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• A meticulously curated dataset from SOHO images, spanning spectral bands and topological features, enriches
solar understanding and fuels interdisciplinary investigations.

• Automated Integration: Python code automates image acquisition, processing, and parameter calculation,
enhancing efficiency and maintaining data integrity throughout.

• Cross-Disciplinary Value: Enriched insights in spectral and topological attributes extend applications beyond
solar physics, driving interdisciplinary research and innovation.
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A B S T R A C T
The present study presents an extensive dataset meticulously curated from solar images sourced
from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands.
This collaborative effort spans multiple disciplines and culminates in a robust and automated
methodology that traverses the entire spectrum from solar imaging to the computation of spectral
parameters and relevant characteristics.

The significance of this undertaking lies in the profound insights yielded by the dataset.
Encompassing diverse spectral bands and employing topological features, the dataset captures
the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses
with other solar phenomena. Consequently, the data’s intrinsic value is greatly enhanced,
affording researchers in solar physics, space climatology, and related fields the means to unravel
intricate processes.

To achieve this, an open-source Python library script has been developed, consolidating
three pivotal stages: image acquisition, image processing, and parameter calculation. Originally
conceived as discrete modules, these steps have been unified into a single script, streamlining the
entire process. Applying this script to various solar image types has generated multiple datasets,
subsequently synthesized into a comprehensive compilation through a data mining procedures.

During the image processing phase, conventional libraries like OpenCV and Python’s image
analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilized
established URL libraries in Python, facilitating direct access to original SOHO repository
images and eliminating the need for local storage.

The computation of spectral parameters involved a fusion of standard Python libraries and
tailored algorithms for specific attributes. This approach ensures precise computation of a diverse
array of attributes crucial for comprehensive analysis of solar images.

∗Corresponding author
∗∗Principal corresponding author

jose.tarazona6@correo.uis.edu.co (M. Tarazona-Alvarado); dporta@utb.edu.co (D. Sierra-Porta)
ORCID(s): 0000-0001-9935-1094 (M. Tarazona-Alvarado); 0000-0003-3461-1347 (D. Sierra-Porta)

M. Tarazona-Alvarado & D. Sierra-Porta et al.: Preprint submitted to Elsevier Page 1 of 6



Dataset for Sun dynamics from topological features

Specifications Table
Subject Space weather
Specific subject area Data Science, Heliosphere, Sun dynamics, Topology, Time series
Type of data Text Files (csv-formatted)
How data were acquired Solar disc images obtained from SOHO space satellite. To obtain our data, we

have taken the public SOHO images and written a Python code to calculate (from
each image), various indices and spectral features from the time series. The
Python codes are also publicly available at the web address: https://soho.
nascom.nasa.gov/data/REPROCESSING/Completed/.

Data format Raw and Filtered
Description of data collection
Data source location Public open data from SOHO space mission.

URL: https://soho.nascom.nasa.gov/data/REPROCESSING/
Completed/.
Public open data from SILSO (Royal Observatory of Belgium) Brusells
Observatory.
URL: https://www.sidc.be/SILSO/datafiles.

Data accessibility Repository name: Mendeley Data
Data identification number: 10.17632/5gh3xbvc92.1
Direct URL to data: https://data.mendeley.com/datasets/
5gh3xbvc92/1

1. Value of the Data
In the realm of heliospheric and solar investigation, the acquisition of robust and comprehensive data holds

paramount significance in unraveling the underlying mechanisms governing solar activity. The current endeavor,
centered on curating time-series datasets through solar images captured by the Solar and Heliospheric Observatory
(SOHO) [1], presents an opportunity to expand our comprehension of solar dynamics and its implications within
the interplanetary space milieu. As the scientific community delves into inquiries surrounding the nuances of solar
activity and its ramifications at terrestrial and cosmic levels, this dataset emerges as a pivotal resource for advancing
our understanding within this domain of study.

The unique essence of this project lies in its multidimensional approach, amalgamating spectral data and topological
attributes extracted from solar images across a spectrum of light ranges, spanning from visible to ultraviolet and
infrared. These images encapsulate a substantial reservoir of information pertaining to solar activity across varying
temporal scales, encompassing phenomena from sunspots to solar flares. By computing diverse indices and features
that encapsulate the images’ intensity, texture, and intricacy, this dataset crystallizes as an inherent trove of insights
into solar behavior.

