai1 xAjpx - xAjgxMxMx--- and A; j is an open subset of M, for
i=1,....m j=1,...,8. Foreverys > 0and ¢ > 0, set

PS(M¥,d,) = inf {% (diamg, (C7))* : MK = U C; with diamg, (C;) < s}.
(G eT |i=I i=1

Let ® > 0 and set
dimf (M, d,,, &, ©) = sup {s >0: P (MK, d,) > @} .
We have that
mdimy;(M¥, d, o) = ggr%) <hnn_1)1or<1>f %dimf{(M, d,, e, @)) (3.4)
and

1
mdimy(M¥, d, o) = lim <lim sup —dimf;(M, d,,, ¢, @)) ) (3.5)

e=>0\ nooo N
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Proof Clearly we have that

e—=0 n—-oo n

1
mdimy; (M*, d, o) > lim (lim inf —dim$; (M, d,,, ¢, @))
and

- 1
mdimH(MK, d,o) > lim (lim sup —dimgy(M, d,,, &, ®)) .
e—

n—oo N

Next, we can prove that
B (M, d,) < 2°P} ,(M", d,)

(see [9], Section 2.4). From this fact (see (2.6)), we can show that there exists ® > 0
such that

dimj;(M*, d,,, &) < dimy;(M¥, d,,, £/2, ©).

From the above results, we have that (3.4) and (3.5) are valid forany ® > 0. O

Theorem 3.6 Let o : MK — MK be the left shift map, with K = N or Z. For any
metric d on M, we have that

dimg(M, d) < mdimy(M¥, d, o) < mdimg(M¥, d, o) < dimg (M, d).

Proof The second inequality is immediate from the definition. Next, in [24] it is proved
that mdim,, MK, d,0) = dimg (M, d). Hence, the third inequality from the theorem
follows from the fact that mdimg(MX, d, o) < mdimy, (MK, d, o) (see Remark 2.5).

We will prove the first inequality for K = N (the case K = 7Z can be proved
analogously). For each k > 1, take ¢, € (0, 1) such that ¢y — 1 as k — oo. It follows
from Lemma 3.3 that, for each k > 1, there exists a 6y = dx(cx) € (0, 1), such that
o — 0as k — oo, for which there is a Borel probability measure i on (M, d) such
that

w(E) < (diamy (E))ccdimut.d.50)

for all E C M with diam(E) < %.

Next, we will consider the Borel probability measure ft = u™ on M. Let {C; ?1:]
beaﬁniteopencoverofMNwiththeformCi = A1 xAj 2% xA; gxMxMx-.. |
where A; ; is an open subset of M, for all 1 < j < pB. We will suppose

. 5
that diamg, (C;) < Wkﬂ)’

diamy(A; ;) < %k, fori =1,...,m,j = 1,...,p and B > n. Therefore, for
all C;, we have that

for all i = 1,..., 8. In this case, we must have that
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w(Ci) = w(A; D(A;2) - 1w(Ai g)
S (diama’(A[’l))ck dimH(M,d,(Sk) e (diamd(Aiyﬁ))Ck dimH(M,d,Sk)
< (diamd(Ai,l))Ck dimyg (M, d,8;) . (diamd (Ai,n))Ck dimyg (ML, d,5x)

< (diamgqg, (C;))%" dimp (M., d,8¢) .

From this fact, we can to prove that
1
—dimyy(M", d,,, 8/6(27)) > cxdimu (M, d, &)
n

(see (3.2)), where ¢ — 1 and 8y — 0 as k — oo. The theorem follows from Lemma
3.5. ]

Conjecture. We conjecture that for any compact metric space Ml we have that
mdimy(M¥, d, o) = dimg(M, d).
Next, for any continuous map f: M — M, we have
mdimy; (M, d, f) < mdimy (M, d, f) < dimg (M, d)
(see [24]). Consequently, from Remark 2.5, we have
mdimy (M, d, f) < mdimg(M, d, f) < dimg (M, d).

The next corollary follows from Theorem 3.6.

Corollary 3.7 Suppose that dimg (M, d) = dimg (M, d), then:

o mdimy(M¥, d, 0) = mdimy (MK, d, o) = dimg (M, d).
e For any f € C°(M) we have mdimy(M,d, f) < mdimy(M,d, f) <
dimp (M, d).

4 Some Examples Changing the Metric

In this section, we will calculate the metric mean dimension of several continuous
maps changing the metric on M. For any homeomorphism #: M — M take the
metric d;, € M(7) defined by
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dp(x,y) =d(h(x), h(y)) forallx,y e M. 4.1)

Next, take g : M — M given by g(x) = h o f o h~!(x), for all x € M, where
f : M — Mis a fixed continuous map. We have that the map h: (M, dj,) - (M, d)
is an isometry. Therefore, for any homeomorphism # : M — M we have

mdimy (M, d,, f) = mdimy(M, d, h o f o h~") = mdimm(M, d, g)
and

mdimyg (M, dp,, f) = mdimg(M, d,ho f o hil) = mdimg(M, d, g).
Consequently,
mdimpy (M, dj, f) € [0, dimp(M, d)] and mdimg (M, dp, f) € [0, dimp (M, d)].

Since the metric mean dimension depends on the metric, we can have two topolog-
ically conjugate dynamical systems with different metric mean dimension, as we will
see in the next example (see [1, 14, 24]).

