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Assessing and monitoring air quality in cities and urban areas 
with a portable, modular and low-cost sensor station: 
calibration challenges
M. Tarazona Alvarado a, J. L. Salamanca-Coyb, K. Forero-Gutièrrezb, L. A. Núñez a, 
J. Pisco-Guabave a, Fr. Escobar-Diazc and D. Sierra-Porta d

aEscuela de Física, Universidad Industrial de Santander, Bucaramanga, Colombia; bIOT and Cloud 
Department, MakeSens, Bucaramanga, Santander, Colombia; cDepartamento de Ingeniería Química 
y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia; dFacultad de Ciencias Básicas. 
Universidad Tecnológica de Bolívar, Cartagena de Indias, Colombia

ABSTRACT
Air pollution affects not only the air in cities but also extends to all 
indoor environments (homes, offices, schools, public places, trans
portation, etc.), where we spend between 80% and 90% of our time. 
Both indoor and outdoor air quality have emerged as significant 
health concerns and are integral to national strategies implemen
ted by health and environmental institutes in each country. 
Recently, complaints regarding outdoor air quality have risen in 
cities, primarily due to automobile traffic and industrial activities 
in urban areas, and also indoors within homes, offices, and schools. 
The following paper presents a methodology for the calibration of 
low-cost monitoring stations based on measurements in a couple 
of cities in Colombia as part of the development of a project to 
reduce the environmental awareness gap in urban areas for the 
estimation of the air quality through low-cost, flexible, modular, 
and mobile air quality monitoring station design that could be used 
to assess air pollution in different indoor and outdoor environ
ments. With the implementation of the low-cost stations, we have 
calibrated and evaluated the performance of the stations using 
usual linear regression methods, but we have also explored the 
use of unsupervised estimation with the help of machine learning 
algorithms, specifically with Random Forest estimators. We have 
found a significant improvement with using Random Forest for 
station calibration compared with those found using simple linear 
regressions for calibration effects. We have found that all the mod
els offer a significant improvement in terms of RMSE. The regression 
model improves RMSE by up to 70%, while the multiple regression 
model does so by up to 73%. However, it is the Random Forest that 
shows the most remarkable improvement, with a reduction in RMSE 
of up to 86%.
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1. Introduction

Atmospheric air quality assessment and detection of gaseous pollutants in urban 
areas and cities has recently been considered one of the important and growing 
research problems in recent decades (Bai et al. 2023; Mamun, Abdulla, and Rasit 
Yuce 2019; Mata et al. 2022; Singh et al. 2021; Sokhi et al. 2021). The need to have 
real measurement scenarios in situ using chemical analysers and sensors stations is 
a key task because it allows the generation of data that can be evaluated, 
quantified and analysed in real time (Baqer et al. 2023; Concas et al. 2021; 
Considine et al. 2023; Dai et al. 2023; Datta et al. 2020; Donnelly, Misstear, and 
Broderick 2015; H. Liu et al. 2021; Reis et al. 2023; Zhang et al. 2012) to establish 
scenarios and criteria so that, at another level of management, decision makers 
and policy-makers have the appropriate tools to apply mechanisms and create 
solutions based on accurate and updated information with technical and scientific 
arguments.

Furthermore, many cities in many countries take concrete steps in the consolidation 
and implementation of strategies, facilities and methodologies to evaluate spatially and 
temporally the air quality in their neighbourhoods, in order to estimate and solve 
problems related with human mobility, improvement of sanitation conditions in areas 
with high automobile traffic, or to limit this traffic in many areas in which high levels of 
environmental pollutants in the air have been reported. Such strategies contemplate 
static stations on main roads (Abu El-Magd et al. 2023; Ganji et al. 2023; Harleman et al.  
2023; Nishitateno, Burke, and Arimura 2024), mobile stations in the city (Anjomshoaa et al.  
2018; Apte et al. 2017; Blanco et al. 2022; Francesco et al. 2024; Ganji et al. 2023; Limon 
et al. 2023; Shaibal et al. 2015; Sonawani and Patil 2024; Van den Bossche et al. 2015), or 
even drones (Afshar-Mohajer and Wu 2023; Bagkis et al. 2021; Burgués and Marco 2023; 
Limon et al. 2023; Ranganathan et al. 2023; Renwick, Klein, and Hamann 2016; Wivou et al.  
2016) that fly over critical areas equipped with rapid response sensors and with devices 
with wireless connections to visualize and analyse data in real time, which are used to give 
responses or establish immediate decision-making plans to alleviate critical conditions or 
in the medium term to strengthen policies and regulations appropriate to each situation. 
A really interesting case is from Google (Kerckhoffs, Khan, Hoek, Yuan, Hertel, et al. 2022; 
Apte et al. 2017), using the Google Street View vehicles equipped with a rapid response 
pollution measurement platform repeatedly sampling every street in a 30 km2 area of 
Oakland, CA, collecting a large amount of urban air quality data with spatial precision 4 to 
5 orders of magnitude greater than that possible with current environmental monitoring 
at the central site.