The substantial potential of this dataset extends beyond the confines of its immediate application in modeling
specific solar traits. Within these supplementary attributes, the scientific community will discover an invaluable
resource nurturing the formulation and refinement of predictive and explanatory models for intricate solar phenomena,
including fluctuations in magnetic activity and interplanetary oscillations. The correlation and scrutiny of these
attributes in relation to other solar parameters establish a critical pathway towards a more enriched comprehension
of the interlinkages among disparate facets of solar activity, thereby shedding crucial light on predicting potentially
disruptive space weather events within our solar system’s framework.

The accessibility of such an expansive and meticulously computed dataset will not only augment individual research
endeavors but will also establish a platform for the flourishing of collaboration and the exchange of ideas within
the scientific realm. Researchers hailing from diverse disciplines, spanning from solar physics to astrophysics and
space climatology, will find within this dataset an irreplaceable asset for substantiating and refining their theoretical
propositions and models. The convergence of multidisciplinary data might unveil patterns and trends that have hitherto
remained concealed, unveiling novel avenues for comprehending solar processes and their repercussions across the
solar system in its entirety.
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The dataset generated from these solar images and their spectral characteristics has crucial applications in the
training of prediction and forecasting models in multiple contexts. On the one hand, it allows the development of solar
flare forecasting models by analyzing the images and associated features, which is essential to ensure the safety of space
missions and the protection of infrastructures on Earth. In addition, these features can be used to model fluctuations in
the solar magnetic field, which is relevant for understanding and anticipating changes in the Earth’s magnetosphere and
their impact on navigation and communications. Finally, the dataset is also valuable for investigating and predicting
patterns in long-term solar cycles, contributing to the understanding of solar activity over time and its influence on space
weather. These applications are critical for astronaut safety, space mission planning, and protection of ground-based
infrastructure from potentially disruptive solar events.

2. Data Description
We have generated an impressive and diverse dataset from time series, encapsulating information from six distinct

filters of the SOHO cameras. These data span both the native image resolution and capture frequency, providing a
detailed and temporally rich view of solar activity. Notably, the HMIIGR and HMIMAG (Helioseismic and Magnetic
Imager Intensitygram) in the electromagnetic spectrum range of the visible region and part of the near-infrared
spectrum, respectively, filters offer captures every hour and a half [2, 3], and EIT171, EIT195, EIT284 and EIT304
(Extreme Ultraviolet Imaging Telescope 304) in the extreme ultraviolet region, for 171, 195, 284 and 304 angstroms,
respectively provide two images per day [4, 5].

This wide range of capture frequencies allows for a deep exploration of patterns and changes in solar activity
across different temporal scales. Additionally, the computation of 14 key parameters in the images, such as: entropy,
mean intensity, standard deviation, skewness, kurtosis, relative smoothness, uniformity, fractal dimension, taruma
contrast, taruma directionality, taruma coarseness, taruma linelikeness, taruma regularity and taruma roughness, adds
a significant dimension to our data [6]. These parameters offer a detailed characterization of the properties of solar
images, from texture to complexity and regularity.

The chosen time span, from 2011 to the present year, is highly relevant as it encompasses a significant range of
changes in solar activity and associated phenomena. This enables the observation of long-term trends, solar cycles,
and anomalous events that might have occurred during this period (See Fig. 1).

Data hold immense potential for delving into the understanding of solar activity in its multiple dimensions. From
the differences in resolution and capture frequency to the richness of the calculated parameters, your work provides a
solid foundation for interdisciplinary research in fields like solar physics, space climatology, and image analysis. These
data could be key to uncovering correlations and patterns not previously evident, potentially leading to new insights into
solar dynamics and its implications in interplanetary space. In summary, your dataset represents a valuable contribution
to knowledge in the field of solar research and its impact on the surrounding space.

Figure 1: Images used for the construction of the results. All images are for day 20230101 and are presented in order from
left to right HMIIGR and HMIMAG (Helioseismic and Magnetic Imager Intensitygram) in the electromagnetic spectrum
range of the visible region and part of the near-infrared spectrum, respectively, and EIT171, EIT195, EIT284 and EIT304
(Extreme Ultraviolet Imaging Telescope 304) in the extreme ultraviolet region, for 171, 195, 284 and 304 angstroms,
respectively.

3. Experimental Design, Materials and Methods
For the purpose of creating this database, we initially developed an open-source Python code library script.

This initial library script served to retrieve the images from server (https://soho.nascom.nasa.gov/data/
REPROCESSING/Completed/). Subsequently, we crafted another Python code library to handle the image processing
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phase. Lastly, a final library was created to compute the parameters and spectral characteristics. All these individual
libraries were amalgamated into a comprehensive script that performs all the necessary tasks automatically.