Example 4.1 For any closed interval J, let Ty : J — [0, 1] be the unique increasing
affine map from J onto [0, 1]. Set g(x) = |1 — |3x — 1]| for any x € [0, 1]. Fix
r € (0,00) and s € N.

n—1 A

Foranyn > 1,setag = 0,a, = )/ 3ir and take I, = [a,—1, a,], where

A= ﬁ = 37 Next, take ¢, € CO([0, 11), given by ¢y /|1, = T, ' 0g*" 0T},
for any n > 1. We have (see [2, Example 2.5], [1, Example 3.1] and [24, Lemma 6])
. . s
mdimy ([0, 11, | - |, ¢s.r) = mdimm ([0, 11, | - |, ¢s.r) = .

r+s

For a fixed s and any ri,7, € (0,00), we have ¢, ,, and ¢ ,, are topologically
conjugate by a conjugacy h1 2 : [0, 1] — [0, 1] (see [1], Remark 3.2), such that

—1
¢s,r| = h1,2 o ¢s,r2 o h172~

Hence,

s
ri+s mn+s

mdimM([Ov 1]7 dhl.za ¢S,i’2) = = mdimM([07 1]7 | : |9 ¢S,r2)a

where dj,, , is defined in 4.1. The same fact holds for the mean Hausdorff dimension.
Next, for n > 1, set J, = [27"", 27" +1]. Take ¢, € C°([0, 1]), given by ¢y, =
TJZI 0 g*" o Ty, for any n > 1. We can prove that

mdimy ([0, 11, | - |, ¢5) = mdimpm ([0, 1], | - [, ¢5) =0
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(see [1, Theorem 3.3]). Note that, for any s € N and r € (0, 00), ¢s and ¢, 5 are
topologically conjugate by a topological conjugacy 4 : [0, 1] — [0, 1] such that
@s = h oy, oh~!. Hence,

mdimy ([0, 1], dp, ¢s,r) = mdimm ([0, 1], dp, ¢ps,r) = mdimpm ([0, 1], | - [, ¢5) = 0.

Finally, let bp = 0 and b, = Y /_; —%5 for any n > 1. Take K,, = [bp_1, bn]. Let

Yy € CO([O 1]) be defined by ¥s|x, = K 'o g"" o Tk, for any n > 1. We have that
(see [1, Example 3.5] and [2, Example 2. 6])

mdimy ([0, 11, | - |, ¥5) = mdimp ([0, 11, | - |, ¥b5) = 1.

Note that, for any s € N and r € (0, 00), ¥ and ¢, 5 are topologically conjugate by
a topological conjugacy j : [0, 1] — [0, 1] such that Yy = j o ¢, © j”. Hence,

mdlmH([O9 1]7 djs ¢S,I’) = mdlmM([Ov 1]7 d]s ¢S,}’) = mdlmM([Ov l]a | . |s ws) = 1

Remark 4.2 Let M be the subset of C°([0, 1]) consisting of each map f such that for
some closed subinterval K C [0, 1], f|x : K — K is such that f = TEI oy oTkg,
where ¥ is one of the maps defined in Example 4.1 (that is, ¢; , or ¢s, or ¥), and
flge : K¢ — K€ is a piecewise C'-map. M is dense in C°([0, 1]) (see [1, 6]). Note
that for each f € M and a € [0, 1], based on Example 4.1, it is possible to construct
an explicit metric d,; on [0, 1] such that

mdimy ([0, 11, dg, ) = mdimm ([0, 11, du, f) = a.

Remark 4.3 In Example 4.1, note that ¢, , = ¢f7r for any s € N and r € (0, 00).
Hence,

SmdlmM([O’ 1]1 | : |7 ¢1,r)
1+ (s = Hmdimp ([0, 11, | - |, é1.)°

mdlmM([Oy 1]7 | : |’ ¢{,r) =

The same fact holds for the mean Hausdorff dimension.
Let
C={(x1,x2,...):x, =0,2forn € N} = {0, 2}

be the Cantor set. For a fixed « € (1, 00), consider the metric

do(¥.5) =Y o "|xy — yul. forany ¥ = (xn)nen. ¥ = ()nen € C.
neN

We have that dimg (C, dy) = llggz (see [10], Proposition I1L.1 or [9], page 31). There-

fore, forany ¢ € C O(C), we have from Remark 2.5 that

log 2
mdimy, (C, dg. ¢) < mdimp(C, dg. ¢) < dimg(C, dg) = —°
0 (X
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For any k > 1, set
Cr = {2 :xi =0fori <k—1,x =2andx, € {0,2} forn >k +1}.

Note that if £ # s, then C; N Cy = @ and C\ U,‘:il Cr = {(0,0, ...)}. Furthermore,
each Cy is a clopen subset homeomorphic to C via the homeomorphism

T, : Cr — C, O,...,O,Z,xl,x2,...>r—>(x1,x2,...),
——

(k—1)-times
which is Lipschitz.

Example 4.4 For j € N, consider ¥ : (C,dy) — (C, dy) defined as ¥;(0,0, ...) =
0,0,...)and ¥jlc, = Tk_lajka for k > 1, where o : C — C is the left shift map.
In [1], Proposition 5.1, it is proven that if « = 3, then

jlog2

dimpy(C, d3, Vi) = ——=— .
mdimy (C, d3, ¥;) G+ 1)log3

Following the same steps, we will prove that

. jlog2
mdlmM(C, da, wj) = m for any o > 1.

