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Abstract
Let f : M → M be a continuous map on a compact metric space M equipped with a
fixed metric d, and let τ be the topology onM induced by d. We denote byM(τ ) the
set consisting of all metrics on M that are equivalent to d. Let mdimM(M, d, f ) and
mdimH(M, d, f ) be, respectively, the metric mean dimension and mean Hausdorff
dimension of f . First, we will establish some fundamental properties of the mean
Hausdorff dimension. Furthermore, it is important to note that mdimM(M, d, f ) and
mdimH(M, d, f ) depend on the metric d chosen for M. In this work, we will prove
that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) :
M(τ ) → R∪ {∞} and mdimH(M, f ) : M(τ ) → R∪ {∞} are not continuous, where
mdimM(M, f )(ρ) = mdimM(M, ρ, f ) and mdimH(M, f )(ρ) = mdimH(M, ρ, f )
for any ρ ∈ M(τ ). Furthermore, we will present examples of certain classes of metrics
for which the metric mean dimension is a continuous function.
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1 Introduction

The mean topological dimension of a dynamical system (M, f ), denoted by
mdim(M, f ), whereM is a compact topological space and f is a continuous map, is
an invariant under topological conjugacy. This concept was introduced by Gromov in
1999 [11]. It serves as an essential tool for understanding systems with infinite topo-
logical entropy. In 2000, Lindenstrauss andWeiss [16] demonstrated that the left-shift
map defined on ([0, 1]n)Z has a mean topological dimension equal to n, where n is a
positive integer. We define the mean topological dimension in Sect. 2.

The concept ofmean topological dimension is closely related to problems involving
the embedding of minimal dynamical systems. The works [12, 13, 16, 19] demon-
strate that any minimal system with a mean topological dimension less than n

2 can
be embedded into the shift map on ([0, 1]n)Z. It is worth noting that the value n

2 is
optimal in this context. In [8], the author constructed minimal subshifts on a countable
infinite amenable group with arbitrarily mean topological dimension. It is also worth
mentioning that calculating the mean topological dimension is a challenging task.
Consequently, it becomes crucial to obtain upper bounds for the mean topological
dimension of a dynamical system.

The metric mean dimension for dynamical systems defined on compact metric
spaces, introduced by Lindenstrauss and Weiss in 2000 [16], offers upper bounds for
the mean topological dimension. Since its introduction, the notion of metric mean
dimension has been extensively studied, as we can see in the works [4, 5, 7, 15, 20,
25], among other works.

In 2019, Lindenstrauss and Tsukamoto [18] introduced a new tool that provides a
better upper bound for the mean topological dimension: the mean Hausdorff dimen-
sion. However, it is important to note that both the metric mean dimension and mean
Hausdorff dimension are not invariant under topological conjugacy; they depend on
the chosen metric for the space.

In summary, the metric mean dimension and mean Hausdorff dimension depend
on three variables: the dynamics represented by f , the space denoted as M, and the
metric d employed on M. We denote by mdimM(M, d, f ) and mdimH(M, d, f ) the
metric mean dimension and the mean Hausdorff dimension of f , respectively.

Several works explore the metric mean dimension concerning the dynamics and
the invariant space in which these dynamics operate. For instance, in [6], the authors
establish that, for C0-generic homeomorphisms acting on a compact, smooth, bound-
arylessmanifoldMwith dimension greater than one, the uppermetricmean dimension
concerning the smooth metric coincides with the dimension of the manifold. Fur-
thermore, in [3] it is proved the set of all homeomorphisms on M with metric mean
dimension equal to a fixed α ∈ [0, dim(M)] is dense in Hom(M), where dim(M) is the
topological dimension ofM. These results are similarly demonstrated in [2] for the case
of the mean Hausdorff dimension. Moreover, in [1] it is proved that if dim(M) ≥ 2,
the mapping

mdimM(M, ·, d) : Hom(M) → R f �→ mdimM(M, f , d)

is not continuous anywhere.
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The dependence of the metric mean dimension on the metric has been explored in
various works. For instance, in [16] it is proven that for any metric d on M, we have

mdim(M, f ) ≤ mdimM(M, d, f ).

Furthermore, it is conjectured that for any dynamical system (M, f ), there exists a
metric d on M such that

mdim(M, f ) = mdimM(M, d, f ).

This conjecture has been verified for specific cases of dynamical systems (see [18],
Theorem 3.12). In [18], the authors present an example of a left shift (AZ, σ ) and two
metrics d and d ′ on AZ such that

mdimM(AZ, d, σ ) = 1

2
= dimB(A) and mdimM(AZ, d ′, σ ) = 0,

where dimB(A) denotes the box dimension of A (for the definition of box dimension,
see [9], Section 3.1). In Example 4.1, we will provide an example of a fixed dynamical
system f : [0, 1] → [0, 1] such that for any fixed a ∈ [0, 1] there exists an explicit
metric da on [0, 1] such that mdimM([0, 1], da, f ) = mdimH([0, 1], da, f ) = a (see
Remark 4.2).

In [6], Corollary D states that there exist a dense subset of metrics D on [0, 1] and
a generic subset G of C0([0, 1]) such that

mdimM([0, 1], ρ, f ) = 1 for all f ∈ G, for all ρ ∈ D.

Next, in [21], Theorem 1.1 states that if A is a finite set, then

mdimM(X , dα, σ1) = 2htop(X , σ1, σ2)

logα
,

where σ1((xm,n)m,n∈Z) = ((xm+1,n)m,n∈Z) and σ2((xm,n)m,n∈Z) = ((xm,n+1)m,n∈Z)

are defined in AZ
2
, X is a closed subset of AZ

2
invariant under both σ1 and σ2 and

dα(x, y) = α−min{|u|∞:xu 
=yu},

where |u|∞ = max(|m|, |n|) for u = (m, n) ∈ Z
2 and α > 1. In Examples 4.4 and

4.5, we will consider a similar metric dα on the Cantor set C and calculate the metric
mean dimension of some particular maps on (C,dα).

From Examples 7.1 and 7.3, we can conclude that, for any b ∈ [n,∞), there exists
a metric db on ([0, 1]n)Z such that

mdimM(([0, 1]n)Z, db, σ ) = mdimH(([0, 1]n)Z, db, σ ) = b

(see (7.2) and (7.3)).
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The purpose of this work is to explore the continuity of the metric mean dimen-
sion on the metric d on M. We will prove that, in general, the functions d �→
mdimM(M, d, f ) and d �→ mdimH(M, d, f ) are not continuous anywhere. On
the other hand, we will present examples of certain classes of metrics for which
d �→ mdimM(M, d, f ) and d �→ mdimH(M, d, f ) are continuous functions.

The paper is organized as follows: in the next section, we will introduce the con-
cepts of mean topological dimension, metric mean dimension and mean Hausdorff
dimension. Furthermore, we will present some alternative formulas to calculate the
Hausdorff dimension of any compact metric space, which are more aligned with the
definition of mean Hausdorff dimension for dynamical systems (see Lemmas 2.2 and
2.3).

In Sect. 3, we will establish several properties of the mean Hausdorff dimension,
inspired by properties already known for the metric mean dimension and based on the
foundational concepts of the Hausdorff dimension. For instance, it is well known that,
given two metric spaces (M, d) and (E, d ′), we have that

dimH(M × E) ≥ dimH(M) + dimH(E)

(see [9], Chapter 7). In Proposition 3.4, we show that

mdimH(M × E, d × d ′, f × g) ≥ mdimH(M, d, f ) + mdimH(E, d ′, g),

for any two maps f : (M, d) → (M, d) and g : (E, d ′) → (E, d ′). Furthermore, in
Theorem 3.6, we prove that, for K = Z or N,

dimH(M, d) ≤ mdimH(MK,d, σ ),

where σ : MK → M
K is the left shift map and d is a specific metric onMK obtained

from the metric d on M (see (3.3)). In order to obtain this result, we use Lemma 3.5,
in which we present an alternative formula to calculate mdimH(MK,d, σ ).

In Sect. 4, we will calculate the metric mean dimension of several continuous maps
f : M → M changing the metric on M, when M is the interval [0, 1] or the Cantor
set.

In Sect. 5, we will prove that both the metric mean dimension and the mean Haus-
dorff dimension are not continuous with respect the metric.

In Sect. 6, we will consider certain classes of metrics and explore how the metric
mean dimension behaves when these metrics vary within these classes. More speci-
fically, we will generate metrics using composition of subadditive continuous maps
with a fixed metric on M.

We conclude this work by presenting some illustrative examples in Sect. 7.
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2 Mean Dimension, Metric Mean Dimension andMean Hausdorff
Dimension

Throughout this work, we will fix a metrizable compact space M and we will fix a
metric d onM, compatible with the topology onM. In this section we will present the
notions of mean topological dimension, metric mean dimension and mean Hausdorff
dimension, introduced in [16, 18], respectively.

We briefly present the definition of mean topological dimension. Let α = {Ai }i be
an open cover of M and define ord(α) = supx∈X

∑
Ai∈α 1Ai (x) − 1. A refinement of

α is an open cover β = {Bj } j such that for any Bj ∈ β, there exists Ai ∈ α, such that
Bj ⊂ Ai . When β is a refinement of α, we write β � α. Set D(α) = minβ�α ord(β),
where α runs over all finite open covers of M refining α. The topological dimension
of M is

dim(M) = sup{D(α) : α is a cover of M}.