Some interesting applications also include the study and monitoring of air quality to 
promote and maintain healthy, safe, productive and comfortable student environments 
for students, teachers and school personnel (Annesi-Maesano et al. 2013; Becerra et al.  
2020; de Gennaro et al. 2014; Ilie et al. 2022; Lee and Chang 2000; Smart et al. 2020; 
Wargocki et al. 2020); assessment of number concentrations, size distributions of ultrafine 
particles and time integrated black carbon, PM2:5 mass, and chemical species on com
mercial flights (Baklanov and Zhang 2020; Hudda et al. 2020; Riley et al. 2021; Sher et al.  
2021; Spengler and Wilson 2003; Waters et al. 2002); or also the indoor air pollution in 
hospitals associated with specific compounds emitted from various products used, health 
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care activities and building materials (Amir et al. 2023; Baudet et al. 2022; Baurès et al.  
2018; Jung et al. 2015; Mata et al. 2022).

The increase in low-cost detection to manage air pollution in cities has also been 
a constant in recent years in favour of commercial optical or chemical analysers. This is 
mainly due to several factors: the economic cost of professional stations is high (Marinov 
et al. 2016; Motlagh et al. 2020) and not accessible for some cities; the size of these 
stations is also large, it is necessary massive power consumption of sensor nodes and 
requires considerable space for installation (Castell et al. 2017; Jovašević-Stojanović et al.  
2015), requiring adequate and appropriate spaces for their installation and they also 
consist of complicated devices that could not be easily accessed or maintained unless 
trained and skilled personnel are available.1 Thus, several proposals for low-cost monitors 
and stations have emerged to overcome the above limitations. On the other hand, more 
accessible and low-cost stations allow greater investment for spatial monitoring covering 
more territories and for spatial and temporal analysis of air quality variability, especially in 
urban areas (Flores-Cortez, Adalberto Cortez, and Idalia Rosa 2019; Hernández-Gordillo 
et al. 2021; Marjovi, Arfire, and Martinoli 2017; Piersanti et al. 2015).

An underlying problem in the generation of low-cost monitoring stations is precisely 
the internal calibration process of the sensors. Although some global manufacturers and 
distributors ensure good performance conditions of individual specialized sensors, cali
bration is still an important part of the methodology to reduce production and develop
ment costs. Most of the time, low-cost stations measure adequately, but the sensitivity of 
the measurements may have adjustment problems, or malfunction in certain measure
ment ranges, or particularly exhibit a measurement lag mainly due to a deviation from the 
baseline measurement in the absence of contaminants (Feenstra et al. 2019; Karagulian 
et al. 2019).

Therefore, in the literature, it is abundant to find various ways to calibrate these sensors 
using statistical techniques (Cordero, Borge, and Narros 2018; Datta et al. 2020; Drajic and 
Gligoric 2020; Margaritis et al. 2021; Sahu et al. 2021) or neural networks (Esposito et al.  
2016; Kow et al. 2022; Spinelle et al. 2014), or machine learning tools (Adong et al. 2022; 
Bagkis et al. 2021; De Vito et al. 2020).

The term ‘low-cost monitoring station’ can be defined in terms of several criteria that 
evaluate the affordability and effectiveness of these stations for measuring air quality. 
First, the initial cost of acquiring hardware and associated equipment is a critical factor 
(X. Liu et al. 2020). A low-cost station should be significantly less expensive than the more 
complex and specialized monitoring solutions used in professional applications. In addi
tion to the initial cost, ongoing maintenance and operating expenses are also important. 
Low-cost solutions tend to have lower maintenance requirements and reduced operating 
costs compared to more advanced systems.

Simplicity of design is another key criterion. Low-cost stations typically use simple and 
inexpensive designs and components. This may include the use of commercially available 
sensors and basic data communication technologies (Badura et al. 2018; Jovašević- 
Stojanović et al. 2015; Spinelle et al. 2017). Although less expensive, the sensors used in 
these stations should provide accurate and reliable measurements of air quality para
meters such as particulate matter (PM), gases (such as CO2, NO2, SO2) and other relevant 
pollutants. Data quality and accuracy are important aspects to consider to ensure the 
usefulness and reliability of the measurements obtained.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5715



The ability to scale and adapt these stations is also critical. Low-cost stations must be 
scalable, allowing multiple stations to be deployed in different locations without signifi
cant additional costs. This facilitates the creation of distributed monitoring networks that 
cover large and diversified areas, improving the coverage and representativeness of air 
quality measurements. In addition, these stations should be flexible and adaptable to 
different environmental conditions and specific monitoring requirements (Bai et al. 2023; 
Motlagh et al. 2020; Vitali, Arru, and Magnanini 2023).

A common approach for low-cost stations is their use in citizen or community science 
projects, where public participation in air quality monitoring is critical (Barros et al. 2023; 
Considine et al. 2023; Manshur et al. 2023). Therefore, ease of use and accessibility are key 
considerations. Easy access to the collected data and compatibility with standard analysis 
and visualization tools are also important aspects to maximize the usefulness and impact 
of these stations in citizen participation initiatives.

In the following note, we address the problem of calibrating low-cost sensors for 
particulate matter in a couple of cities in Colombia, where an awareness strategy has 
been promoted through the construction and distribution of low-cost stations in schools 
and official state institutions to narrow the gap in the estimation of urban air quality and 
advance in the construction of clean and smart cities. The main objective is to evaluate the 
effectiveness of three calibration models for PM10 and PM2:5 measurements conducted by 
low-cost stations, emphasizing the significance of environmental conditions in the cali
bration process, as well as on-site meteorological variables.