Take ¢ > 0. For any k > 1, set & = o KU*D_ There exists k > 1 such that
e € [ex41, ex]. Forn > landk > 1,take Z; = (z}, ..-,z}k), s Zn =@ ),
with z7 € {0, 2}, and set

A]ZC],...,Z,, =1{(0,...,0 ,2,z%,...,z;k,...,z?,...,z;@k,xl ..... Xg,.) i Xj € {0,2}}
(k—1)-times
C Cg.
Note that if AX . % AL . and ¥ € A’Z‘l,_“’zn', y e AY 4. then
de)n+1(x,y) > ‘ﬁ Therefore, sep(n + 1, ¥, &) > 277 and hence
. logsep(n + 1, v}, €) . logsep(n + 1, v}, &) . nlog(ka)
lim sup > lim sup > lim ——

=log2jk.

Thus,
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. . logsep(¥j,ex) _ .. log(27%)
mdimy(C, dy, ¥;) > kll)nolo m > kll>oo W
kjlog?2
— lim J 08
k—oo (k+ 1)(j + 1)]loga
_ Jjlog2
T (j+ Dloga’
Therefore,
Tt (C, dg, ¥j) > mdimy (C, dy, /) > — 21082 43)
mdim ,dy, ¥;) > mdim Ao, Vi) > ——— .
HIMER G W) = IEIMS Qo Vi) = 0 os o
On the other hand, note that for each [/ € {1, ..., k}, the sets Aél,...,in have (dy),-

diameter less than gj. Furthermore, the sets {(0, 0, ...)} and U;’ik +1Cs has (dg)s-
diameter less than g;. Hence

cov(n, ¥}, ex) < k2"k 42 < 22k
and therefore

log(2k2"7%)
: —

cov(¥;, &) < lim log 27k,
n—o0

Hence

Cov i, € . cov P&

mdimy (C, dg, ¥;) = limsup M < limsup W ek+1)

! e—0 _10g8 k—00 _loggk
jlog2

= Ut Dloge’ o

It follows from (4.3) and (4.4) that

jlog2

di Cdy, V)= —7"7—.
m lmM( o %) (]+1)10got

Example 4.5 Take ¢ : (C,dy) — (C,dy) the map defined as ¢(0,0,...) =
(0,0,...) and ¢|c, = Tk_laszk for k > 1, where 0 : C — C is the left shift
map. Note that ¢ is a continuous map. We prove that

log2
mdimy(C, dg, @) = dimg (C, dy) = —2=.
log o
Takee > 0.Forany k > 1, seteg = k++k.There exists k > 1 suchthate € [er41, €k].
o
Forn > land k > 1, take 21 = (2], ..+, 202)s -+ > 20 = (], ..., 2h), with 2} €

{0, 2}, and set
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k 1 1
AZ s = (0,...,0,2,21,...,zkz,...,z'f,...,zzz,xl,...,xs,...)

(k—1)-times

:x; € {0, 2}} C Cy.

Note that if A¥ . % AL . and ¥ € A’gl,_“,zn,ny € A% 4. then
de)n+1(x,y) > k++k Therefore sep(n + 1, ¢, €r) > <2k2) and hence
o
k2
lim logsep(n + 1, ¢, ) > lim logsep(n + 1,9 1) > lim % zlogzkz_
n— 00 n—+1 n—00 n—+1 n—oo n-41
Thus,
log sep(o, ¢ log(2¥
mdimy (C. dg. ¢) > liminf “E3P@ 20 oy, log@ )
k—oo —logegyi k—o0 log (o k+D*+k+1)

i k*log2 log 2
= lim = .
k—oo (k+1D2+k+1loga loga

Therefore, by (4.2), we have that

— log2
mdimy(C, dy, ¢) = mdimy,(C, d,, ¢) = &
log o

5 On the Continuity of Metric and Hausdorff Mean Dimension Maps

Throughout this section, we will work with a fixed metrizable compact topological
space (M, 7). We use M(7) to denote the set of all metrics that induce the same
topology T on M. Formally, this set is defined as:

M(t) = {d: d is a metric for M and t; = 7},

where 7, is the topology induced by d on M. We remember that two metrics on a
space M are equivalent if they induce the same topology on M. Therefore, if d is a
fixed metric on M which induces the topology 7, then M(7) consists on all the metrics
on M which are equivalent to d.

From now on, we will fix a continuous map f : M — M. Consider the functions

mdimyg (M, f): M(r) - R U {oo}
d — mdimg(M, d, f),
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where M(7) is endowed with the metric

D(d, dy) = max {|di(x, y)da(x, y)| : fordy,dy € M(7)}
x,yeM
(see [22]). We will prove there exist continuous maps f : M — M such that

mdimp (M, f) is not a continuous map.

Remark 5.1 Remember that two metrics d; and d> on M are called uniformly equiv-
alent if there are real constants 0 < a < b such that

adi(x,y) < dy(x,y) < bdi(x,Yy),

for all x, y € M. It is not difficult to see that, if d; and d» € Mi(7) are two uniformly
equivalent metrics on M, then

mdimy (M, d1, f) = mdimy(M, d, ) and
mdimyg (M, dy, f) = mdimyg(M, da, f).