Consider any continuous function f : M → M, the mean topological dimension
is defined as follow

mdim(M, f ) = sup
α

lim
n→∞

D(α ∨ f −1(α) ∨ · · · ∨ f −n+1(α))

n
,

where α runs over all finite open covers of M. The sequence α ∨ f −1(α) ∨ · · · ∨
f −n+1(α) is subadditive for n ≥ 1, and the above limit exists.
Fix a continuous map f : M → M and a non-negative integer n. For any x, y ∈ M,

set

dn(x, y) = max
{
d(x, y), d( f (x), f (y)), . . . , d( f n−1(x), f n−1(y))

}
.

We say that A ⊂ M is an (n, f , ε)-separated subset if dn(x, y) > ε, for any two
distinct points x, y ∈ A. We denote by sep(n, f , ε) the maximal cardinality of any
(n, f , ε)-separated subset of M. We say that E ⊂ M is an (n, f , ε)-spanning set for
M if for any x ∈ M there exists y ∈ E such that dn(x, y) < ε. Let span(n, f , ε)
be the minimum cardinality of any (n, f , ε)-spanning subset of M. Given an open
cover α of M, we say that α is an (n, f , ε)-cover of M if the dn-diameter of any
element of α is less than ε. Let cov(n, f , ε) be the minimum number of elements in
any (n, f , ε)-cover of M. Set

• sep( f , ε) = lim supn→∞ 1
n log sep(n, f , ε);

• span( f , ε) = lim supn→∞ 1
n log span(n, f , ε);

• cov( f , ε) = lim supn→∞ 1
n log cov(n, f , ε).

Definition 2.1 We define the lower metric mean dimension of (M, d, f ) and the upper
metric mean dimension of (M, d, f ) by

mdimM(M, d, f ) = lim inf
ε→0

sep( f , ε)

| log ε| = lim inf
ε→0

span( f , ε)

| log ε| = lim inf
ε→0

cov( f , ε)

| log ε|
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and

mdimM(M, d, f ) = lim sup
ε→0

sep( f , ε)

| log ε| = lim sup
ε→0

span( f , ε)

| log ε| = lim sup
ε→0

cov( f , ε)

| log ε| ,

respectively (see [16], Section 4).

Now, we present the definition of the Hausdorff dimension given in [18]: for s ≥ 0
and ε > 0, set

Hs
ε(M, d) = inf

{ ∞∑

n=1

(diamEn)
s : M = ∪∞

n=1En with diamEn < ε for all n ≥ 1

}

.

(2.1)

By convention we consider 00 = 1 and diam(∅)s = 0. Let � > 0. Take

dimH(M, d, ε,�) = sup{s ≥ 0 : Hs
ε(M, d) ≥ �}.

The Hausdorff dimension of (M, d), presented in [18], is given by

dimH(M, d) := lim
ε→0

dimH(M, d, ε, 1).

By simplicity in the notation, if � = 1, we will set

dimH(M, d, ε) := dimH(M, d, ε, 1).

The usual definition of the Hausdorff dimension in the literature it is as follows: let

Hs(M, d) = lim
ε→0

Hs
ε(M, d).

The Hausdorff dimension of (M, d), denoted by dim∗
H(M, d), is given by

dim∗
H(M, d) = sup{s ≥ 0 : Hs(M, d) > 0} = sup{s ≥ 0 : Hs(M, d) = ∞}.

Lemma 2.2 For any � > 0, we have that

dim�
H(M, d) := lim

ε→0
dimH(M, d, ε,�) = dimH(M, d) = dim∗

H(M, d).

Proof First, notice that if ε > 0 in (2.1) decreases, the class of permissible covers of
M, with diameter less than ε, decreases. Therefore, for any s ≥ 0, Hs

ε(M, d) increases
as ε decreases. Hence,

Hs
ε(M, d) ≤ Hs(M, d) for any ε > 0.
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Thus, if s ≥ 0 is such that Hs
ε(M, d) ≥ �, we have that Hs(M, d) > 0. Consequently,

dimH(M, d, ε,�) = sup{s ≥ 0 : Hs
ε(M, d) ≥ �} ≤ sup{s ≥ 0 : Hs(M, d) > 0}

= dim∗
H(M, d).

Taking the limit as ε → 0, we obtain that

dim�
H(M, d) ≤ dim∗

H(M, d). (2.2)

Next, notice that, if dim∗
H(M, d) = 0, then dim�

H(M, d) = 0. Suppose that
dim∗

H(M, d) > 0. From the definition, for each δ > 0 there exists sδ > 0 such
that

dim∗
H(M, d) − δ < sδ ≤ dim∗

H(M, d) and Hsδ (M, d) = ∞.

Thus, there exists ε0 > 0 such that Hsδ
ε (M, d) ≥ �, for every 0 < ε < ε0. Hence,

dimH(M, d, ε,�) ≥ sδ > dim∗
H(M, d) − δ.

Taking the limits as ε → 0 and δ → 0, we conclude that

dim�
H(M, d) ≥ dim∗

H(M, d). (2.3)

From (2.2) and (2.3) we have that dim�
H(M, d) is independent of � > 0 and further-

more

dimH(M, d) = dim�
H(M, d) = dim∗

H(M, d),

as we want to prove. ��
Lemma 2.3 Suppose that (M, d) is a compact space. For s ≥ 0 and ε > 0, set

Bs
ε(M, d) = inf

{
m


n=1

(diam(Bn))
s : {Bn}mn=1 is a cover of M by open balls with

diam(Bn) ≤ ε

}

.

Setting

dim�
H(M, d, ε) = sup{s ≥ 0 : Bs

ε(M, d) ≥ 1},

we have that

dimH(M, d) = lim
ε→0

dim�
H(M, d, ε).
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Proof We can prove that

Hs
ε(M, d) ≤ Bs

ε(M, d) ≤ 2sHs
ε/2(M, d) (2.4)

(see [9], Section 2.4). It follows from the first inequality in (2.4) that

dimH(M, d, ε) ≤ dim�
H(M, d, ε). (2.5)

Next, if t is such that 1 ≤ Bt
ε(M, d), then by (2.4) we have 1

2t ≤ Ht
ε/2(M, d).

Therefore,

dim�
H(M, d, ε) ≤ dimH(M, d, ε/2, 1/2t ). (2.6)

From (2.5), (2.6) and Lemma 2.2, we have that

dimH(M, d) = lim
ε→0

dim�
H(M, d, ε),

as we want to prove. ��
Definition 2.4 The upper mean Hausdorff dimension and lower mean Hausdorff
dimension of (M, d, f ) are defined respectively as

mdimH(M, d, f ) = lim
ε→0

(

lim sup
n→∞

1

n
dimH(M, dn, ε)

)

= lim
ε→0

(

lim sup
n→∞

1

n
dim�

H(M, dn, ε)

)

,

mdimH(M, d, f ) = lim
ε→0

(

lim inf
n→∞

1

n
dimH(M, dn, ε)

)

= lim
ε→0

(

lim inf
n→∞

1

n
dim�

H(M, dn, ε)

)

(see [18], Section 3).

Remark 2.5 Denote by mdim(M, f ) the mean dimension of a continuous map f :
M → M (see [16]). The inequalities

mdim(M, f ) ≤ mdimH(M, d, f ) ≤ mdimH(M, d, f ) ≤ mdimM(M, d, f )

≤ mdimM(M, d, f )

always hold (see [18]).

Recently, in [17], the authors introduce the concepts ofmean packing dimension and
mean pseudo-packing dimension for dynamical systems. They proved that the mean
Hausdorff dimension of a dynamical system is lower than its mean packing dimen-
sion and its mean pseudo-packing dimension. Hence, the mean Hausdorff dimension
remains a more accurate approximation of the mean topological dimension.
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3 Some Fundamental Properties of theMean Hausdorff Dimension

Let f : M → M be a continuous map, and let A ⊂ M be a non-empty closed subset
that is invariant under f . It is straightforward to observe that:

mdimH(A, d, f |A) ≤ mdimH(M, d, f ) and mdimH(A, d, f |A) ≤ mdimH(M, d, f ).

Next, it is well-known that for any p ∈ N, we have

mdimM(M, d, f p) ≤ pmdimM(M, d, f ).

In [1], Corollary 3.4 provides a formula for mdimM(M, d, f p) for a certain class of
continuous maps on the interval (see Remark 4.3). For the mean Hausdorff dimension,
similar relationships apply.

Proposition 3.1 Let f : M → M be a continuous map. For any p ∈ N, we have

mdimH(M, d, f p) ≤ pmdimH(M, d, f ) and

mdimH(M, d, f p) ≤ pmdimH(M, d, f ).

Proof For any positive integer m, we know that

max
0≤ j<m

d( f j p(x), f j p(y)) ≤ max
0≤ j<mp

d( f j (x), f j (y)).

Hence, for each s ≥ 0 and ε > 0, we have

Hs
ε(M, dm, f p) = inf

{
∞


n=1

(diam
dm, f p

En)
s : M = ∞∪

n=1
En with diam

dm, f p
En < ε for all n≥1

}

≤ inf

{ ∞


n=1

(diam
dmp, f

En)
s : M = ∞∪

n=1
En with diam

dmp, f
En < ε for all n≥1

}

= Hs
ε(M, dmp, f ),

where diamdm, f represents the diameter with respect to the dynamic metric dm asso-
ciated to f . Therefore,

dimH(M, dm, ε, f p) ≤ dimH(M, dmp, ε, f )

and hence

lim sup
m→∞

1

m
dimH(M, dm, ε, f p) ≤ p lim sup

m→∞
1

mp
dimH(M, dmp, ε, f ).