2. Air quality monitoring stations

2.1. Low-cost stations descriptions

For the results below, we present the calibration procedures in two major cities in 
Colombia in which two different versions of low-cost stations have been installed.

The low-cost monitoring stations have been shipped and distributed in several loca
tions in both localities and for calibration purposes, all stations have been placed during 
the first months in locations close to professional, robust and expensive monitoring 
stations, acquired by the Ministry of Environment, government and mayoral offices and 
other institutions related to the environmental quality of the cities through official 
contracts. The low-cost monitoring stations are located within 50 metres of the profes
sional reference stations.

The first of the cities is Bucaramanga located in the northwest of the Department of 
Santander in the Colombian Andes. Bucaramanga has the fifth largest economy in 
Colombia and is the ninth most populated city in the country, with a population of 
613,400 inhabitants (projection for 2023).

In this location, we consider the low-cost station called RACIMO-AIRE, which is a citizen 
science project born in 2018 from a project funded by the Ministry of Science and 
Technology of Colombia. It is installed at the Normal Superior school in Bucaramanga, 
Santander (7�07’38”N, 73�07’02”W, see Table 1). The station is one of the first versions 
using low-cost sensors for PM10 and PM2:5. It is an open-source and open-hardware 
device, and more information about it can be found at https://github.com/ 
JoseSalamancaCoy/RACIMO_AIRE.
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On the other hand, the second low-cost station is located in Bogotá, which is the 
capital of the Republic of Colombia and the department of Cundinamarca. It is made up of 
20 localities or districts and is the political, economic, administrative, industrial, artistic, 
cultural, sports and tourist epicentre of the country. It is the third highest capital city in the 
world, at an average of 2625 metres above sea level. The low-cost station considered en 
Bogotá is named EVA (4�42’00”N, 74�04’12”W, see Table 1).

Both projects also include a proposal for work in citizen science for the empowerment 
of resources, methodologies, community participation, data analysis and generation of 
human resources in data analysis. The main characteristics of both measurement locations 
and the stations in operation are presented in Table 1.

2.1.1. Sensor specifications for air quality monitoring
To monitor air quality at low-cost stations in Bucaramanga and Bogotá, Colombia, several 
specialized sensors are used. Below are the technical characteristics and specific uses of 
each sensor in the context of the monitoring stations.

The Sensirion SHT35 sensor is utilized for measuring humidity and temperature. This 
sensor operates in a humidity range of 0% to 100% RH and a temperature range of 
−40�C to 90�C, with an accuracy of �1.5% RH and �0.1�C, respectively. To allow the 
assessment of redundancy in measurements in the stations, we include another sensor 
BMW280, essential for validating data quality and accuracy.

The LTR-390 UV-01 sensor is used for measuring illuminance. This sensor can detect 
both UV and visible light, making it particularly useful for outdoor environmental studies 
where these measurements are crucial. The LTR-390 UV-01 is sensitive to both ultraviolet 
and visible light, offering a fast and accurate response, enabling assessment of solar light 
exposure, a significant factor in air quality and environmental comfort.

The PMS7003 is a particulate matter sensor that measures concentrations of PM1, PM2:5, 
and PM10, which are particles with aerodynamic diameters of �1, 2.5, and 10 micrometres, 
respectively. This sensor is critical for evaluating air quality, as fine particles can penetrate 
the lungs and cause respiratory issues. The stations are equipped with two units of this 
sensor, providing a way to verify measurement consistency and accuracy by comparing 
data collected from each sensor.

The BME280 is a small sensor that measures atmospheric pressure, humidity, and 
temperature. Used in conjunction with the SHT35, it provides a secondary data source 
for humidity and temperature, enhancing measurement reliability. The BME280 operates 
with an accuracy of �1 hPa for pressure, ±3% RH for humidity, and ± 1°C for temperature. 
This sensor is invaluable for correlating meteorological changes with variations in air 
quality.

Table 1. Main characteristics of both measurement locations and low-cost 
air quality monitoring stations.

Item Station 1 Station 2

Model name RACIMO-AIRE (S1) EVA (S2)
Located in City Bucaramanga Bogotá
Coordinates (Lat (N), Lon (W)) (7.12, −73.11) (4.70, −74.07)
Altitude (m.a.s.l) 990 2650
Average temperature (�C) 26 13
Installation building School Road way
Station kind Urban-Background Urban-Traffic

INTERNATIONAL JOURNAL OF REMOTE SENSING 5717



The use of these sensors in the monitoring stations of Bucaramanga and Bogotá 
enables the collection of data on various environmental parameters, which is crucial for 
assessing air quality and designing appropriate strategies for improvement. Redundancy 
in particulate matter, humidity, and temperature sensors ensures measurement validity, 
providing a solid foundation for environmental decision-making.

2.2. Reference stations

The reference stations belong to the air quality monitoring networks in their respective 
cities. In Bucaramanga, we considered a station from the Metropolitan Aqueduct of 
Bucaramanga, ABM, located at Colegio Normal Superior Sede C, at 27th Street #29–69. 
This station is part of the air quality surveillance system – Type III (SVCA) that the city is 
equipped with, and it became operational in October 2018. For more details, please 
consult this https://www.amb.gov.co/calidad-del-aire/. Meanwhile, in the city of Bogotá, 
we considered the ‘Las Ferias’ station, located at 69Q–50, 80 Avenue (4�41’26.52‘N, 
74�4’56.94’W). This station belongs to the Bogotá Air Quality Monitoring Network 
(RMCAB), a system composed of 19 regulatory grade stations around the city which has 
been in operation since 1997. For more details, please consult this http://rmcab.ambien 
tebogota.gov.co/home/map.

