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A B S T R A C T   

Wind represents a primary source of disturbances in forests, necessitating an assessment of the resulting damage 
to ensure appropriate forest management. Remote sensing, encompassing both active and passive techniques, 
offers a valuable and efficient approach for this purpose, enabling coverage of large areas while being cost- 
effective. Passive remote sensing data could be affected by the presence of clouds, unlike active systems such 
as Synthetic Aperture Radar (SAR) which are relatively less affected. Therefore, this study aims to explore the 
utilization of bitemporal SAR data for windthrow detection in mountainous regions. Specifically, we investigated 
how the detection outcomes vary based on three factors: i) the SAR wavelength (X-band or C-band), ii) the 
acquisition period of the pre- and post-event images (summer, autumn, or winter), and iii) the forest type 
(evergreen vs. deciduous). Our analysis considers two SAR satellite constellations: COSMO-SkyMed (band-X, 
with a pixel spacing of 2.5 m and 10 m) and Sentinel-1 (band-C, with a pixel spacing of 10 m). We focused on 
three study sites located in the Trentino-South Tyrol region of Italy, which experienced significant forest damage 
during the Vaia storm from 27th to 30th October 2018. To accomplish our objectives, we employed a detail- 
preserving, scale-driven approach for change detection in bitemporal SAR data. The results demonstrate that: 
i) the algorithm exhibits notably better performance when utilizing X-band data, achieving a highest kappa 
accuracy of 0.473 and a balanced accuracy of 76.1%; ii) the pixel spacing has an influence on the accuracy, with 
COSMO-SkyMed data achieving kappa values of 0.473 and 0.394 at pixel spacings of 2.5 m and 10 m, respec
tively; iii) the post-event image acquisition season significantly affects the algorithm’s performance, with sum
mer imagery yielding superior results compared to winter imagery; and iv) the forest type (evergreen vs. 
deciduous) has a noticeable impact on the results, particularly when considering autumn/winter data.   

1. Introduction 

Forest environments experience numerous natural disturbances that 
play a crucial role in their natural regeneration and adaptation. In 
Europe, wind stands out as the leading cause of over 50% of primary 
damage to forest ecosystems (Patacca et al., 2023; Sanginés de Cárcer 
et al., 2021). While windthrows contribute to the natural regeneration of 
forests, they also impose significant economic losses when viewed from 
an economic standpoint. Windthrows can have varying impacts, 
affecting both small forest patches and/or individual trees as well as the 
broader landscape. The extent of these impacts depends on the severity 

of the storm and other environmental conditions. Trees can suffer 
different degrees of damage, ranging from broken branches to complete 
uprooting. Certain studies have attempted to rank tree species based on 
their susceptibility to wind, although such classifications should be 
interpreted cautiously due to the influence of specific environmental 
conditions in which each species grows (Quine et al., 2021). Further
more, the severity of damage is also influenced by various factors, 
including topography, soil conditions (such as soil water content, depth, 
and organic matter), presence of permafrost, stand conditions (such as 
vertical and horizontal structures, and species composition), and man
agement activities (Albrecht et al., 2012; Jalkanen and Mattila, 2000; 
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Mitchell, 2013; Schelhaas, 2008; Seidl et al., 2014). 
As a result of climate change, it is anticipated that windthrow events 

will become more frequent in the future (Seidl et al., 2014). Conse
quently, there is a pressing need to develop systems capable of detecting 
and assessing damage caused by these events. From a management 
standpoint, it is crucial to identify the areas affected by windthrows in 
order to effectively harvest the damaged trees. This is particularly 
important because windthrow events can trigger subsequent natural 
events, such as bark beetle outbreaks, that significantly exacerbate for
est loss. Therefore, it is imperative to rapidly map the extent of damage 
in close proximity to the event, enabling forest managers to take prompt 
action. The accuracy of such mapping efforts is of utmost importance 
and strongly reliant on the availability of data to quantify the impacts of 
natural disasters. However, acquiring such data is typically challenging 
and time-consuming, often incurring substantial costs. Consequently, 
any alternative approach that can provide a preliminary assessment 
without significant time and financial burdens is advantageous. 

Remote sensing emerges as a highly valuable tool for detecting forest 
windthrows, particularly with the advent of new satellite constellations. 
These satellite systems offer daily or weekly coverage, enabling swift 
mapping of windthrows in the aftermath of an event. Furthermore, the 
latest generation of sensors exhibits very high spatial resolution, facili
tating precise and detailed mapping even for small-scale events. 
Numerous studies in the literature have leveraged various remote 
sensing data types and temporal approaches, such as single post-event 
images or multitemporal images encompassing the pre- and post-event 
periods (Dalponte et al., 2020; Einzmann et al., 2017; Jonikavičius 
and Mozgeris, 2013; Rich et al., 2010; Rüetschi et al., 2019; Schwarz 
et al., 2003). Among the different data sources, satellite optical images, 
especially multitemporal images, have been extensively employed for 
forest windthrow detection (Chirici et al., 2019; Dalponte et al., 2020; 
Einzmann et al., 2017; Jonikavičius and Mozgeris, 2013; Kislov and 
Korznikov, 2020; Nyström et al., 2014; Pirotti et al., 2016; Schwarz 
et al., 2003; Vorovencii, 2014; Wang and Xu, 2010). However, several 
studies have also utilized airborne data (Deigele et al., 2020; Hamdi 
et al., 2019; Wang and Xu, 2010) or data captured by unmanned aerial 
vehicles (UAVs) (Duan et al., 2017; Einzmann et al., 2017). 