To produce the various datasets, we execute the main script for each image type. Following this, a data mining
process is employed to consolidate the obtained data into the ultimate dataset. Notably, during image processing, we
rely on commonly used and standard OpenCV libraries along with Python’s image analysis capabilities. In contrast,
for image retrieval tasks, established URL libraries are utilized. It’s important to highlight that throughout this process,
images are not downloaded to the hard disk. Instead, the entire workflow revolves around accessing the images directly
from the original SOHO repository.

Lastly, when it comes to calculating spectral parameters, a combination of standard Python libraries is employed
for certain aspects. However, for other specific features, custom proprietary code has been developed.

The dataset comprises 14 meticulously calculated parameters, each offering a distinctive mathematical insight into
the solar images. These parameters encompass a spectrum of characteristics that span the complexity, texture, and
intensity of the images. Entropy quantifies the image’s randomness and diversity, such as 𝐸 = −

∑𝑁
𝑖=1 𝑝𝑖 ⋅ log2(𝑝𝑖)where 𝑝𝑖 represents the probability of occurrence of a particular pixel intensity value within the image. It’s a measure

of how frequently a certain intensity value appears in the image. Mathematically, 𝑝𝑖 is calculated by dividing the number
of occurrences of intensity value by the total number of pixels in the image 𝑁 . This probability is then used in the
entropy formula to compute the entropy of the image based on the distribution of pixel intensity values. From Fig. 2
we can see that entropy parameter is very correlated with sunspot number in same interval more visually impacting in
the extreme ultraviolet filters.
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Figure 2: Entropy variations observed across different filtered image series obtained from diverse filters. The x-axis represents
the chronological progression of time, while the y-axis displays the entropy values. Each line on the graph corresponds to
a distinct filter, revealing the dynamic changes in image complexity over time.

The mean intensity (𝜇) is calculated by summing up the product of pixel intensities and their corresponding
probabilities, which is essentially the average intensity value in the image. Standard deviation (𝜎) is calculated using
the probabilities and pixel intensities. It quantifies the dispersion of pixel intensities from the mean intensity. Skewness
(𝑔) measures the asymmetry of the intensity distribution. The code calculates it using the probabilities and intensities,
focusing on how the distribution deviates from symmetry. Kurtosis (𝐾) quantifies the peakedness of the intensity
distribution. Similar to skewness, it’s calculated using probabilities and intensities, assessing how the distribution
deviates from a normal distribution.

Uniformity represents how even the distribution of pixel intensities is. It’s calculated by summing the squared
probabilities. Relative smoothness is calculated using the standard deviation, with a formula that transforms it into a
value between 0 and 1, indicating the level of smoothness or roughness in the image.

The Taruma Contrast metric is designed to assess the contrast characteristics of an image based on its standard
deviation and kurtosis. These statistical properties provide insights into the distribution of pixel intensities and their
relative frequency. The Taruma Contrast is computed using 𝐶𝑡𝑎𝑟𝑢𝑚𝑎 = 𝜎2∕𝐾0.25. The Taruma Contrast metric reflects
the balance between the image’s standard deviation and kurtosis, providing a measure of how the distribution’s shape
affects the perceived contrast. A higher value indicates a stronger contrast between pixel intensities, while a lower
value suggests a more balanced or distributed intensity range. This metric is valuable for characterizing the image’s
contrast properties and can be applied in various image analysis tasks, including texture analysis, quality assessment,
and image enhancement.
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The Taruma Directionality metric quantifies the predominant directionality of features within an image. It involves
analyzing the gradients and direction of edges to determine the overall directionality of patterns present in the image.
The Taruma Directionality is computed using 𝐷𝑡𝑎𝑟𝑢𝑚𝑎 = 1 − (𝑟 ⋅ 𝑛 ⋅ 𝐹𝑑𝑖𝑟), where 𝑟 is a normalization factor, 𝑛 is
the number of bins in the directionality histogram, and 𝐹𝑑𝑖𝑟 represents a measure of the distribution of directions in
the image. The calculation of 𝐹𝑑𝑖𝑟 involves constructing a directionality histogram based on the gradients’ directions
and magnitudes. Peaks in this histogram indicate predominant directions. The formula incorporates the number of
peaks and the distribution of these peaks to determine the Taruma Directionality value. A higher value suggests a
stronger predominant directionality, while a lower value indicates a more balanced distribution of directions. The
Taruma Directionality metric is valuable for characterizing the orientation and alignment of features in an image. It
provides insights into the image’s structural patterns and can be used in applications such as texture analysis, pattern
recognition, and image classification.