The reference monitoring stations consist of monitors, analysers, and automatic sen
sors that collect data every hour on the state of air quality in several locations. This 
information is stored and sent via the internet to the central server of the Secretaría de 
Ambiente. It is prevalidated there and subsequently published in real-time on the entity’s 
website. The monitors and analysers in the network operate under specific measurement 
methods established in Title 40 of the CFR (Code of Federal Regulations) (US 2023), which 
are approved by the United States Environmental Protection Agency (EPA). For each 
pollutant, a specific reference method is defined, in accordance with the equivalent 
technique for the operation of each monitor, also established in the appendices of 
Part 50 of Title 40 of the CFR, in case of particulate matter, they are measured through 
a MetOne Betta Attenuation Monitor (BAM 1020), an U.S. EPA equivalent method for 
automatic PM2:5 or PM10 monitoring. The BAM 1020 has a measurement cycle consisting 
of beta irradiation for 8 min at the beginning (zero reading) and 8 min at the end of 
each hour with an air sampling period of 42 min between measurements using a glass 
fibre filter tape. The attenuation of beta ray due to trapped particles is used to determine 
the mass of them on the fibre for calculating the volumetric concentration in micrograms 
per cubic metre.

Since 2018, RMCAB is governed by what is established in Resolution 2254 of 2017 from 
the Ministry of Environment and Sustainable Development, which sets the air quality 
standard or immission level and adopts provisions for the management of this resource in 
the national territory. The goal is to ensure a healthy environment and minimize the risk to 
human health caused by pollutants in the atmosphere. The document establishes the 
maximum permissible levels for criteria pollutants at different times and exposure scales 
for the declaration of environmental alerts, ranges and conditions of the air quality index, 
definition of source areas, and mechanisms for result dissemination.

The composition of RMCAB is based on the guidelines defined in the system 
design manual for air quality monitoring, the Protocol for Air Quality Monitoring and 
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Follow-up, adopted through Resolution 650 of 2010 by the then Ministry of 
Environment (Ministry of Environment and Sustainable Development 2017), 
Housing, and Territorial Development. It includes aspects such as station locations, 
monitor and analyser types, equipment maintenance and verification activities, and 
data analysis processes, among others. Additionally, the operational and design 
guidelines established in the Quality Assurance Handbook for Air Pollution 
Measurement Systems by the Environmental Protection Agency (EPA) of the United 
States are considered.

3. Description of data used

In this study, data collected during specific periods in Bogota and Bucaramanga, 
Colombia, were analysed, considering the drought and rainfall seasons characteristic of 
each region.

In Bogota, the data used covers the period from 14 October 2021 to 9 February 2022, 
which mainly covers the dry season in the region. The main dry season in Bogota extends 
from December to April, with less than 3 days of rain per month during these months. In 
July, there is again a reduction in rainfall, although less pronounced. May and June, as well 
as August to November, are the rainiest months in Bogota. The rainy season in this city 
lasts approximately 8 months, from March to December, with April and November being 
the rainiest months. Throughout the year, rainfall is distributed in two dry seasons and 
two rainy seasons, with the months of January, February, July and August being pre
dominantly dry. The rainy seasons extend from late March to early June and from late 
September to early December.

For Bucaramanga, the data corresponds to the period from 11 April 2019 to 
20 August 2019. This time it also covers the main dry season in Bucaramanga, which is 
recorded in the months of December, January and February, with less than 5 days of rain 
per month. During the months of May to November, rains are more frequent, with an 
average of 10–15 days of rain per month. The main rainy season in Bucaramanga runs 
from June to November, with a rainfall frequency of 20–24 days per month during this 
period. May and December act as transition months with moderate rainfall.

It is important to note that, although the data come from a single time period at each 
location, climatic conditions in Colombia tend to be relatively stable throughout the year 
due to its location in the tropics. This implies that abrupt climatic variations are less 
common compared to mid- or high latitude areas. These climatic factors provide an 
important context for the interpretation of air quality data and other environmental 
parameters collected during the study.

During the periods analysed, there is a consistent and detailed dataset for Bogota and 
Bucaramanga. In the case of Bogota, a total of 2846 data records are available, while for 
Bucaramanga there are 3143 records. These data were collected for the low-cost stations 
with a measurement frequency of 2 min, but because the reference stations only provide 
a sampling frequency of 1 h, then the data have been resampled to the maximum 
temporal resolution of 1 h, which provides an accurate temporal resolution in both data 
sets.

Regarding the completeness of the data, it is observed that in Bogotá, approximately 
13.70% of the data have missing values, while in Bucaramanga, this figure drops to 7.57%. 
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Most of these omissions are attributed to occasional events of malfunctioning of the 
monitoring stations. However, it is important to note that this amount of missing data 
represents a relatively small proportion compared to the regularity and high temporal 
resolution of the data available for the study. These conditions and nearly continuous data 
provide a solid basis for the analysis and evaluation of air quality and meteorological 
conditions in Bogota and Bucaramanga during the selected periods, despite the presence 
of some missing data due to eventual failures of the monitoring stations. For the 
subsequent analysis, these missing data have been removed from the dataset to make 
complete and accuracy models.