Remark 5.2 Note if hop(M, f) < oo, then mdimy (M, d, f) = 0. Therefore, as the

topological entropy does not depend on the metric, we have that mdimy (M, d, f)=0
for any d € M(7). Analogously, we can prove that mdimy (M, d, f) = 0 for any
d € M(t). Hence, if hyp(M, f) < 0o, then

mdimy (M, f): M(r) > R and mdimg(M, f): M(r) - R

are the zero maps.

In the next example, we will exhibit a class of dynamical systems such that the
metric and Hausdorff mean dimension maps are not continuous, with respect to the
metric.

Example 5.3 Take M = [0, 1] endowed with the metric | - | induced by the absolute
value. For fixed s € N and r € (0,00), set f = ¢5, : [0,1] — [0,1] and [, =
[an—1, a,] defined in Example 4.1. Hence,

mdimp ([0, 1], | - |, f) = mdimy ([0, 1], ] - |, £) = r%

Fix any metric d on M equivalent to | - |. We will find two metrics d1 and d> on [0, 1],
arbitrarily close to d, such that

1
mdimy ([0, 1].d1. f) =1 and mdimy ([0, 1], da. /) = 5.

Let ¢ > 0. There exists N € N such that

max{diamy (U2 \ I,)} < %
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Setby = ay and b,, = aN+Z'}:1 2716281.2 forn > N +1 and consider J, = [b,,_1, b, ]

for any n > N + 1. Take the homeomorphism £ : [0, 1] — [0, ay + %] defined by

X if x € [0, ay]
hix)={an +¢€/2 ifx =1
[%](x—an)—f-bn if x € I,, forsomen > N + 1.

Consider the metric d; on [0, 1] given by

d(x,y) if x,y € [0, an]

|h(x) — h(y)] ifx,y € lay, 1= Uyt In
|h(x) —an| +d(y,an) ify €[0,an], x € [an, 1]
|h(y) —ay| +d(x,ay) ifx €[0,ay],y € [an, 1.

di(x,y) =

As d; depends of the metric d and of the homeomorphism %, we have that d; belongs
to Mi(7). Furthermore,

Jj=N+1 Jj=N+1 j=N+1 Jj=N+1 J

We prove that D(dy,d) < e.If x,y € [0,ay] orif x,y € [an, 1], then |d(x, y) —
di(x,y)| = 0. Suppose that x € [0,ay] and y € [an, 1]. From definition of d;, we
have that

di(x,y) = |h(y) —an| +d(x, an).
Since d(x, y) <d(x,an) +d(an,y), it follows that

d(x,y)—di(x,y) <d(x,ay) +d(ay,y) —d(x,an) — lay — h(y)]
=d(ay,y) —lay —h(y)l <&

and

di(x,y) —d(x,y) =dx,an) + lay — h(y)| —d(x, y)
<d(x,y)+d(y,an) +lay — h(y)| —d(x,y)
=d(y,ay) +lay — h(y)| <.

Hence, D(d;,d) < &.
Next, given that Ap(f[0,ay]) < 00, We have

mdimm ([0, 1], dy, f) = mdimm ([0, 11, d1, fliay.ay+e/2D-
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By [1, Example 3.1] and [2, Example 2.6], it is possible to obtain that

mdimy ([0, 11, d1, f) = mdimm([an, an + €/2], d1, fliay,ay+e/2])-

The existence of d» can be shown analogously taking »r = s, cy = ay and

¢, = any + Z';:l % forn > N + 1, where A = W, and consider-
: pd

ing K,, = [cy—1,¢y] for any n > N + 1. In consequence, mdimy (M, f) and
mdimy (M, f) are not continuous on d.

In Example 5.3, we proved that there exists a dynamical system with metric mean
dimension and mean Hausdorff dimension maps not continuous with respect to the
metrics. In the following theorem, we will prove that this result is more general.

Theorem 5.4 Set Q = M or H. If there exists a continuous map f : M — M such
that mdimg(M, d, f) > 0, for some d € M(7), then

mdimg(M, f): M(r) - R U {oo}
d — mdimg(M, d, f)

is not continuous anywhere.

Proof Let (M, d) be a compact metric space and f : M — M be a continuous map
such that mdimy (M, d, f) > 0. Given any «, € € (0, 1), we define the metric

_ d(x,y), ifd(x,y) > e,
dae(x, y) = {81_“d(x, ¢, ifd(x, y) < s.

Note that dy » € M(7). Moreover, taking x, y € M such that d(x, y) > &, we have

that |d(x, y) —dy.¢(x, y)| = 0 < . On the other hand, if we consider x, y € M such
that d(x, y) < &, we have that

ld(x, y) = doe(x, )| = |d(x, y) — ' 7%d(x, »)*| <d(x,y) +&'"“d(x, y)* < 2e.
Hence, D(d, dy ) < 2¢. However, for Q = M or H we prove

dimo (M. d.
mdimo(M, d.c. f) = mdimqM. d. f)

Firstly, we prove to claim for metric mean dimension. Consider any 1 € (0, ¢). Let
A an (n, f, n)-spanning set of (M, d). Then, for any y € M, there exists x € A such
that d,,(x, y) < n. Hence,