This fact proves the proposition. ��
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Next, consider two continuous maps f : M → M and g : E → E, where (M, d)

and (E, d ′) are compact metric spaces. We will endow the product spaceM×E with
the metric

(d × d ′)((x1, y1), (x2, y2)) = max{d(x1, x2), d
′(y1, y2)}, (3.1)

for x1, x2 ∈ M and y1, y2 ∈ E. This metric is uniformly equivalent to (see Remark
5.1) the both metrics

(d×d ′)∗((x1, y1), (x2, y2)) = d(x1, x2) + d ′(y1, y2), for x1, x2 ∈ M and y1, y2 ∈ E.

(d × d ′)((x1, y1), (x2, y2)) =
√

d(x1, x2)2 + d ′(y1, y2)2, for x1, x2 ∈ M and y1, y2 ∈ E.

It is well known that

dimH(M × E) ≥ dimH(M) + dimH(E)

(see [9], Chapter 7). In Proposition 3.4 we will prove the analog result for mean
Hausdorff dimension. We will use the next lemmas.

Lemma 3.2 Let (M, d) be a compact metric space and ε > 0. Suppose there is a Borel
measureμ on (M, d) such thatμ(M) ≥ 1 and for any open ball Ei with diamd Ei ≤ ε,
we have that

μ(Ei ) ≤ (diamd(Ei ))
s for any i ≥ 1.

Then,

dim�
H(M, d, ε) ≥ s.

Proof Fix ε > 0 and take a finite cover {Ei }mi=1 ofM, by balls Ei with diamd(Ei ) ≤ ε.
We have that

m∑

i=1

(diamd(Ei ))
s ≥

m∑

i=1

μ(Ei ) ≥ μ

(
m∪

k=1
Ei

)

= μ(M) = 1. (3.2)

Hence, Bs
ε(M, d) ≥ 1 and therefore dim�

H(M, d, ε) ≥ s (see Lemma 2.3). ��
The Lemma 3.2 is an adaption of theMass Distribution Principle (see [9], Chapter

4), which states that if there is a mass distribution μ on (M, d) and for some s there
are numbers c > 0 and ε > 0 such that μ(Ei ) ≤ c(diamd(Ei ))

s for any set Ei with
diamd(Ei ) ≤ ε, we have that

dimH(M, d) ≥ s.

We choose the version in Lemma 3.2, because it is more compatible with the definition
of mean Hausdorff dimension used in this work.
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Lemma 3.3 Let c ∈ (0, 1). There exists ε0 = ε0(c) ∈ (0, 1) depending only on c and
such that: for any compact metric space (M, d) and 0 < ε ≤ ε0 there exists a Borel
probability measure μ on (M, d) such that

μ(E) ≤ (diamd(E))cdimH(M,d,ε)

for all E ⊂ M with diamd(E) < ε
6 .

Proof See [18], Lemma 4.5. ��
Proposition 3.4 Take two continuous maps f : M → M and g : E → E. On M × E

consider the metric given in (3.1). We have:

mdimH(M × E, d × d ′, f × g) ≥ mdimH(M, d, f ) + mdimH(E, d ′, g).

Proof First, we will prove for any 0 < c < 1 there is δ0 = δ0(c) ∈ (0, 1) such that,
for all δ ∈ (0, δ0], we have

dimH(M × E, d × d ′, δ/6) ≥ c(dimH(M, d, δ) + dimH(E, d ′, δ)).

Fix 0 < c < 1. It follows from Lemma 3.3 that there is δ0 = δ0(c) ∈ (0, 1) such
that for all δ ∈ (0, δ0] there are Borel probabilities measures μ and ν in (M, d) and
(E, d ′), respectively, satisfying

μ(M) ≤ (diamd(M))cdimH(M,d,δ) and ν(E) ≤ (diamd ′(E))cdimH(E,d ′,δ)

for all M ⊂ M and E ⊂ E with diamd(M) < δ
6 and diamd ′(E) < δ

6 . Observe that

diamd×d ′(M × E) ≥ max(diamd(M), diamd ′(E)).

If B is a ball in M × E with the metric (3.1), then B = M × E , where M ⊆ M and
E ⊆ E. Next, for all M × E ⊆ M × E such that diamd×d ′(M × E) < δ

6 , we have

(μ × ν)(M × E) = μ(M)ν(E) ≤ (diamd(M))cdimH(M,d,δ)(diamd ′(E))cdimH(E,d ′,δ)

≤ (diamd×d ′(M × E))cdimH(M,d,δ)(diamd×d ′(M × E))cdimH(E,d ′,δ)

= (diamd×d ′(M × E))c(dimH(M,d,δ)+dimH(E,d ′,δ)).

By Lemma 3.2, we get

dimH(M × E, d × d ′, δ/6) ≥ c(dimH(M, d, δ) + dimH(E, d ′, δ)).

Next, for each k ≥ 1, take ck ∈ (0, 1) such that ck → 1 as k → ∞. It follows from
the above fact there is a δk(ck) = δk ∈ (0, 1) such that δk → 0 as k → ∞ and

dimH(M × E, (d × d ′)n, δk/6) ≥ ck(dimH(M, dn, δk) + dimH(E, d ′
n, δk)),
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for all n, k ∈ N. Hence, for each k, n, we have

1

n
dimH(M × E, (d × d ′)n, δk/6) ≥ ck

n
(dimH(M, dn, δk) + dimH(E, d ′

n, δk)).

Therefore, taking the limit infimum as n → ∞ and the limit as k → ∞, we have

mdimH(M × E, d × d ′, f × g) ≥ mdimH(M, d, f ) + mdimH(E, d ′, g),

which proves the result. ��
Let K = N or Z. For x̄ = (xk), ȳ = (yk) ∈ M

K, set

d(x̄, ȳ) =
∑

j∈K

1

2| j | d(xk, yk). (3.3)

Let σ : M
K → M

K be the left shift map. In [16], Theorem 3.1 proves that
mdim(MK, σ ) ≤ dim(M). This inequality can be strict (see [23]).

Furthermore, in [24] it is proved that

mdimM(MK,d, σ ) = dimB(M, d) and mdimM(MK,d, σ ) = dimB(M, d).

We address these facts for the case of the mean Hausdorff dimension. We will need
the following lemma:

Lemma 3.5 Let σ : MK → M
K be the left shift map, with K = N or Z. Let T be the

set consisting of all finite open cover {Ci }mi=1 of M
K, such that each Ci has the form

Ci = Ai,1 × Ai,2 × · · · × Ai,β × M × M × · · · and Ai, j is an open subset ofM, for
i = 1, . . . ,m, j = 1, . . . , β. For every s ≥ 0 and ε > 0, set

Psε(M
K,dn) = inf

{Ci }mi=1∈T

{
m


i=1

(diamdn (Ci ))
s : MK = m∪

i=1
Ci with diamdn (Ci ) < ε

}

.

Let � > 0 and set

dim•
H(M,dn, ε,�) = sup

{
s ≥ 0 : Psε(MK,dn) ≥ �

}
.

We have that

mdimH(MK,d, σ ) = lim
ε→0

(

lim inf
n→∞

1

n
dim•

H(M,dn, ε,�)

)

(3.4)

and

mdimH(MK,d, σ ) = lim
ε→0

(

lim sup
n→∞

1

n
dim•

H(M,dn, ε,�)

)

. (3.5)
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Proof Clearly we have that

mdimH(MK,d, σ ) ≥ lim
ε→0

(

lim inf
n→∞

1

n
dim•

H(M,dn, ε,�)

)

and

mdimH(MK,d, σ ) ≥ lim
ε→0

(

lim sup
n→∞

1

n
dim•

H(M,dn, ε,�)

)

.

Next, we can prove that

Bs
ε(M

K,dn) ≤ 2sPsε/2(M
K,dn)

(see [9], Section 2.4). From this fact (see (2.6)), we can show that there exists � > 0
such that

dim�
H(MK,dn, ε) ≤ dim•

H(MK,dn, ε/2,�).

From the above results, we have that (3.4) and (3.5) are valid for any � > 0. ��
Theorem 3.6 Let σ : MK → M

K be the left shift map, with K = N or Z. For any
metric d on M, we have that

dimH(M, d) ≤ mdimH(MK,d, σ ) ≤ mdimH(MK,d, σ ) ≤ dimB(M, d).

Proof The second inequality is immediate from the definition. Next, in [24] it is proved
that mdimM(MK,d, σ ) = dimB(M, d). Hence, the third inequality from the theorem
follows from the fact that mdimH(MK,d, σ ) ≤ mdimM(MK,d, σ ) (see Remark 2.5).

We will prove the first inequality for K = N (the case K = Z can be proved
analogously). For each k ≥ 1, take ck ∈ (0, 1) such that ck → 1 as k → ∞. It follows
from Lemma 3.3 that, for each k ≥ 1, there exists a δk = δk(ck) ∈ (0, 1), such that
δk → 0 as k → ∞, for which there is a Borel probability measure μ on (M, d) such
that

μ(E) ≤ (diamd(E))ckdimH(M,d,δk)

for all E ⊂ M with diamd(E) <
δk
6 .