In addition to PM10 and PM2:5 particulate measurements, the low-cost monitoring 
stations also recorded various meteorological variables, including temperature, humidity, 
and atmospheric pressure, irradiance and illuminance. These additional environmental 
data are essential to better understand the context in which air quality measurements 
take place.

Figures 1 and 2 present the historical measurements for PM10 and PM2:5 sensors for the 
low-cost and reference stations in the corresponding time span between April and 
September 2019.

4. Methods and techniques

For the purpose of evaluating the performance of the low-cost monitoring station under 
field operation conditions, we have used and applied three calibration methods: simple 
linear models (LR), multivariate linear estimation (MLR) and finally use of Machine 
Learning technique specifically with Random Forest estimators with decision trees.

4.1. Linear regression (LR)

The first method we use to calibrate stations consists in the calibration functions that were 
established by ordinary linear regression, using the minimization of the residuals of the 
low-cost sensor responses with respect to the reference measurement. In this case, 
calibration is done as usual using the simple model 

(b)(a)

Figure 1. Sequence of measurements for PM10 and PM2:5 particulate matter sensors for a low-cost 
station and a reference station located in Bucaramanga between April and September 2019 (Panel (a), 
left). Similarly, measurements from a low-cost station and a reference station located in Bogotá 
between October 2021 and January 2022 are presented (Panel (b), right). Both sets of stations are 
located within a few meters of each other.
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where ŷi represents the low-cost sensor responses calibrated, α0 and α1 represent the 
intercept and slope of the least-squares fit, respectively, and yi the corresponding refer
ence measurements.

4.2. PCA

Principal component analysis (PCA) (Abdi and Williams 2010; Bro and Smilde 2014) is 
a statistical technique used to reduce the dimensionality of a data set by identifying the 
most important variables or components that explain the variability in the data. This 
technique is widely used in data science and can be applied to different areas, including 
air quality.

To understand and analyse air quality, meteorological data such as temperature, 
humidity, wind speed, wind direction, solar radiation, among others, are collected as 
these factors can influence the dispersion and concentration of air pollutants.

In this section, we apply PCA to establish the importance of meteorological variables 
for the generation of low-cost sensor calibration models. PCA can be used to analyse 
meteorological data in terms of air quality. For example, a meteorological data set that 
includes multiple variables such as temperature, humidity, wind speed and direction can 
be complex and difficult to analyse individually. PCA can help simplify these data by 
identifying the most important variables that explain the variability in the data.

In other words, PCA can also be useful in air quality modelling and prediction. For 
example, variables identified using PCA can be used as inputs to weather forecasting 
models or pollutant dispersion models, which can improve the accuracy of air quality 
predictions.

PCA is a useful statistical technique for analysing meteorological data in terms of air 
quality. It allows us to identify the most important variables that explain variability in the 
data, simplify data interpretation, and find relationships or patterns in meteorological 
data that may influence air quality. ACP can be a valuable tool in air quality management, 

(b)(a)

Figure 2. Sequence of measurements for PM10 particulate matter sensors for a low-cost station and 
a reference station located in Bucaramanga between April and September 2019 (Panel (a), left). 
Similarly, measurements from a low-cost station and a reference station located in Bogotá between 
October 2021 and January 2022 are presented (Panel (b), right). Both sets of stations are located 
within a few meters of each other.
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helping to understand and predict the factors that influence air pollution and make 
informed decisions to mitigate its effects.

Figure 3 shows the process of extracting the main characteristics for the importance of 
the meteorological variables that can be used as good estimators in the generation of 
robust (linear or nonlinear) calibration models of low-cost stations.

Additionally, in Figure 4 we can observe that the most important variables that can 
help to develop forecast models as well as calibration models for low-cost stations are 
essentially air temperature, solar radiation (negatively correlated with component 1 
and 2), as well as precipitation and relative humidity (positively correlated with compo
nent 1 and negatively correlated with component 2). These last four variables account for 
most of the total variance explained by the variation of the data from the monitoring 
stations and represent the most important predictors for model generation.

4.3. Multivariate linear regression (MLR)

Calibration was performed using the least squares method taking into account more than 
one predictor variable. The models were established by adding ambient temperature, 
pressure and relative humidity information also collected with the sensors arranged in the 
low-cost station. As in the case of the LR, the calibration functions consisted of equations 
of multiple linear type 

Figure 3. Percentage of cumulative significance for the components analyzed using meteorological 
data from air quality monitoring stations.
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where ŷi represents the low-cost sensor responses, α0 and α1 represent the intercept and 
slope of the least-squares fit, respectively, for the corresponding reference measurements 
(yi) and α2, α3 and α4 represent the corresponding weights for the temperature (y2), 
pressure (y3) and relative humidity (y4) variables, respectively, according to more impor
tant variables in results in Figures 3 and 4 in above section.