(dae)n(x, y) = &'y (x, )* < &' 0%

Thus, A is an (n, f, €!~*n%)-spanning set of (M, dy.¢). Therefore,

spang, (f, e'"n%) < spany(f,n),
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and consequently, we obtain that

span,; (f,e!=n%) ’ log(n®
mdimy (M, d.e, f) = lim —— - o SPANGCS ) [log(n))]

n—0  [log(e!=n®)| T n—0 allogn| |[log(e!=*nv)|
i M

_ mdimy (M. d. f) 5.1)
o

On the other hand, notice that, for any x, y € M such that (dy ¢)n(x,y) < &, we
have that d,(x, y) < ¢, because otherwise (dy.¢)n(x,y) = dy(x,y) > €. Let E be
an (n, f, n)-spanning set of (M, d, ), where € (0, ¢). Then, for any y € M, there
exists x € E with (dy.¢)n(x, y) < 1 and it follows that

a—1

1
(dae)n(x, y) = €' 9dy(x, )" < < &= dy(x,y) <&@ ne.
Thus, E is an (n, f, e“a r}é)—spanning set of (M, d) and therefore

a—1 1
span,, (f,n) > span,(f,e « n«).

Hence,

spang, (f,n) L e“T ) |log(e T ne
mdimy (M, £, dy.) = lim pang, , > 1im Slofﬂmgz(faf1 177 ) |log(e & nw)|
n—0  [log(n)] =0 |log(e s na) [logn

a—1 1 1
i span, (f, & @ ne) |log(n«)|
= lm a—1 1
n—0 |log(ngE)| |10g77|
mdimy (M, f, d)

o

(5.2)

1t follows from (5.1) and (5.2) that mdimy (M, f, dg,¢) = "0MOLLD,
Next, we prove the theorem for mean Hausdorff dimension. We will need the
relation

dimy (M, £, d
mdimy (M, £, a%) = DML S d) v e e 0, 1),
[07

which will be shown in Example 7.1. Fix n € (0, ¢). For every x,y € M with
dp(x,y) < n, wehave that (dy,c)n(x, y) = el=ad, (x, y)¢. Thus, for all E C M such
that diamge (E) < 1, we have that diamg, ,), (E) < e!=*y. Therefore

Hgl,un(M, (do.e)n) < Hy(M, d;f), forevery0 <n <e.

Thus,

mdimy (M, d, f)

mdimy (M, dy ¢, f) < mdimy (M, d%, f) = (5.3)
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On the other hand, given n € (0, €), we have forevery x, y € M, withd, (x, y) < n,
that

(da.)n(x, y) =& 7%y (x, ) > n'"%d, (x, y)*.

Thus, for all E C M with diam, ,),(E) < 7, it follows that diamge (E) < n*.
Therefore, we obtain that

H (M, (o)) > Hja (M, d2).
Consequently,

mdimyg (M, d, f)

mdimy(M, dy ¢, f) > mdimg(M, d%, f) = (5.4

It follows from (5.3) and (5.4) that mdimg (M, dg ¢, f) = 28maMdD
Next, given that

dimy (M, d,
mdimy (M, dy o, ) = O ) g
o

mdimyg (M, d, f)
oc ,

mdimyg (M, do s, f) =

and D(dy.,d) < 2e¢, for any ¢ > 0, we can conclude that mdimy (M, d, f) and
mdimg(M, d, f) are not continuous with respect to the metric. O

6 Composing Metrics with Subadditive Continuous Maps
In this section, we will consider metrics in the set
Aa(M) = {ga: ga(x,y) = g(d(x, y)) forall x,y € M, and g € A[O0, p]},
where p is the diameter of Ml and
A, p) = {g 1 [0, p] — [0, 00) : g is continuous, increasing,
subadditive and g~ (0) = {0}] .

Remember that g : [0, 00) — [0, 00) is called subadditive if g(x + y) < g(x) +
g(y) for all x, y. For instance, if g is concave (that is, if g(tx + (1 —1)y) > tg(x) +
(1 —1t)g(y),foranyr € [0, 1]and x, y € [0, p]) and g(0) > 0, then g is subadditive.
In fact, if g : [0, c0) — [0, 00) is concave and g(0) = 0, then tg(x) < g(zx) for any

t € [0, 1] and x € [0, c0). Hence, for any x, y € [0, 00), taking t = )ﬁy € [0, 1], we
have

gx)=g(t(x+y)) >rg(x+y) and g(y)=g((1-)(x+y)) = (1-1)gx+y).
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Therefore, g(x) + g(y) > g(x + y).

Lemma 6.1 For any g € A[0, p], we have that:

(1) gq is a metric on ML
(ii) gq € M(z). Consequently, Ag(M) C M(t).
(iii) If f : M — M is a continuous map, then, for any n € N and x, y € M, we have
(8a)n(x, y) = g(dn(x, y)).

Proof i) Clearly g4(x,y) > 0 and gs(x,y) = gq(y, x) hold. Furthermore, since
g~ 1{0} = {0}, we have

84(x,y) =06 gd(x,y)=0&dx,y)=0&x=y.
Next, since g is increasing, then, for x, y, z € M, it follows that

ga(x,z) = gd(x,z2)) <gldx,y)+d(y,z) < gld(x,y)+gd(y, z2)
=gd(x,2) + 84(z, y).