Next, we will consider the Borel probability measure μ̃ = μN onMN. Let {Ci }mi=1
be a finite open cover ofMNwith the formCi = Ai,1×Ai,2×· · ·×Ai,β×M×M×· · · ,

where Ai, j is an open subset of M, for all 1 ≤ j ≤ β. We will suppose
that diamdn (Ci ) <

δk
6(2β)

, for all i = 1, . . . , β. In this case, we must have that

diamd(Ai, j ) <
δk
6 , for i = 1, . . . ,m, j = 1, . . . , β and β � n. Therefore, for

all Ci , we have that
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μ̃(Ci ) = μ(Ai,1)μ(Ai,2) · · · μ(Ai,β)

≤ (diamd(Ai,1))
ck dimH(M,d,δk ) · · · (diamd(Ai,β))ck dimH(M,d,δk )

≤ (diamd(Ai,1))
ck dimH(M,d,δk ) · · · (diamd(Ai,n))

ck dimH(M,d,δk )

≤ (diamdn (Ci ))
ckn dimH(M,d,δk ).

From this fact, we can to prove that

1

n
dim•

H(MN,dn, δk/6(2β)) ≥ ckdimH(M, d, δk)

(see (3.2)), where ck → 1 and δk → 0 as k → ∞. The theorem follows from Lemma
3.5. ��

Conjecture. We conjecture that for any compact metric space M we have that

mdimH(MK,d, σ ) = dimH(M, d).

Next, for any continuous map f : M → M, we have

mdimM(M, d, f ) ≤ mdimM(M, d, f ) ≤ dimB(M, d)

(see [24]). Consequently, from Remark 2.5, we have

mdimH(M, d, f ) ≤ mdimH(M, d, f ) ≤ dimB(M, d).

The next corollary follows from Theorem 3.6.

Corollary 3.7 Suppose that dimH(M, d) = dimB(M, d), then:

• mdimH(MK,d, σ ) = mdimH(MK,d, σ ) = dimH(M, d).
• For any f ∈ C0(M) we have mdimH(M, d, f ) ≤ mdimH(M, d, f ) ≤
dimH(M, d).

4 Some Examples Changing theMetric

In this section, we will calculate the metric mean dimension of several continuous
maps changing the metric on M. For any homeomorphism h : M → M, take the
metric dh ∈ M(τ ) defined by
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dh(x, y) = d(h(x), h(y)) for all x, y ∈ M. (4.1)

Next, take g : M → M given by g(x) = h ◦ f ◦ h−1(x), for all x ∈ M, where
f : M → M is a fixed continuous map. We have that the map h : (M, dh) → (M, d)

is an isometry. Therefore, for any homeomorphism h : M → M we have

mdimM(M, dh, f ) = mdimM(M, d, h ◦ f ◦ h−1) = mdimM(M, d, g)

and

mdimH(M, dh, f ) = mdimH(M, d, h ◦ f ◦ h−1) = mdimH(M, d, g).

Consequently,

mdimM(M, dh, f ) ∈ [0, dimB(M, d)] and mdimH(M, dh, f ) ∈ [0, dimB(M, d)].

Since the metric mean dimension depends on the metric, we can have two topolog-
ically conjugate dynamical systems with different metric mean dimension, as we will
see in the next example (see [1, 14, 24]).

Example 4.1 For any closed interval J , let TJ : J → [0, 1] be the unique increasing
affine map from J onto [0, 1]. Set g(x) = |1 − |3x − 1|| for any x ∈ [0, 1]. Fix
r ∈ (0,∞) and s ∈ N.

For any n ≥ 1, set a0 = 0, an = ∑n−1
i=0

A
3ir

and take In = [an−1, an], where
A = 1∑∞

i=0
1
3ir

= 3r−1
3r . Next, take φs,r ∈ C0([0, 1]), given by φs,r |In = T−1

In
◦gsn ◦TIn

for any n ≥ 1. We have (see [2, Example 2.5], [1, Example 3.1] and [24, Lemma 6])

mdimH([0, 1], | · |, φs,r ) = mdimM([0, 1], | · |, φs,r ) = s

r + s
.

For a fixed s and any r1, r2 ∈ (0,∞), we have φs,r1 and φs,r2 are topologically
conjugate by a conjugacy h1,2 : [0, 1] → [0, 1] (see [1], Remark 3.2), such that

φs,r1 = h1,2 ◦ φs,r2 ◦ h−1
1,2.

Hence,

mdimM([0, 1], dh1,2 , φs,r2) = s

r1 + s

= s

r2 + s
= mdimM([0, 1], | · |, φs,r2),

where dh1,2 is defined in 4.1. The same fact holds for the mean Hausdorff dimension.
Next, for n ≥ 1, set Jn = [2−nn , 2−nn+1]. Take ϕs ∈ C0([0, 1]), given by ϕs |Jn =

T−1
Jn

◦ gsn ◦ TJn for any n ≥ 1. We can prove that

mdimH([0, 1], | · |, ϕs) = mdimM([0, 1], | · |, ϕs) = 0
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(see [1, Theorem 3.3]). Note that, for any s ∈ N and r ∈ (0,∞), ϕs and φr ,s are
topologically conjugate by a topological conjugacy h : [0, 1] → [0, 1] such that
ϕs = h ◦ φs,r ◦ h−1. Hence,

mdimH([0, 1], dh, φs,r ) = mdimM([0, 1], dh, φs,r ) = mdimM([0, 1], | · |, ϕs) = 0.

Finally, let b0 = 0 and bn =∑n
i=1

6
π2i2

for any n ≥ 1. Take Kn = [bn−1, bn]. Let
ψs ∈ C0([0, 1]) be defined by ψs |Kn = T−1

Kn
◦ gsn ◦ TKn for any n ≥ 1. We have that

(see [1, Example 3.5] and [2, Example 2.6])

mdimH([0, 1], | · |, ψs) = mdimM([0, 1], | · |, ψs) = 1.

Note that, for any s ∈ N and r ∈ (0,∞), ψs and φr ,s are topologically conjugate by
a topological conjugacy j : [0, 1] → [0, 1] such that ψs = j ◦ φs,r ◦ j−1. Hence,

mdimH([0, 1], d j , φs,r ) = mdimM([0, 1], d j , φs,r ) = mdimM([0, 1], | · |, ψs) = 1.

Remark 4.2 LetM be the subset of C0([0, 1]) consisting of each map f such that for
some closed subinterval K ⊆ [0, 1], f |K : K → K is such that f = T−1

K ◦ ψ ◦ TK ,
where ψ is one of the maps defined in Example 4.1 (that is, φs,r , or ϕs , or ψs), and
f |Kc : Kc → Kc is a piecewise C1-map.M is dense in C0([0, 1]) (see [1, 6]). Note
that for each f ∈ M and a ∈ [0, 1], based on Example 4.1, it is possible to construct
an explicit metric da on [0, 1] such that

mdimH([0, 1], da, f ) = mdimM([0, 1], da, f ) = a.

Remark 4.3 In Example 4.1, note that φs,r = φs
1,r for any s ∈ N and r ∈ (0,∞).

Hence,

mdimM([0, 1], | · |, φs
1,r ) = smdimM([0, 1], | · |, φ1,r )

1 + (s − 1)mdimM([0, 1], | · |, φ1,r )
.

The same fact holds for the mean Hausdorff dimension.

Let

C = {(x1, x2, . . . ) : xn = 0, 2 for n ∈ N} = {0, 2}N

be the Cantor set. For a fixed α ∈ (1,∞), consider the metric

dα(x̄, ȳ) =
∑

n∈N
α−n|xn − yn|, for any x̄ = (xn)n∈N, ȳ = (yn)n∈N ∈ C.

We have that dimB(C,dα) = log 2
logα

(see [10], Proposition III.1 or [9], page 31). There-

fore, for any ϕ ∈ C0(C), we have from Remark 2.5 that

mdimM(C,dα, ϕ) ≤ mdimM(C,dα, ϕ) ≤ dimB(C,dα) = log 2

logα
. (4.2)
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For any k ≥ 1, set

Ck = {(xn)∞n=1 : xi = 0 for i ≤ k − 1, xk = 2 and xn ∈ {0, 2} for n ≥ k + 1
}
.

Note that if k 
= s, then Ck ∩ Cs = ∅ and C\ ∪∞
k=1 Ck = {(0, 0, . . . )}. Furthermore,

each Ck is a clopen subset homeomorphic to C via the homeomorphism

Tk : Ck → C,

(

0, . . . , 0
︸ ︷︷ ︸
(k−1)-times

, 2, x1, x2, . . .

)

�→ (x1, x2, . . . ),

which is Lipschitz.

Example 4.4 For j ∈ N, consider ψ j : (C,dα) → (C,dα) defined as ψ j (0, 0, . . . ) =
(0, 0, . . . ) and ψ j |Ck = T−1

k σ jkTk for k ≥ 1, where σ : C → C is the left shift map.
In [1], Proposition 5.1, it is proven that if α = 3, then

mdimM(C,d3, ψ j ) = j log 2

( j + 1) log 3
.

Following the same steps, we will prove that

mdimM(C,dα, ψ j ) = j log 2

( j + 1) logα
for any α > 1.