4.4. Random Forest (RF)

In the analysis procedure, explanatory methods should be used in accordance with the 
existing data. Thus, the best model is the one that identifies the correct model complexity. 
Therefore, in addition to the types of procedures that were reviewed in the development 
of the present project (e.g. linear regression, and multiple linear regressions); finally, the 
use of the family of decision tree algorithms has also been considered. Specifically, the 
Random Forests algorithm (Breiman 2001) was selected because it is fast, computationally 
effective, robust in the presence of noisy data, offers possibilities for the explanation of 
the data, and error estimates can be made (Tsymbal, Pechenizkiy, and Cunningham 2006). 
Moreover, it is a comparable method and, according to the tests carried out, in most cases 
it has a better predictive capacity than classical regression methods. Finally, it is a non- 
parametric procedure that is very useful when there are many correlated variables and 
few data, or when there are complex interactions between predictor variables or when 
there is a lot of missing data. Random Forests is a classifier-regressor that consists of an 
independent, identically distributed, random collection of classifiers organized into trees, 
with each tree contributing a single vote. Basically, for clustering or regression problems, 
Random Forests randomly selects a subset of the attributes and then re-selects the best 

Figure 4. Total variance explained for variables related to particulate matter pollutants along two 
principal components.
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cut among them. Subsequently, the process is repeated for each of the trees (many trees 
grow in the same way) to build a forest. Finally, all the trees are used in the final result 
from the average of the results of each of the trees.

Once the model has been made and calculated a file is stored on the hard disk and 
subsequently included in the software structure of the low-cost station to translate the 
sensor's original measurements to the calibrated measurement with the model. This 
ensures consistency in future measurements.

4.5. Performance evaluation methods

To establish comparisons between calibration models for the station sensors, we have 
used a set of error estimators that could evaluate the performance of the calibrations 
made at the low-cost stations. The usual error estimators such as mean absolute error, 
R2 score, accuracy, mean square error have been used in this performance evaluation. 
Additionally, we will use as an estimator for the robustness evaluation of Goodness-of-Fit 
of Regressions the metric defined by the root mean squared error (RMSE), described by 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ŷi � yið Þ

2
q

.
Additionally, to measure the behaviour of the models tested and compare results, we 

use the R2-Score metric that measures the proportion of the variance in the dependent 
variable that is predictable from the independent variables. It is usually also known as the 
Coefficient of Determination.

Finally, we have also used the correlation coefficient calculated between the time 
series for the particulate matter measurements before and after calibration, that is, the 
measure of linear association between the original measurements (from the reference 
station) and the measurements resulting from the application of each of the models to the 
original measurements from the low-cost station.

5. Results and discussion

Considering the data described in the previous section, we first show some descriptive 
statistics for the data collected prior to the performance and application of the calibration 
methods.

The descriptive statistics of air quality measurements from low-cost stations compared 
to reference stations in Bogotá reveal several insights. In terms of particulate matter (PM10 

and PM2:5), the average concentrations are slightly lower in low-cost stations compared to 
reference stations, with PM10 averaging 24.60 μg/m3 and PM2:5 averaging 21.81 μg/m3 in 
low-cost stations, versus 25.63 μg/m3 and 15.39 μg/m3 respectively in reference stations. 
The variability indicated by the standard deviation, is also comparable between the two 
types of stations. The range of PM10 values is between 1.75 μg/m3 and 61.58 μg/m3 in low- 
cost stations, similar to the range in reference stations (from 3.4 μg/m3 to 80.2 μg/m3), for 
PM10. Meanwhile, the range of PM2:5 values is from 0 μg/m3 to 48.09 μg/m3 in low-cost 
stations, while in reference stations, it ranges from 0 μg/m3 to 62 μg/m3.

The average temperature recorded in low-cost stations (15.29 �C) is similar to that in 
reference stations (15.37 �C), with a relatively low standard deviation (approximately 
0.92 �C for both low-cost and reference). The temperature range is from 10.98 �C to 
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22.48 �C similar both in low-cost stations and reference stations. The mean humidity is 
slightly higher in low-cost stations (66.05%) compared to reference stations (63.34%), with 
a standard deviation of approximately 7.17%. The humidity ranges from 36.42% to 78.40% 
in both low-cost stations and reference stations.

In other words, the average irradiance measured in low-cost stations (22.52 W/m2) is 
consistent with that in reference stations, with a standard deviation of approximately 
38.16 W/m2. The range of irradiance values varies from 0 W/m2 to 798.56 W/m2.

Results from basic descriptive statistics for Bucaramanga city are similar that the above. 
In terms of particulate matter (PM10 and PM2:5), the average concentrations are slightly 
lower in low-cost stations compared to reference stations. Specifically, PM10 averages 
around 14.28 µg/m3 and PM2:5 averages approximately 13.26 µg/m3 in low-cost stations, 
while reference stations show slightly higher values with PM10 averaging 25.69 µg/m3 

and PM2:5 averaging 12.12 µg/m3. The variability, as indicated by the standard deviation, 
varies across these measurements, in case of PM10 and PM2:5 with 8.37 µg/m3 and 7.67 µg/ 
m3 for low-cost stations, and 7.14 µg/m3 and 4.57 µg/m3 for reference stations, 
respectively.

Regarding temperature and humidity, the average air temperature recorded in low- 
cost stations (30.87 �C) is higher than in reference stations (23.79 �C), with a relatively low 
standard deviation (approximately 1.26 �C for both low-cost and reference). Humidity 
levels are also comparable, with slightly higher mean relative humidity in reference 
stations (74.17%) compared to low-cost stations (74.17%), showing moderate variability 
within the data.

No significant variation is exhibited for solar radiation measurements with the relation 
of reference stations recording a wider range of values (from 0.4 W/m2 to 233.1 W/m2) 
compared to low-cost stations.