Hence, g4 is a metric on M.

ii) We prove that, given any x € M, then for any ¢ > O there is § > 0 such that
By(x,8) C Bg,(x, ), where By (x, €) denotes the open ball with center x and radius
€ > 0 with respect a metric d’. Indeed, since g is continuous at 0 and g_l{O} = {0},
for all ¢ > 0, there is § > O such that if 0 < a < §, then 0 < g(a) < e. Thus, for
any y € M such that d(x, y) < §, we have g(d(x, y)) < ¢, thatis, gg(x,y) < ¢.
Therefore, By(x, §) C Bg,(x, €).

Next, we prove for all x € M and each ¢ > 0, there is § > 0 such that B, (x, §) C

By(x, €). We show thatif a, b > 0 and g(b) < £, then b < £. Indeed, if a < 2b,

since g is increasing and subadditive, then we have

g(a) < g(2b) < 2g(b).

From this fact, setting § = %, if gg(x,y) < 8, we have
g(e) €
gld(x,y)) < - = d(x,y) < 5 <&

Therefore By, (x,8) C By(x, ). If follows from the above facts that g; € M(7).
iii) Fix a continuous map f : M — M. Since g is increasing, we have that
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gd(f™(x), f™(»))) = max{g(d(x,y)), gd(fx), FO) ..., gd(f" " (x),
o

if and only if

d(f™(x), f™ () = max{d(x, y),d(f(x), () ..., d(f" " x), " OoN.

Hence, given n € N, we have for any x, y € M that

(8a)n(x, y) = max{ga(x. y), ga(f (). fFM) ... ga(f* (). f*71 )
= max{g(d(x, y)), gd(fx), fO)) ..., g@d(f* (), "1}
= g (max(d(x, y). d(F @), FON . d(f" @, 71 0DY)
= g(dn(x. y)),

which proves iii). O

Next, we will consider the metric mean dimension with metrics on A, (M). For any
continuous map g € A[0, p], we will take

km(g) = liminf log(s(€)) and  kpy(g) = lim sup log(g(¢))
et log(e) esot+ log(e)

Lemma 6.2 For any g € A[O, p], we have that k,;,(g) < kp(g) < 1.

Proof Without loss of generality, we can assume that p € (0, 1). We prove that there
exists m € (0, oo) such that mx < g(x) for any x € [0, p]. Since g is subadditive, we
have that

g L
2 2n Jo L L
2 on
forany n € N.If 0 < y < p, there exists n > O such that znﬁl <y< 2%’ and hence

on 1 2)1+l
= < - < =— Thus
p—=y = p ’

g (%)
g(p) - 2p < g(py) _ 2g(py) - 2g(y).
p Pat T b y

Therefore, taking m = %‘;), we have that my < g(y) for any y € [0, p]. Thus, for

any x € (0, p], we have that

log g(x) - logmx
logx ~— logx

logmx <logg(x) = —logg(x) < —logmx =

log mx

Given that Tog x

— 1,as x — 0, we have that k,,(g) < ky(g) < 1. O
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From now on, we will suppose that k,,(g), kas(g) > 0. For instance, if there exists
n € Nand § € (0, 1) such that with g(x) < x%, for any x € (0, 8], we have that

! ! 1 logg(x)
logg(x) < —logx = ——logx < —logg(x) = — < ——.
n n n log x
We remark that there exists maps g € A[0, p] such that k,,(g) = ku(g) = 0.
Indeed, if g is defined as g(x) = —— — for x > 0and g(0) = 0, we can prove
log(+)
that kpr(g) = 0 (g(x) is the inverse map of the function f : [0, 0o) > R defined as
_ 1
f(x) =e «% forx > 0and f(0) = 0).
Remember that for any two sequences of non-negative real numbers (a,),cN and
(bp)nen, we always have:

lim sup an b, < lim sup a, lim sup b, 6.1)
n—0o0 n—oo n—0oo

liminf a,b, > liminf a, lim inf b,,, (6.2)
n—oo n—o0 n—oo

whenever the right-hand side is not of the form 0 - co. The equalities hold if lim,,_, » ay,
exists. These facts will be useful for the next proposition.

Proposition 6.3 Take g € A[O, pl, such that k,(g), ky(g) > 0. Set gq(x,y) =
god(x,y)forall x,y € M. For any continuous map f : Ml — M, we have

() mdimy (M, d, f) = kn(g)mdimy, (M, g4, f).
(i) mdimm(M, d, f) < ky(g)mdimy (M, ga, f).

Proof Given that k,,(g), kp(g) € (0, 1], we can use the properties given in (6.1) and
(6.2).

(i) Fix e > 0. If dy(x, y) < &, then (gg)n(x, y) = g(dn(x,y)) < g(e), because g is
increasing. Thus, any (n, f, £)-spanning subset with respecttod isan (n, f, g(¢))-
spanning subset with respect to g;. Hence,

spang(n, f, ) = spang, (n, f, g(e)). (6.3)

Furthermore, since g is continuous and g(0) = 0, we have lim,_.o g(¢) = 0.
Therefore,

1 . f
mdimy; (M, d, f) = liminf lim sup og spany (1, f &)
E—> n—00 n|log(e)|

— liminfli logspan, (1, f, &) |log(g(e))|
= lim inf lim sup
>0 poo n|log(e)] [log(g(e))]
logspan,, (n, f, g(e)) |1
(from (6.3)) > lim inf lim sup —-P*sa " /- 8()) [ log(g(0))]
e>0  nooo n|log(g(e))l [log(e)]




261 Page280f35 J. Muentes et al.

logspan, (n, f, g(e
(from (6.2)) > ko (g) lim inf lim sup 2P 20ea 2 /- 8(6))
620 n—oo n|log(g(e))l

= ky (g)mdimy, (M, g4, f).