Take ε > 0. For any k ≥ 1, set εk = α−k( j+1). There exists k ≥ 1 such that
ε ∈ [εk+1, εk]. For n ≥ 1 and k ≥ 1, take z̄1 = (z11, . . . , z

1
jk), . . . , z̄n = (zn1, . . . , z

n
jk),

with zsi ∈ {0, 2}, and set

Akz̄1,...,z̄n =
{

( 0, . . . , 0
︸ ︷︷ ︸

(k−1)-times

, 2, z11, . . . , z
1
jk , . . . , z

n
1 , . . . , znjk , x1, . . . , xs , ...) : xi ∈ {0, 2}

}

⊆ Ck .

Note that if Ak
z̄1,...,z̄n


= Ak
w̄1,...,w̄n

and x̄ ∈ Ak
z̄1,...,z̄n

, ȳ ∈ Ak
w̄1,...,w̄n

, then

(dα)n+1(x̄, ȳ) > 1
αk( j+1) . Therefore, sep(n + 1, ψ j , εk) ≥ 2 jnk and hence

lim sup
n→∞

log sep(n + 1, ψ j , ε)

n + 1
≥ lim sup

n→∞
log sep(n + 1, ψ j , εk)

n + 1
≥ lim

n→∞
n log(2 jk)

n + 1

= log 2 jk .

Thus,



  261 Page 18 of 35 J. Muentes et al.

mdimM(C,dα, ψ j ) ≥ lim
k→∞

log sep(ψ j , εk)

− log εk+1
≥ lim

k→∞
log(2 jk)

log(α(k+1)( j+1))

= lim
k→∞

k j log 2

(k + 1)( j + 1) logα

= j log 2

( j + 1) logα
.

Therefore,

mdimM(C,dα, ψ j ) ≥ mdimM(C,dα, ψ j ) ≥ j log 2

( j + 1) logα
. (4.3)

On the other hand, note that for each l ∈ {1, . . . , k}, the sets Al
z̄1,...,z̄n

have (dα)n-
diameter less than εk . Furthermore, the sets {(0, 0, . . . )} and ⋃∞

s=k+1Cs has (dα)n-
diameter less than εk . Hence

cov(n, ψ j , εk) ≤ k2njk + 2 ≤ 2k2njk

and therefore

cov(ψ j , εk) ≤ lim
n→∞

log(2k2njk)

n
= log 2 jk .

Hence

mdimM(C,dα, ψ j ) = lim sup
ε→0

cov(ψ j , ε)

− log ε
≤ lim sup

k→∞
cov(ψ j , εk+1)

− log εk

≤ j log 2

( j + 1) logα
. (4.4)

It follows from (4.3) and (4.4) that

mdimM(C,dα, ψ j ) = j log 2

( j + 1) logα
.

Example 4.5 Take ϕ : (C,dα) → (C,dα) the map defined as ϕ(0, 0, . . . ) =
(0, 0, . . . ) and ϕ|Ck = T−1

k σ k2Tk for k ≥ 1, where σ : C → C is the left shift
map. Note that ϕ is a continuous map. We prove that

mdimM(C,dα, ϕ) = dimB(C,dα) = log 2

logα
.

Take ε > 0. For any k ≥ 1, set εk = 1
αk2+k

. There exists k ≥ 1 such that ε ∈ [εk+1, εk].
For n ≥ 1 and k ≥ 1, take z̄1 = (z11, . . . , z

1
k2

), . . . , z̄n = (zn1, . . . , z
n
k2

), with zsi ∈
{0, 2}, and set
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Ak
z̄1,...,z̄n =

{

( 0, . . . , 0
︸ ︷︷ ︸
(k−1)-times

, 2, z11, . . . , z
1
k2 , . . . , z

n
1, . . . , z

n
k2 , x1, . . . , xs, ...)

: xi ∈ {0, 2}
}

⊆ Ck .

Note that if Ak
z̄1,...,z̄n


= Ak
w̄1,...,w̄n

and x̄ ∈ Ak
z̄1,...,z̄n

, ȳ ∈ Ak
w̄1,...,w̄n

, then

(dα)n+1(x̄, ȳ) > 1
αk2+k

. Therefore sep(n + 1, ϕ, εk) ≥
(
2k

2
)n

and hence

lim
n→∞

log sep(n + 1, ϕ, ε)

n + 1
≥ lim

n→∞
log sep(n + 1, ϕ, εk)

n + 1
≥ lim

n→∞
n log(2k

2
)

n + 1
= log 2k

2
.

Thus,

mdimM(C,dα, ϕ) ≥ lim inf
k→∞

log sep(ϕ, εk)

− log εk+1
≥ lim

k→∞
log(2k

2
)

log(α(k+1)2+k+1)

= lim
k→∞

k2 log 2

((k + 1)2 + k + 1) logα
= log 2

logα
.

Therefore, by (4.2), we have that

mdimM(C,dα, ϕ) = mdimM(C,dα, ϕ) = log 2

logα
.

5 On the Continuity of Metric and HausdorffMean DimensionMaps

Throughout this section, we will work with a fixed metrizable compact topological
space (M, τ ). We use M(τ ) to denote the set of all metrics that induce the same
topology τ onM. Formally, this set is defined as:

M(τ ) = {d : d is a metric forM and τd = τ },

where τd is the topology induced by d on M. We remember that two metrics on a
space M are equivalent if they induce the same topology on M. Therefore, if d is a
fixed metric onMwhich induces the topology τ , thenM(τ ) consists on all the metrics
onM which are equivalent to d.

From now on, we will fix a continuous map f : M → M. Consider the functions

mdimH(M, f ) : M(τ ) → R ∪ {∞}
d �→ mdimH(M, d, f ),
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where M(τ ) is endowed with the metric

D(d1, d2) = max
x,y∈M

{|d1(x, y)d2(x, y)| : for d1, d2 ∈ M(τ )}

(see [22]). We will prove there exist continuous maps f : M → M such that
mdimM(M, f ) is not a continuous map.

Remark 5.1 Remember that two metrics d1 and d2 onM are called uniformly equiv-
alent if there are real constants 0 < a ≤ b such that

ad1(x, y) ≤ d2(x, y) ≤ bd1(x, y),

for all x, y ∈ M. It is not difficult to see that, if d1 and d2 ∈ M(τ ) are two uniformly
equivalent metrics on M, then

mdimM(M, d1, f ) = mdimM(M, d2, f ) and

mdimH(M, d1, f ) = mdimH(M, d2, f ).

Remark 5.2 Note if htop(M, f ) < ∞, then mdimM(M, d, f ) = 0. Therefore, as the
topological entropy does not depend on themetric, we have that mdimM(M, d̃, f ) = 0
for any d̃ ∈ M(τ ). Analogously, we can prove that mdimH(M, d̃, f ) = 0 for any
d̃ ∈ M(τ ). Hence, if htop(M, f ) < ∞, then

mdimM(M, f ) : M(τ ) → R and mdimH(M, f ) : M(τ ) → R

are the zero maps.

In the next example, we will exhibit a class of dynamical systems such that the
metric and Hausdorff mean dimension maps are not continuous, with respect to the
metric.

Example 5.3 Take M = [0, 1] endowed with the metric | · | induced by the absolute
value. For fixed s ∈ N and r ∈ (0,∞), set f = φs,r : [0, 1] → [0, 1] and In =
[an−1, an] defined in Example 4.1. Hence,

mdimH([0, 1], | · |, f ) = mdimM([0, 1], | · |, f ) = s

r + s
.

Fix any metric d onM equivalent to | · |. We will find two metrics d1 and d2 on [0, 1],
arbitrarily close to d, such that

mdimM([0, 1], d1, f ) = 1 and mdimM([0, 1], d2, f ) = 1

2
.

Let ε > 0. There exists N ∈ N such that

max{diamd(∪∞
n=N In)} <

ε

2
.
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Set bN = aN and bn = aN +∑n
j=1

6ε
2π2 j2

for n ≥ N +1 and consider Jn = [bn−1, bn]
for any n ≥ N + 1. Take the homeomorphism h : [0, 1] → [0, aN + ε

2 ] defined by

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x if x ∈ [0, aN ]
aN + ε/2 if x = 1[
bn+1−bn
an+1−an

]
(x − an) + bn if x ∈ In, for some n ≥ N + 1.

Consider the metric d1 on [0, 1] given by

d1(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(x, y) if x, y ∈ [0, aN ]
|h(x) − h(y)| if x, y ∈ [aN , 1] =⋃∞

n=N+1 In
|h(x) − aN | + d(y, aN ) if y ∈ [0, aN ], x ∈ [aN , 1]
|h(y) − aN | + d(x, aN ) if x ∈ [0, aN ], y ∈ [aN , 1].

As d1 depends of the metric d and of the homeomorphism h, we have that d1 belongs
toM(τ ). Furthermore,

diamd1

⎛

⎝
∞⋃

j=N+1

I j

⎞

⎠ = diam|·|

⎛

⎝
∞⋃

j=N+1

J j

⎞

⎠ =
∞∑

j=N+1

|J j | =
∞∑

j=N+1

6ε

2π2 j2
<

ε

2
.

We prove that D(d1, d) < ε. If x, y ∈ [0, aN ] or if x, y ∈ [aN , 1], then |d(x, y) −
d1(x, y)| = 0. Suppose that x ∈ [0, aN ] and y ∈ [aN , 1]. From definition of d1, we
have that

d1(x, y) = |h(y) − aN | + d(x, aN ).