In the first instance, a simple linear regression using least squares methods has been 
used to adjust the values of the interesting variables of the low-cost stations, PM10 and 
PM2:5 in both cities in terms only of the corresponding variables measured by the 
reference stations. The results of such a calibration procedure for each variable of the 
four stations available in the testing phase are shown in Table 2 as well in Figures 9 and 
10. The coefficient of determination (R2) as well as for each calibration is given in Table 2.

To generalize the results obtained from linear regression calibration, we proceed with 
multiple linear regression using additional predictor variables beyond PM10 and PM2:5 

from reference stations. Specifically, we incorporate temperature, humidity, pressure, and 
solar irradiance as predictor variables. These auxiliary variables are selected based on the 
outcomes established through dimensionality reduction using PCA (see Figure 3 and 4). 
By including these variables in our regression model, we aim to enhance the robustness 

Table 2. Summary of calibration results of low-cost station with linear regression method in 
field using Equation 1.

Parameter/Species PM10 BGA PM2:5 BGA PM10 BOG PM2:5 BOG

α0 (intercept) 15.6514 4.6797 17.9986 8.1577
α1 (slope) 0.7056 0.5600 0.3174 0.3377
RMSE 3.7808 1.5595 10.0832 6.1013
R2 score 0.7011 0.8725 0.1410 0.2310
Correlation (r) 0.8374 0.9340 0.3774 0.4812
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and accuracy of our air quality predictions. This approach leverages comprehensive 
environmental data to develop a more holistic understanding of the relationships 
between pollutant concentrations and key meteorological factors, facilitating more 
nuanced and reliable air quality assessments across the monitoring network. The results 
and coefficient of determination (R2) for each calibration are given in Table 3.

Tables 2 and 3 show the calibration evaluation using linear regressions and multiple 
linear regression, respectively, for entire time intervals of data. In the case of PM10, the 
regression coefficients for linear regression are α0 ¼ 15:6514 (intercept), α1 ¼ 0:7056 
(slope), and for PM2:5 the coefficients are α0 ¼ 4:6797 (intercept), α1 ¼ 0:5600 (slope); 
while for the multiple linear regression we have for PM10 the coefficients 526.3294, 0.7537, 
−0.9931, −0.4952, −0.6671, 0.0016 and for PM2:5 the coefficients 500.2963, 0.5820, 
−0.4402, −0.5208, −0.2482, −0.0007, respectively, for intercepts and weight for specie 
variable, temperature, pressure, relative humidity and solar radiation.

For the case of using Random Forest we have used Nf ¼ 4 features, Ne ¼ 800 estima
tors, and in addition, we have used 50% of the data to construct the random data set for 
training and 50% of the data for testing. The results of this calibration with these 
parameters have been summarized in Table 4.

The summary of the calibration results obtained from the Random Forest model for 
low-cost stations provides valuable information on the predictive performance and sig
nificance of features across different parameters and pollutant species in the field.

First, the feature importance analysis reveals that the most significant predictors for 
PM10 and PM2:5 measurements at the Bucaramanga station are sensor-specific para
meters, indicating a strong dependence on direct sensor readings for accurate predic
tions. In contrast, for the Bogota station, sensor-specific parameters are still important, but 
show relatively less importance compared to temperature, pressure, relative humidity and 

Table 3. Summary of calibration results of low-cost station with linear multiple regression 
method in field.

Parameter/Species PM10 BGA PM2:5 BGA PM10 BOG PM2:5 BOG

α0 (intercept) 526.3294 500.2963 1121.0498 263.8161
α1 (specie slope) 0.7537 0.5820 0.2818 0.2999
α2 (Temperature) −0.9931 −0.4402 −0.2563 0.1239
α3 (Pressure) −0.4952 −0.5208 −1.4726 −0.3526
α4 (Rel. Humidity) −0.6671 −0.2482 0.1355 0.1282
α5 (R. Solar) 0.0016 −0.0007 0.0152 0.0015
RMSE 3.3674 1.3267 9.9632 6.0091
R2 score 0.7787 0.9127 0.1571 0.2474
Correlation (r) 0.8824 0.9554 0.3984 0.4982

Table 4. Summary of calibration results of low-cost station with Random Forest estimator in field.
Parameter/Species PM10 BGA PM2:5 BGA PM10 BOG PM2:5 BOG

Import. Param. (sensor specie) 0.8171 0.9023 0.3541 0.4523
Import. Param. (Temperature) 0.0339 0.0278 0.1816 0.1592
Import. Param. (Pressure) 0.0369 0.0257 0.1791 0.1404
Import. Param. (Rel. Humidity) 0.0924 0.0338 0.1973 0.1769
Import. Param. (R. Solar) 0.0193 0.0101 0.0878 0.0710
RMSE 1.7905 0.9617 6.1498 5.0392
Accuracy (%) 95.4243 95.3937 78.2196 79.4427
R2 score 0.9375 0.9556 0.8293 0.8430
Correlation (r) 0.9682 0.9776 0.8251 0.8267
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solar irradiance. This suggests that environmental factors play a more substantial role in 
the prediction of air pollutant concentrations in Bogotá.

However, having very low relative importance in RF model, it takes the data from the 
reference station of the specific contamination sensor and is able to predict the correct 
value with which the calibration works. In other words, what this means is that the 
environmental factors are important but the model is able to calibrate itself basically 
with the measurement of the corresponding pollution sensor. This is interesting since this 
means that if the low-cost station is moved to another location with different conditions 
the calibration could continue to work for much longer.