(i) Fix n € N and ¢ > 0. Let A be an (n, f, ¢)-separated subset with
respect to d. Hence, for any x,y € A with x # y, we have d,(x,y) =
maxo<j<n {d(f/(x), f/(y))} > &, and, therefore, there exists jo € {0,...,n —
1} such that d(f’(x), f9(y)) > . Since g is increasing, it follows that
g (d(fP), f2(y))) = g(e). Therefore,

(gt ) = max g (407 @. F/0D)] 2 g6e).

Hence, A is an (n, f, g(¢))-separated subset with respect to g4. Thus,

sepy (. f€) < sepg, (1. f. g(¢)). (6.4)

Therefore,

mdimy (M, d, f) = lim sup lim sup sepa(n, f, )
e—>0 n—oo n|log(e)]

. . sepy(n, f &) |log(g(e))|
= lim sup lim sup
e—>0 n—oo nllog(e)] [log(g(e))l

(from (6.4)) < limsup lim sup *Pg, (. /, 8(¢)) [log(e(e))]
e>0 n—oo nllog(g(e))|  [log(e)l

(from (6.1)) < kpm(g) lim sup lim sup sePg, (1, £ 8(£))
e—>0 n—oo n|log(g(e))]

=k (g)mdimy (M, g4, f).

Hence, mdimy (M, d, f) < kpy(g)mdimpy (M, gg4, f). O

Lemma 6.4 Forany g € A[0, p] such that k(g) = k,,(g) = ky(g) > 0, we have that
mdimm (M, d, f) = k(g)mdimpy (M, ga, f)

and

Proof From (6.3), we have that
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T l 9 9
mdimy (M, d, f) = lim sup lim sup -2£ 3P40 71 /. )
e—>0 n—>00 n|log(e)l

. . logspan,, (n, f. g(¢)) |log(g(e))|
> lim sup lim sup
e>0  n—>00 n|log(g(e))l [log(e)|
logspan, (n, f, g(g))
= k(g) lim sup lim sup gspang, (n. /. 8
e—>0 n—o0 n|log(g(e))l
= k(g)mdimpy (M, gq4, f).

It follows from Proposition 6.3, item ii, that mdimy; (M, d, f) = k(g)mdimy (M, g4, f).
Analogously, using (6.4) and Proposition 6.3, item i, we can prove the second part
of the lemma. mdimy; (M, d, f) = k(g)mdimy;(M, gq, f). O

From now on, we will assume that p = diam; (M) < 1. Next, set
AT[0, p] := {g € Al0, p] : kn(g) = kn(g) > 0}.

We will choose a suitable topology for A1[0, p]. Fix g € A™[0, p]. Since any h €
AT[0, p] satisfies h(0) = 0, then we must have d(g(x), h(x)) — 0, asx — 0. For a
fixed ¢ > 0, set

. 1 — x¢
B(g, &) = {h € AT[0, p]: g()(x* = 1) < h(x) — g(x) < g(X)( - ),

xS

& for x € (0, ,o]}. (6.5)

Given that we are assuming that p < 1, notice that g € B(g, &), because

&

20 — 1) <0 < g(0)°

por for any x € (0, p].

Furthermore, if 4 € B(g, ¢), then for any x € (0, p], we have that

U=X) ) reer) < h(r) < EX

g = 1) < h(x) = g(x) < g0~ =

(see Fig. 1). Let T be the topology induced by the sets B(g, ¢), that is, these sets form
a subbase for 7.

Lemma 6.5 The map

Z: (A0, p], T) — (0, 1]
g = k(g) = km(g)

is continuous.
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Fig.1 B(g,¢)

Proof For any g € A1[0, p], define

logs) ¢ v € (0, p]

logx

809 =V 1ie), ifx =0,

Note that g : [0, p] — R is a continuous map. Specifically, g is continuous at 0,
because

8(0) = k(g) = lim g(x).
x—0
Next, fix h € B(g, ¢). Given that p < 1, then for any x € (0, p] we have that

gv)  x*
< clogx <logh(x) —logg(x) < —elogx.

x£8(x)<h(x)<% e 0 _1

Therefore, —¢ < g(x) — h(x) < ¢ for any x € (0, p]. Thus, |k(g) — k(h)| =
|g(0) — h(0)| < &, by the continuity of both g and 4. This fact proves that g — k(g)
is a continuous map. O

For the next results, we will consider the set
AT M) = {god € AgM) : g € AY[0, p]}.

Notice that A}'(M) =# ), because the function g(x) = x¢, for a fixed a € (0, 1],
belongs to A™[0, p] (see Example 7.1). In particular, d € .Aj (M).

Lemma 6.6 Let M be a compact space such that the metric map d : M x M — [0, p]
is surjective. Then

Z A0, p] > AT (M)
g god

is a bijective map.
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Proof Clearly Z is surjective. Next, we prove that for any d € A;; (M), there exists
a unique g5 € AT[0, p] such that d = g od. Suppose that g1, g» € A0, p] and
d = g1 od = gy od. Since d is surjective, for any ¢ € [0, p], there exist x,y € M
such that t = d(x, y). Therefore, g1 (t) = g2(¢), as we want to prove. O

Suppose that d : M x M — [0, p] is surjective. We will equip A:l' (M) with the
topology W which becomes the map

Z: (AT[0, p1, T) — (A (M), W)
g—>d

a homeomorphism.