Since d(x, y) ≤ d(x, aN ) + d(aN , y), it follows that

d(x, y) − d1(x, y) ≤ d(x, aN ) + d(aN , y) − d(x, aN ) − |aN − h(y)|
= d(aN , y) − |aN − h(y)| < ε

and

d1(x, y) − d(x, y) = d(x, aN ) + |aN − h(y)| − d(x, y)

≤ d(x, y) + d(y, aN ) + |aN − h(y)| − d(x, y)

= d(y, aN ) + |aN − h(y)| < ε.

Hence, D(d1, d) < ε.
Next, given that htop( f |[0,aN ]) < ∞, we have

mdimM([0, 1], d1, f ) = mdimM([0, 1], d1, f |[aN ,aN+ε/2]).
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By [1, Example 3.1] and [2, Example 2.6], it is possible to obtain that

mdimM([0, 1], d1, f ) = mdimM([aN , aN + ε/2], d1, f |[aN ,aN+ε/2]).

The existence of d2 can be shown analogously taking r = s, cN = aN and
cn = aN + ∑n

j=1
Aε
3is

for n ≥ N + 1, where A = 1∑∞
j=1 3

−is , and consider-

ing Kn = [cn−1, cn] for any n ≥ N + 1. In consequence, mdimM(M, f ) and
mdimH(M, f ) are not continuous on d.

In Example 5.3, we proved that there exists a dynamical system with metric mean
dimension and mean Hausdorff dimension maps not continuous with respect to the
metrics. In the following theorem, we will prove that this result is more general.

Theorem 5.4 Set Q = M or H. If there exists a continuous map f : M → M such
that mdimQ(M, d, f ) > 0, for some d ∈ M(τ ), then

mdimQ(M, f ) : M(τ ) → R ∪ {∞}
d �→ mdimQ(M, d, f )

is not continuous anywhere.

Proof Let (M, d) be a compact metric space and f : M → M be a continuous map
such that mdimM(M, d, f ) > 0. Given any α, ε ∈ (0, 1), we define the metric

dα,ε(x, y) =
{

d(x, y), if d(x, y) ≥ ε,

ε1−αd(x, y)α, if d(x, y) < ε.

Note that dα,ε ∈ M(τ ). Moreover, taking x, y ∈ M such that d(x, y) ≥ ε, we have
that |d(x, y) − dα,ε(x, y)| = 0 < ε. On the other hand, if we consider x, y ∈ M such
that d(x, y) < ε, we have that

|d(x, y) − dα,ε(x, y)| = |d(x, y) − ε1−αd(x, y)α| ≤ d(x, y) + ε1−αd(x, y)α < 2ε.

Hence, D(d, dα,ε) < 2ε. However, for Q = M or H we prove

mdimQ(M, dα,ε, f ) = mdimQ(M, d, f )

α
.

Firstly, we prove to claim for metric mean dimension. Consider any η ∈ (0, ε). Let
A an (n, f , η)-spanning set of (M, d). Then, for any y ∈ M, there exists x ∈ A such
that dn(x, y) < η. Hence,

(dα,ε)n(x, y) = ε1−αdn(x, y)
α < ε1−αηα.

Thus, A is an (n, f , ε1−αηα)-spanning set of (M, dα,ε). Therefore,

spandα,ε
( f , ε1−αηα) ≤ spand( f , η),
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and consequently, we obtain that

mdimM(M, dα,ε, f ) = lim
η→0

spandα,ε
( f , ε1−αηα)

| log(ε1−αηα)| ≤ lim
η→0

spand( f , η)

α| log η|
| log(ηα)|

| log(ε1−αηα)|
= mdimM(M, d, f )

α
. (5.1)

On the other hand, notice that, for any x, y ∈ M such that (dα,ε)n(x, y) < ε, we
have that dn(x, y) < ε, because otherwise (dα,ε)n(x, y) = dn(x, y) ≥ ε. Let E be
an (n, f , η)-spanning set of (M, dα,ε), where η ∈ (0, ε). Then, for any y ∈ M, there
exists x ∈ E with (dα,ε)n(x, y) < η and it follows that

(dα,ε)n(x, y) = ε1−αdn(x, y)
α < η < ε ⇒ dn(x, y) < ε

α−1
α η

1
α .

Thus, E is an (n, f , ε
α−1
α η

1
α )-spanning set of (M, d) and therefore

spandα,ε
( f , η) ≥ spand( f , ε

α−1
α η

1
α ).

Hence,

mdimM(M, f , dα,ε) = lim
η→0

spandα,ε
( f , η)

| log(η)| ≥ lim
η→0

spand( f , ε
α−1
α η

1
α )

| log(ε α−1
α η

1
α )|

| log(ε α−1
α η

1
α )|

| log η|

= lim
η→0

spand( f , ε
α−1
α η

1
α )

| log(ε α−1
α η

1
α )|

| log(η 1
α )|

| log η|
= mdimM(M, f , d)

α
. (5.2)

It follows from (5.1) and (5.2) that mdimM(M, f , dα,ε) = mdimM(M, f ,d)
α

.

Next, we prove the theorem for mean Hausdorff dimension. We will need the
relation

mdimH(M, f , dα) = mdimH(M, f , d)

α
, for any α ∈ (0, 1),

which will be shown in Example 7.1. Fix η ∈ (0, ε). For every x, y ∈ M with
dn(x, y) < η, we have that (dα,ε)n(x, y) = ε1−αdn(x, y)α . Thus, for all E ⊂ M such
that diamdα

n
(E) < η, we have that diam(dα,ε)n (E) < ε1−αη. Therefore

Hs
ε1−αη

(M, (dα,ε)n) ≤ Hs
η (M, dα

n ), for every 0 < η < ε.

Thus,

mdimH(M, dα,ε, f ) ≤ mdimH(M, dα, f ) = mdimH(M, d, f )

α
. (5.3)
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On the other hand, given η ∈ (0, ε), we have for every x, y ∈ M, with dn(x, y) < η,
that

(dα,ε)n(x, y) = ε1−αdn(x, y)
α > η1−αdn(x, y)

α.

Thus, for all E ⊂ M with diam(dα,ε)n (E) < η, it follows that diamdα
n
(E) < ηα .

Therefore, we obtain that

Hs
η (M, (dα,ε)n) ≥ Hs

ηα (M, dα
n ).

Consequently,

mdimH(M, dα,ε, f ) ≥ mdimH(M, dα, f ) = mdimH(M, d, f )

α
. (5.4)

It follows from (5.3) and (5.4) that mdimH(M, dα,ε, f ) = mdimH(M,d, f )
α

.

Next, given that

mdimM(M, dα,ε, f ) = mdimM(M, d, f )

α
and

mdimH(M, dα,ε, f ) = mdimH(M, d, f )

α
,

and D(dα,ε, d) < 2ε, for any ε > 0, we can conclude that mdimM(M, d, f ) and
mdimH(M, d, f ) are not continuous with respect to the metric. ��

6 ComposingMetrics with Subadditive ContinuousMaps

In this section, we will consider metrics in the set

Ad(M) = {gd : gd(x, y) = g(d(x, y)) for all x, y ∈ M, and g ∈ A[0, ρ]},

where ρ is the diameter of M and

A(0, ρ) =
{
g : [0, ρ] → [0,∞) : g is continuous, increasing,

subadditive and g−1(0) = {0}
}

.

Remember that g : [0,∞) → [0,∞) is called subadditive if g(x + y) ≤ g(x) +
g(y) for all x, y. For instance, if g is concave (that is, if g(t x + (1 − t)y) ≥ tg(x) +
(1− t)g(y), for any t ∈ [0, 1] and x, y ∈ [0, ρ]) and g(0) ≥ 0, then g is subadditive.
In fact, if g : [0,∞) → [0,∞) is concave and g(0) = 0, then tg(x) ≤ g(t x) for any
t ∈ [0, 1] and x ∈ [0,∞). Hence, for any x, y ∈ [0,∞), taking t = x

x+y ∈ [0, 1], we
have

g(x)=g(t(x+y)) ≥ tg(x+y) and g(y)=g((1−t)(x+y)) ≥ (1−t)g(x+y).
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Therefore, g(x) + g(y) ≥ g(x + y).

Lemma 6.1 For any g ∈ A[0, ρ], we have that:

(i) gd is a metric on M.
(ii) gd ∈ M(τ ). Consequently, Ad(M) ⊆ M(τ ).
(iii) If f : M → M is a continuous map, then, for any n ∈ N and x, y ∈ M, we have

(gd)n(x, y) = g(dn(x, y)).

Proof i) Clearly gd(x, y) ≥ 0 and gd(x, y) = gd(y, x) hold. Furthermore, since
g−1{0} = {0}, we have

gd(x, y) = 0 ⇔ g(d(x, y)) = 0 ⇔ d(x, y) = 0 ⇔ x = y.

Next, since g is increasing, then, for x, y, z ∈ M, it follows that

gd(x, z) = g(d(x, z)) ≤ g(d(x, y) + d(y, z)) ≤ g(d(x, y)) + g(d(y, z))

= gd(x, z) + gd(z, y).