The Taruma Coarseness metric is calculated based on the wavelet transform coefficients of an image. These
coefficients capture variations in texture and patterns across different scales. Let 𝑐𝑤𝑎𝑣𝑒𝑙𝑒𝑡 denote the set of wavelet
transform coefficients of the image, the Taruma Coarseness is calculated as the normalized sum of the absolute values
of these coefficients 𝐶 ′

𝑡𝑎𝑟𝑢𝑚𝑎 =
∑

𝑐𝑤𝑎𝑣𝑒𝑙𝑒𝑡∕𝑁 , where 𝑁 is the image size or the total number of pixels in the image.
The Taruma Coarseness metric provides a quantified measure of the roughness or coarseness of an image’s texture.
A higher value indicates a greater presence of coarse or rough textures, while a lower value suggests a smoother and
finer texture. This metric is particularly useful for characterizing textures in images and can be employed in various
applications, such as image analysis and classification tasks.

The Taruma Linelikeness metric quantifies the presence and prevalence of linear patterns or lines in an image. It
involves analyzing the image’s gradient components and direction to determine the extent to which the image contains
linear features. The Taruma Linelikeness is computed using𝐿𝑡𝑎𝑟𝑢𝑚𝑎 =

∑

| sin(2𝜃)|∕𝑁 , where 𝜃 represents the direction
of the gradient at each pixel, and the calculation involve aggregate of the absolute values of the sine of twice the gradient
direction. The formula captures the alignment of gradients along the image’s edges, effectively quantifying the linelike
structures present in the image. A higher value of 𝐿𝑡𝑎𝑟𝑢𝑚𝑎 indicates a stronger prevalence of linear features, while
a lower value suggests a more balanced distribution of orientations. The Taruma Linelikeness metric is useful for
identifying and characterizing linear patterns in images. It can be applied in various contexts, such as line detection,
texture analysis, and pattern recognition tasks.

The Taruma Regularity metric quantifies the uniformity and repeatability of patterns present in an image. It
involves analyzing the properties of the image’s co-occurrence matrix, which captures the relationships between
pixel intensities at various distances and angles. The Taruma Regularity is computed using the following formula:
𝑅𝑡𝑎𝑟𝑢𝑚𝑎 = [1 + 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 − 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛], where 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 is a measure of the intensity contrast between neighboring
pixel pairs in the co-occurrence matrix and 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 quantifies the linear dependence between pixel pairs in the
matrix. The formula combines these two properties to calculate the regularity of patterns in the image. A higher value of
𝑅𝑡𝑎𝑟𝑢𝑚𝑎 indicates a higher degree of regularity and uniformity in patterns, while a lower value suggests more irregular
or varied patterns.

Finally, the Taruma Roughness metric quantifies the degree of roughness or texture irregularity present in an image.
It involves analyzing the image’s texture properties using the co-occurrence matrix, which captures the relationships
between pixel intensities at various distances and angles. The Taruma Roughness is computed using the following
formula: 𝑅′

𝑡𝑎𝑟𝑢𝑚𝑎 = (1 − 𝐸𝑛𝑒𝑟𝑔𝑦) × 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦, where 𝐸𝑛𝑒𝑟𝑔𝑦 is a measure of the distribution of pixel pair
intensities in the co-occurrence matrix and 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 quantifies the similarity of pixel pair intensities in the matrix.
The formula combines these two properties to calculate the roughness of textures in the image. A higher value of
𝑅′
𝑡𝑎𝑟𝑢𝑚𝑎 indicates a higher degree of roughness or texture irregularity, while a lower value suggests smoother and

more uniform textures. The Taruma Roughness metric is useful for characterizing the roughness or fine-scale texture
variations in images. It can be applied in tasks such as texture analysis, quality assessment, and image enhancement,
where understanding the texture properties is important.

Figure 3 displays the normalized histogram of some parameters obtained during the dataset construction,
considering all the available years. A distinct behavior is evident between the data from HMIIGR and HMIMAG
images and those obtained from the extreme ultraviolet bands.

Finally, investigation in spectral and topological feaures in the context of spatial climate research is ultimately
important for understanding various phenomena and establishing patterns for predictability and forecasting of solar
wind and cosmic ray time series [7, 8].
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Figure 3: Normalized histogram of some of the parameters calculated in the data set constructed for entropy, uniformity,
fractal dimension, taruma coarseness, taruma roughness, taruma linelikeness, considering all the years from 2011 to 2023.
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