Theorem 6.7 Let M be a compact space such that the metric map d : M x M — [0, p]
is surjective. Suppose that mdimy (M, f, d) < oco. The maps

mdimp (M, £): (AT (M), W) — R
ga —> mdimm (M, ga, f)

and

mdimy (M, f): (A7 (M), W) - R
8d > MM(Mv 8d> f)

are continuous.

Proof We prove the case mdimy (M, f): AL‘; (M) — IR, since the proof of the theorem
is analogous for the case mdimy, (M, f): AF (M) — R. If mdimy(M, f,d) = 0, it
follows from Lemma 6.4 that mdimy; (M, f): A;(M) — R is the zero map.

We will suppose that 0 < mdimy (M, f, d) < oo. Take d in A’} (M) and let g be
the unique map in AT[0, p] such that d= g5 o d. From Lemma 6.4, we have that

mdimy (M, d, 1)

mdimyg (M, f)(j) = mdimpq(M, f)(g;od) = k(g+)
d

Hence, the continuity of mdimy (M, f): A; (M) — R follows from Lemma 6.5 and
given that k(g) > 0 for any g € A™[0, p]. ]

7 Additional Examples

In this section we will present some examples of maps g € AT [0, p] and the respective
expressions for mdimy (M, g4, f).
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Example 7.1 Fix any a € (0, 1]. Consider the function g(x) = x“ defined for all
x € [0, 00). Notice that g(x + y) < g(x) 4+ g(y) for any x, y > 0. Next, by defining
ga(x,y) =d(x,y)?, we find that k(g) = a, and therefore

mdimy (M, d, f)

mdimpy (M, gq4, f) = (7.1)
For instance, we have that
. n\7Z n
mdimpy (([0, 11*)%, hq, 0) = —, (7.2)
a

where is the metric defined in Theorem 3.6 and o : ([0, 11")% — ([0, 1]")Z is the left
shift.

Example 7.2 Fix any a € (0, 1]. Consider the function g(x) = x¢ defined for all
x € [0, 00). We will prove that

mdimy (M, gg, f) = imdimH(M, d, f). (7.3)

In fact, consider a fixed a € (0, 1]. In fact, consider any a € (0, 1] fixed. Given any
n > 0, we have that d(x, y) < nif and only if d(x, y)* < n“. Hence, it follows that

s . 00
H}]“ (M, (ga)n) = inf /E

:inf{
k

= inf { OEO (diamg, (Ex)* : M = :le Ey with diamg, (Ex) < n forall k > 1}
k=1 =

(diamg (1)) : M = :le Ey with diamgg (Ey) < n® for all k > 1}

o0
(diamga (Ep) :M = kul Ej with diamg, (Ex) < n forall k > 1}

Tog

= HY* (M, d,).
Hence,

dimy (M, (g4)n, 1*) = sup{s > 0 : Hya (M, (g4)n) > 1} = sup{s>0 : Hy* (M, dn)>1}

1 1
= —sup{as > 0: HY* (M, dy) > 1} = — dimg(M, dn, n),
a a

This fact proves (7.3).

Let f : M — M be a continuous map such that mdimy (M, d, f) > 0. It follows
from Example 7.1 that the image of the map mdimy (M, f): A;' M) - RU {0}
contains the interval [mdimy (M, d, f), 00). Hence,

sup mdimy (M, d’, f) = oo.
d'eM(t)

Similar fact holds for the mean Hausdorff dimension.



Metric Mean Dimension and Mean Hausdorff... Page330f35 261

Example 7.3 Consider g(x) = log(1 +x).Since l +x +y <14+ x + y 4+ xy, we
have

gx +y) =log(l +x+y) <log((1+x)(1+y)) =log(l+ x)+log(l +y)
=gx) + 8.

Hence, g is subadditive. Note that if g; and g, € A'[0, 00), then g;0g> € AT[0, 00).
Consider gi(x) = x%, fora € (0, 1), and g2(x) = log(l 4+ x). The composition
h(x) = g2 0 g1(x) = log(1 + x%) belongs to AT[0, 00). We can prove that k(h) = a.
Hence

mdimy (M, d, f)
p .

mdimy (M, Ay, f) =

Example 7.4 Suppose that h : M — M is a-Holder for some « € (0, 1), that is, there
exists K > 0 such that

d(h(x), h(y)) < Kd(x,y)* forallx,y e M.

Setting d (x, y) = d(h(x), h(y)) for all x, y € M, we have respectively from Exam-
ples 7.1 and 7.2 that

mdimy (M, d, f)
o

mdimy (M, dj, ) < mdimy (M, d%, f) =

and

mdimy(M, 4, f)
- :

mdimy (M, dp,, f) < mdimy(M, d°, f) =

If M is a compact Riemannian manifold with dim(IM[) > 2, then the set G consisting
of homeomorphisms with positive metric mean dimension is residual in Hom (M) (see
[6]). Therefore, for any f € G, we have

0 =mdim(M, f) < sup mdimy(M, d’, f) = sup dimg(M, d") = oo,
d’'eM(7) d’eM(r)

where the first equality is because M is finite dimensional (see [16], page 6). Similar
result holds for the case of mean Hausdorff dimension, following the facts proved in
(2].
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