Hence, gd is a metric on M.
ii) We prove that, given any x ∈ M, then for any ε > 0 there is δ > 0 such that

Bd(x, δ) ⊂ Bgd (x, ε), where Bd ′(x, ε) denotes the open ball with center x and radius
ε > 0 with respect a metric d ′. Indeed, since g is continuous at 0 and g−1{0} = {0},
for all ε > 0, there is δ > 0 such that if 0 ≤ a < δ, then 0 ≤ g(a) < ε. Thus, for
any y ∈ M such that d(x, y) < δ, we have g(d(x, y)) < ε, that is, gd(x, y) < ε.

Therefore, Bd(x, δ) ⊂ Bgd (x, ε).
Next, we prove for all x ∈ M and each ε > 0, there is δ > 0 such that Bgd (x, δ) ⊂

Bd(x, ε). We show that if a, b ≥ 0 and g(b) <
g(a)
2 , then b < a

2 . Indeed, if a ≤ 2b,
since g is increasing and subadditive, then we have

g(a) ≤ g(2b) ≤ 2g(b).

From this fact, setting δ = g(ε)
2 , if gd(x, y) < δ, we have

g(d(x, y)) <
g(ε)

2
⇒ d(x, y) <

ε

2
< ε.

Therefore Bgd (x, δ) ⊂ Bd(x, ε). If follows from the above facts that gd ∈ M(τ ).
iii) Fix a continuous map f : M → M. Since g is increasing, we have that
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g(d( f m(x), f m(y))) = max{g(d(x, y)), g(d( f (x), f (y))) . . . , g(d( f n−1(x),

f n−1(y)))}

if and only if

d( f m(x), f m(y)) = max{d(x, y), d( f (x), f (y)) . . . , d( f n−1(x), f n−1(y))}.

Hence, given n ∈ N, we have for any x, y ∈ M that

(gd)n(x, y) = max{gd(x, y), gd( f (x), f (y)) . . . , gd( f
n−1(x), f n−1(y))}

= max{g(d(x, y)), g(d( f (x), f (y))) . . . , g(d( f n−1(x), f n−1(y)))}
= g

(
max{d(x, y), d( f (x), f (y)) . . . , d( f n−1(x), f n−1(y))}

)

= g(dn(x, y)),

which proves iii). ��
Next, we will consider the metric mean dimension with metrics on Ad(M). For any
continuous map g ∈ A[0, ρ], we will take

km(g) = lim inf
ε→0+

log(g(ε))

log(ε)
and kM (g) = lim sup

ε→0+

log(g(ε))

log(ε)
.

Lemma 6.2 For any g ∈ A[0, ρ], we have that km(g) ≤ kM (g) ≤ 1.

Proof Without loss of generality, we can assume that ρ ∈ (0, 1). We prove that there
exists m ∈ (0,∞) such that mx ≤ g(x) for any x ∈ [0, ρ]. Since g is subadditive, we
have that

g(ρ) ≤ 2g
(ρ

2

)
≤ · · · ≤ 2ng

( ρ

2n

)
⇒ g(ρ)

ρ
≤ g

(
ρ
2

)

ρ
2

≤ · · · ≤ g
(

ρ
2n
)

ρ
2n

,

for any n ∈ N. If 0 < y ≤ ρ, there exists n ≥ 0 such that ρ

2n+1 ≤ y ≤ ρ
2n , and hence

2n
ρ

≤ 1
y ≤ 2n+1

ρ
. Thus,

g(ρ)

ρ
≤

g
(

ρ

2n+1

)

ρ

2n+1

≤ g(y)
ρ

2n+1

= 2
g(y)

ρ
2n

≤ 2
g(y)

y
.

Therefore, taking m = g(ρ)
2ρ , we have that my ≤ g(y) for any y ∈ [0, ρ]. Thus, for

any x ∈ (0, ρ], we have that

logmx ≤ log g(x) ⇒ − log g(x) ≤ − logmx ⇒ log g(x)

log x
≤ logmx

log x
.

Given that logmx
log x → 1, as x → 0, we have that km(g) ≤ kM (g) ≤ 1. ��
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From now on, we will suppose that km(g), kM (g) > 0. For instance, if there exists

n ∈ N and δ ∈ (0, 1) such that with g(x) ≤ x
1
n , for any x ∈ (0, δ], we have that

log g(x) ≤ 1

n
log x ⇒ −1

n
log x ≤ − log g(x) ⇒ 1

n
≤ log g(x)

log x
.

We remark that there exists maps g ∈ A[0, ρ] such that km(g) = kM (g) = 0.
Indeed, if g is defined as g(x) = 1√

log( 1x )
for x > 0 and g(0) = 0, we can prove

that kM (g) = 0 (g(x) is the inverse map of the function f : [0,∞) �→ R defined as

f (x) = e
− 1

x2 for x > 0 and f (0) = 0).
Remember that for any two sequences of non-negative real numbers (an)n∈N and

(bn)n∈N, we always have:

lim sup
n→∞

anbn ≤ lim sup
n→∞

an lim sup
n→∞

bn (6.1)

lim inf
n→∞ anbn ≥ lim inf

n→∞ an lim inf
n→∞ bn, (6.2)

whenever the right-hand side is not of the form 0 ·∞. The equalities hold if limn→∞ an
exists. These facts will be useful for the next proposition.

Proposition 6.3 Take g ∈ A[0, ρ], such that km(g), kM (g) > 0. Set gd(x, y) =
g ◦ d(x, y) for all x, y ∈ M. For any continuous map f : M → M, we have

(i) mdimM(M, d, f ) ≥ km(g)mdimM(M, gd , f ).
(ii) mdimM(M, d, f ) ≤ kM (g)mdimM(M, gd , f ).

Proof Given that km(g), kM (g) ∈ (0, 1], we can use the properties given in (6.1) and
(6.2).

(i) Fix ε > 0. If dn(x, y) < ε, then (gd)n(x, y) = g(dn(x, y)) ≤ g(ε), because g is
increasing. Thus, any (n, f , ε)-spanning subsetwith respect to d is an (n, f , g(ε))-
spanning subset with respect to gd . Hence,

spand(n, f , ε) ≥ spangd (n, f , g(ε)). (6.3)

Furthermore, since g is continuous and g(0) = 0, we have limε→0 g(ε) = 0.
Therefore,

mdimM(M, d, f ) = lim inf
ε→0

lim sup
n→∞

log spand(n, f , ε)

n| log(ε)|
= lim inf

ε→0
lim sup
n→∞

log spand(n, f , ε)

n| log(ε)|
| log(g(ε))|
| log(g(ε))|

(from (6.3)) ≥ lim inf
ε→0

lim sup
n→∞

log spangd (n, f , g(ε))

n| log(g(ε))|
| log(g(ε))|
| log(ε)|



  261 Page 28 of 35 J. Muentes et al.

(from (6.2)) ≥ km(g) lim inf
ε→0

lim sup
n→∞

log spangd (n, f , g(ε))

n| log(g(ε))|
= km(g)mdimM(M, gd , f ).

(ii) Fix n ∈ N and ε > 0. Let A be an (n, f , ε)-separated subset with
respect to d. Hence, for any x, y ∈ A with x 
= y, we have dn(x, y) =
max0≤ j<n

{
d( f j (x), f j (y))

}
> ε, and, therefore, there exists j0 ∈ {0, . . . , n −

1} such that d( f j0(x), f j0(y)) > ε. Since g is increasing, it follows that
g
(
d( f j0(x), f j0(y))

) ≥ g(ε). Therefore,

(gd)n(x, y) = max
0≤ j<n

{
g
(
d( f j (x), f j (y))

)}
≥ g(ε).

Hence, A is an (n, f , g(ε))-separated subset with respect to gd . Thus,

sepd(n, f , ε) ≤ sepgd (n, f , g(ε)). (6.4)

Therefore,

mdimM(M, d, f ) = lim sup
ε→0

lim sup
n→∞

sepd(n, f , ε)

n| log(ε)|
= lim sup

ε→0
lim sup
n→∞

sepd(n, f , ε)

n| log(ε)|
| log(g(ε))|
| log(g(ε))|

(from (6.4)) ≤ lim sup
ε→0

lim sup
n→∞

sepgd (n, f , g(ε))

n| log(g(ε))|
| log(g(ε))|
| log(ε)|

(from (6.1)) ≤ kM (g) lim sup
ε→0

lim sup
n→∞

sepgd (n, f , g(ε))

n| log(g(ε))|
= kM (g)mdimM(M, gd , f ).

Hence, mdimM(M, d, f ) ≤ kM (g)mdimM(M, gd , f ). ��
Lemma 6.4 For any g ∈ A[0, ρ] such that k(g) = km(g) = kM (g) > 0, we have that

mdimM(M, d, f ) = k(g)mdimM(M, gd , f )

and

mdimM(M, d, f ) = k(g)mdimM(M, gd , f ).

Proof From (6.3), we have that
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mdimM(M, d, f ) = lim sup
ε→0

lim sup
n→∞

log spand(n, f , ε)

n| log(ε)|
≥ lim sup

ε→0
lim sup
n→∞

log spangd (n, f , g(ε))

n| log(g(ε))|
| log(g(ε))|
| log(ε)|

= k(g) lim sup
ε→0

lim sup
n→∞

log spangd (n, f , g(ε))

n| log(g(ε))|
= k(g)mdimM(M, gd , f ).

It follows fromProposition6.3, item ii, thatmdimM(M, d, f ) = k(g)mdimM(M, gd , f ).
Analogously, using (6.4) and Proposition 6.3, item i, we can prove the second part

of the lemma. mdimM(M, d, f ) = k(g)mdimM(M, gd , f ). ��
From now on, we will assume that ρ = diamd(M) < 1. Next, set

A+[0, ρ] := {g ∈ A[0, ρ] : km(g) = kM (g) > 0}.