The RMSE values provide information on the accuracy of the model in predicting 
pollutant concentrations. The lower RMSE values for PM2:5 (see Figures 5–7), in both 
Bucaramanga and Bogotá, indicate higher accuracy compared to PM10 (see Figures 8–10), 
with Bucaramanga achieving slightly better accuracy overall.

Model performance is further evaluated by accuracy percentages and R2 scores, which 
indicate high levels of predictive accuracy for both PM10 and PM2:5 measurements in 
Bucaramanga and Bogotá. Strong correlation coefficients (r) further support these 

(b)(a)

Figure 5. Dispersion of measurements of the low-cost station with respect to the reference station for 
PM2:5 species (after calibration) for all calibration methods explored.

Figure 6. Evaluation of the calibration models in PM10 measurements for the low-cost station in terms 
of the reference station, after calibration and before calibration.
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findings, highlighting robust relationships between predicted and observed values for air 
pollutants.

The Random Forest model demonstrates promising results in predicting air pollutant 
concentrations at low-cost stations, with different levels of importance assigned to 
specific sensor parameters and environmental factors at different locations. The high 
accuracy and strong correlations suggest that the incorporation of multiple predictors 

Figure 7. Evaluation of the calibration models in PM25 measurements for the low-cost station in terms 
of the reference station, after calibration and before calibration.

(b)(a)

Figure 8. Dispersion of measurements of the low-cost station with respect to the reference station for 
PM10 species (after calibration) for all calibration methods explored.

Figure 9. Evaluation of the calibration models in PM10 measurements for the low-cost station in terms 
of the reference station, after calibration and before calibration.
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improves the predictive capabilities of the model, underscoring the potential of machine 
learning techniques for reliable air quality monitoring and assessment in urban 
environments.

One of the big challenges of using low-cost sensors is that they are very susceptible to 
significant variations and changes with respect to temperature and relative humidity 
(Aleixandre and Gerboles 2012; Mead et al. 2013; Schneider et al. 2017) in the near 
environment. The manufacturers of the sensors, we use in our low-cost stations bring 
with them generic data describing the relationship between sensor current response, 
temperature and relative humidity, which are supplied by the manufacturer. Although we 
have considered these corrections in our stations, we can see that there are conditions 
that cannot be understood from linear (multiple) regression algorithms, although cer
tainly with much more optimization with machine learning algorithms, which are able to 
understand nonlinear models of data behaviour from many descent trees.

Our results demonstrate that each sensor exhibits a unique response pattern, necessi
tating individualized and customized calibration for accurate field deployment, but 
unique, because environmental factors, although they help the model, are relatively 
small in importance. Frequently, manufacturer-provided information is incomplete for 
effectively compensating sensor behaviour under real-world measurement conditions, 
characterized by significant fluctuations in temperature and relative humidity. This knowl
edge gap underscores the importance of recent studies utilizing post-processing techni
ques such as multiple regression, neural networks, and machine learning to mitigate the 
impact of environmental variables on the performance of low-cost sensors (Morawska 
et al. 2018; Spinelle et al. 2015, 2017).

The calibration process involved the application of various techniques, including simple 
linear models (LR), multivariate linear estimation (MLR), and the utilization of machine 
learning, specifically Random Forest estimators. The results demonstrated a marked 
improvement in calibration accuracy when employing Random Forest models. Notably, all 
models exhibited significant enhancements in terms of RMSE, with Random Forest showing 
the most remarkable reduction, up to 86%. This underscores the potential of machine 
learning algorithms in addressing calibration challenges associated with low-cost sensors.

The results demonstrate that Random Forest allows for calibration where 
meteorological variables have relatively little importance. While this may pose 
a challenge for environmental conditions with significant differences, calibration 
can still be valid in other scenarios with similar environmental conditions. In citizen 

Figure 10. Evaluation of the calibration models in PM10 measurements for the low-cost station in 
terms of the reference station, after calibration and before calibration.
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science projects employing these devices, it is common to have a pair of reference 
equipment (very expensive) for cities with similar environmental conditions, which 
do not cover the entire area of interest, and supplement them with low-cost 
stations. Thus, calibration is carried out with the nearest reference equipment 
before distributing the low-cost stations in the city.

This study underscores the importance of addressing air pollution, not only in 
outdoor environments but also within indoor spaces, where people spend 
a significant proportion of their time. The development of low-cost, flexible air 
quality monitoring stations represents a promising approach to assess air pollution 
in diverse settings. Calibration plays a crucial role in ensuring measurement accuracy, 
and machine learning algorithms, particularly Random Forest, offer substantial 
improvements in calibration results. However, the unique responses of sensors 
require customized calibration, emphasizing the complexity of mitigating environ
mental influences on low-cost sensor data. Despite these challenges, this research 
demonstrates the feasibility of maintaining stable and accurate calibration over an 
extended period, providing valuable insights for ongoing air quality monitoring 
efforts.

Note

1. In the case of Colombia, we have detailed a complete and concise protocol to management 
of monitor stations, analysis, operation, etc, for example: https://www.minambiente.gov.co/ 
wp-content/uploads/2021/06/Protocolo_Calidad_del_Aire_-_Manual_Diseno.pdf.
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