We will choose a suitable topology for A+[0, ρ]. Fix g ∈ A+[0, ρ]. Since any h ∈
A+[0, ρ] satisfies h(0) = 0, then we must have d(g(x), h(x)) → 0, as x → 0. For a
fixed ε > 0, set

B̃(g, ε) =
{

h ∈ A+[0, ρ] : g(x)(xε − 1) < h(x) − g(x) < g(x)
(1 − xε)

xε
,

& for x ∈ (0, ρ]
}

. (6.5)

Given that we are assuming that ρ < 1, notice that g ∈ B̃(g, ε), because

g(x)(xε − 1) < 0 < g(x)
(1 − xε)

xε
for any x ∈ (0, ρ].

Furthermore, if h ∈ B̃(g, ε), then for any x ∈ (0, ρ], we have that

g(x)(xε − 1) < h(x) − g(x) < g(x)
(1 − xε)

xε
⇐⇒ xεg(x) < h(x) <

g(x)

xε

(see Fig. 1). Let T be the topology induced by the sets B̃(g, ε), that is, these sets form
a subbase for T .

Lemma 6.5 The map

Z : (A+[0, ρ], T ) → (0, 1]
g �→ k(g) := km(g)

is continuous.
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Fig. 1 B̃(g, ε)

Proof For any g ∈ A+[0, ρ], define

g̃(x) =
{

log g(x)
log x , if x ∈ (0, ρ]

k(g), if x = 0.

Note that g̃ : [0, ρ] → R is a continuous map. Specifically, g̃ is continuous at 0,
because

g̃(0) = k(g) = lim
x→0

g̃(x).

Next, fix h ∈ B̃(g, ε). Given that ρ < 1, then for any x ∈ (0, ρ] we have that

xεg(x) < h(x) <
g(x)

xε
⇐⇒ xε <

h(x)

g(x)
<

1

xε

⇐⇒ ε log x < log h(x) − log g(x) < −ε log x .

Therefore, −ε < g̃(x) − h̃(x) < ε for any x ∈ (0, ρ]. Thus, |k(g) − k(h)| =
|g̃(0) − h̃(0)| ≤ ε, by the continuity of both g̃ and h̃. This fact proves that g �→ k(g)
is a continuous map. ��

For the next results, we will consider the set

A+
d (M) = {g ◦ d ∈ Ad(M) : g ∈ A+[0, ρ]}.

Notice that A+
d (M) 
= ∅, because the function g(x) = xa , for a fixed a ∈ (0, 1],

belongs to A+[0, ρ] (see Example 7.1). In particular, d ∈ A+
d (M).

Lemma 6.6 LetM be a compact space such that the metric map d : M×M → [0, ρ]
is surjective. Then

Z : A+[0, ρ] → A+
d (M)

g �→ g ◦ d

is a bijective map.
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Proof Clearly Z is surjective. Next, we prove that for any d̃ ∈ A+
d (M), there exists

a unique gd̃ ∈ A+[0, ρ] such that d̃ = g ◦ d. Suppose that g1, g2 ∈ A+[0, ρ] and
d̃ = g1 ◦ d = g2 ◦ d. Since d is surjective, for any t ∈ [0, ρ], there exist x, y ∈ M

such that t = d(x, y). Therefore, g1(t) = g2(t), as we want to prove. ��
Suppose that d : M × M → [0, ρ] is surjective. We will equip A+

d (M) with the
topology W which becomes the map

Z : (A+[0, ρ], T ) → (A+
d (M),W)

g �→ d

a homeomorphism.

Theorem 6.7 LetM be a compact space such that the metric map d : M×M → [0, ρ]
is surjective. Suppose that mdimM(M, f , d) < ∞. The maps

mdimM(M, f ) : (A+
d (M),W) → R

gd �→ mdimM(M, gd , f )

and

mdimM(M, f ) : (A+
d (M),W) → R

gd �→ mdimM(M, gd , f )

are continuous.

Proof Weprove the casemdimM(M, f ) : A+
d (M) → R, since the proof of the theorem

is analogous for the case mdimM(M, f ) : A+
d (M) → R. If mdimM(M, f , d) = 0, it

follows from Lemma 6.4 that mdimM(M, f ) : A+
d (M) → R is the zero map.

We will suppose that 0 < mdimM(M, f , d) < ∞. Take d̃ inA+
d (M) and let gd̃ be

the unique map in A+[0, ρ] such that d̃ = gd̃ ◦ d. From Lemma 6.4, we have that

mdimM(M, f )(d̃) = mdimM(M, f )(gd̃ ◦ d) = mdimM(M, d, f )

k(gd̃)
.

Hence, the continuity of mdimM(M, f ) : A+
d (M) → R follows from Lemma 6.5 and

given that k(g) > 0 for any g ∈ A+[0, ρ]. ��

7 Additional Examples

In this sectionwewill present some examples ofmaps g ∈ A+[0, ρ] and the respective
expressions for mdimM(M, gd , f ).
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Example 7.1 Fix any a ∈ (0, 1]. Consider the function g(x) = xa defined for all
x ∈ [0,∞). Notice that g(x + y) ≤ g(x) + g(y) for any x, y ≥ 0. Next, by defining
gd(x, y) = d(x, y)a , we find that k(g) = a, and therefore

mdimM(M, gd , f ) = mdimM(M, d, f )

a
. (7.1)

For instance, we have that

mdimM(([0, 1]n)Z, hd, σ ) = n

a
, (7.2)

where is the metric defined in Theorem 3.6 and σ : ([0, 1]n)Z → ([0, 1]n)Z is the left
shift.

Example 7.2 Fix any a ∈ (0, 1]. Consider the function g(x) = xa defined for all
x ∈ [0,∞). We will prove that

mdimH(M, gd , f ) = 1

a
mdimH(M, d, f ). (7.3)

In fact, consider a fixed a ∈ (0, 1]. In fact, consider any a ∈ (0, 1] fixed. Given any
η > 0, we have that d(x, y) ≤ η if and only if d(x, y)a ≤ ηa . Hence, it follows that

Hs
ηa (M, (gd )n) = inf

{ ∞


k=1

(diamdan (Ek))
s : M = ∞∪

k=1
Ek with diamdan (Ek) < ηa for all k ≥ 1

}

= inf

{ ∞


k=1

(diamdan (Ek))
s : M = ∞∪

k=1
Ek with diamdn (Ek) < η for all k ≥ 1

}

= inf

{ ∞


k=1

(diamdn (Ek))
as : M = ∞∪

k=1
Ek with diamdn (Ek) < η for all k ≥ 1

}

= Has
η (M, dn).

Hence,

dimH(M, (gd )n, η
a) = sup{s ≥ 0 : Hs

ηa (M, (gd )n) ≥ 1} = sup{s≥0 : Has
η (M, dn)≥1}

= 1

a
sup{as ≥ 0 : Has

η (M, dn) ≥ 1} = 1

a
dimH(M, dn, η),

This fact proves (7.3).

Let f : M → M be a continuous map such that mdimM(M, d, f ) > 0. It follows
from Example 7.1 that the image of the map mdimM(M, f ) : A+

d (M) → R ∪ {∞}
contains the interval [mdimM(M, d, f ),∞). Hence,

sup
d ′∈M(τ )

mdimM(M, d ′, f ) = ∞.

Similar fact holds for the mean Hausdorff dimension.
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Example 7.3 Consider g(x) = log(1 + x). Since 1 + x + y ≤ 1 + x + y + xy, we
have

g(x + y) = log(1 + x + y) ≤ log((1 + x)(1 + y)) = log(1 + x) + log(1 + y)

= g(x) + g(y).

Hence, g is subadditive. Note that if g1 and g2 ∈ A+[0,∞), then g1◦g2 ∈ A+[0,∞).
Consider g1(x) = xa , for a ∈ (0, 1), and g2(x) = log(1 + x). The composition
h(x) = g2 ◦ g1(x) = log(1+ xa) belongs toA+[0,∞). We can prove that k(h) = a.
Hence

mdimM(M, hd , f ) = mdimM(M, d, f )

a
.

Example 7.4 Suppose that h : M → M is α-Hölder for some α ∈ (0, 1), that is, there
exists K > 0 such that

d(h(x), h(y)) ≤ Kd(x, y)α for all x, y ∈ M.

Setting dh(x, y) = d(h(x), h(y)) for all x, y ∈ M, we have respectively from Exam-
ples 7.1 and 7.2 that

mdimM(M, dh, f ) ≤ mdimM(M, dα, f ) = mdimM(M, d, f )

α

and

mdimH(M, dh, f ) ≤ mdimH(M, dα, f ) = mdimH(M, d, f )

α
.

IfM is a compact Riemannianmanifold with dim(M) ≥ 2, then the set G consisting
of homeomorphisms with positive metric mean dimension is residual in Hom(M) (see
[6]). Therefore, for any f ∈ G, we have

0 = mdim(M, f ) < sup
d ′∈M(τ )

mdimM(M, d ′, f ) = sup
d ′∈M(τ )

dimB(M, d ′) = ∞,

where the first equality is because M is finite dimensional (see [16], page 6). Similar
result holds for the case of mean Hausdorff dimension, following the facts proved in
[2].
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