The use of remote sensing data, particularly optical data, can 
encounter limitations due to weather conditions. Cloud cover or haze 
can significantly impact the quality of the data, sometimes rendering it 
entirely unusable. Additionally, when windthrow events occur in 
mountainous regions during autumn or winter, low sun angles can 
generate extensive shadow areas in optical data, further complicating 
the analysis. In a recent study, (Dalponte et al., 2020), these challenges 
were highlighted. The researchers demonstrated that while Sentinel-2 
and Planet images could deliver highly detailed windthrow detections 
under optimal acquisition conditions (such as using summer images 
before and after the event), their performance significantly declined 
when employing autumn or winter pre- and post-event images. This 
issue becomes particularly critical during emergency situations when 
immediate action must be taken following the occurrence of the event. 

Synthetic Aperture Radar (SAR) data presents a potential solution to 
address the aforementioned challenges. Several studies have success
fully utilized SAR data for windthrow detection (Eriksson et al., 2012; 
Fransson et al., 2002; Green, 1998; Lazecky et al., 2021; Rüetschi et al., 
2019; Schwarz et al., 2003; Tanase et al., 2018; Thiele et al., 2012; 
Ulander et al., 2005; Vaglio Laurin et al., 2021). Green (1998) conducted 
an analysis using different SAR images acquired from airborne platforms 
in L-band and C-band, considering four polarizations (HH, HV, VH, and 
VV). The study revealed that co-polarized backscatter (HH, VV) 
exhibited greater sensitivity to canopy gaps compared to cross-polarized 
(HV, VH), with C-band demonstrating potential as the most useful 
wavelength due to its larger dynamic range in backscatter compared to 
L-band. Additionally, the study identified significant relationships be
tween the shape of canopy gaps (measured by area, perimeter, and 
perimeter/area ratio) and resulting backscatter. Rüetschi et al. (2019) 

employed Sentinel-1C-band VV and VH polarimetric data to detect 
forest windthrows in Switzerland and Germany. They achieved high 
detection accuracy, with user’s and producer’s accuracy reaching 
approximately 85% for locating windthrow areas. However, the results 
were less accurate when detecting individual windthrown trees. Tanase 
et al. (2018) utilized ALOS L-band data for forest windthrow detection 
and achieved high levels of accuracy (up to 90%) using image thresh
olding as the detection approach. SAR data have also been widely 
employed for change detection purposes, including the detection of 
forest fires (Abdikan et al., 2022; Ban et al., 2020; Belenguer-Plomer 
et al., 2021; Bovolo and Bruzzone, 2005; Hosseini and Lim, 2023). 
Various SAR satellites are currently operational, such as Sentinel-1, 
ALOS-2, SAOCOM, ICEYE, Capella, TerraSAR-X and Tandem-X, 
RADARSAT, and COSMO-SkyMed. Some of these satellites or constel
lations provide high spatial resolution data, which can be advantageous 
for detailed windthrow patch detection. Additionally, the COSMO- 
SkyMed constellation offers the potential for acquiring two images per 
day, one in the ascending and one in the descending direction, thereby 
increasing the probability of conducting a comprehensive analysis of 
affected areas. 

The use of SAR data in mountainous areas encounters significant 
limitations, including foreshortening, layover, and shadows, as outlined 
in previous studies (Chen et al., 2018; Cigna et al., 2014; Wu et al., 
2021). Foreshortening occurs when the radar beam reaches the base of 
an inclined tall feature, such as a mountain slope, before reaching its top, 
resulting in an inaccurate representation of the slope length. Layover, on 
the other hand, arises when the radar beam reaches the top of a tall 
feature before reaching its base. Shadows in SAR images occur when 
higher objects obstruct the radar beam, preventing it from illuminating 
certain areas. As a result, shadowed regions appear dark in the image 
due to the absence of backscattered energy. The extent of shadow effects 
increases as the radar beam’s incidence angle becomes more oblique 
with respect to the surface. Given that forested areas often cover 
mountainous regions, the use of SAR data in such areas can pose chal
lenges. One approach to partially overcome this issue is to combine 
multiple SAR images acquired from different viewing directions (Ber
nardi et al., 2021; Horch et al., 2019; Wu et al., 2021). By leveraging 
acquisitions with varying viewing directions, different shadowed areas 
can be captured. For instance, in a mountainous area, a different 
acquisition direction may shift the shadowed area from one side of a 
valley to the other. By integrating multiple acquisitions, it becomes 
possible to achieve broader coverage of the area of interest with useful 
data. Many SAR satellite constellations offer the opportunity to combine 
ascending and descending data, enabling this approach. 

Despite the existing literature on windthrow detection using remote 
sensing data, certain aspects, particularly regarding the use of SAR data 
in mountainous areas, have remained unexplored. The primary objec
tive of this study is to investigate the effectiveness of multitemporal SAR 
data, acquired in both X and C bands (specifically COSMO-SkyMed and 
Sentinel-1 data), for detecting windthrows in mountainous regions. In 
particular, this study aims to examine the influence of the following 
factors on the detection results: i) SAR wavelength (C-band and X-band), 
ii) pixel spacing, iii) acquisition period, and iv) forest types (evergreen 
vs all). The impact of forest types is of particular importance, especially 
in cases where windthrows predominantly affect evergreen trees and 
occur during autumn in areas characterized by the presence of broad
leaved species (Udali et al., 2021). Under such circumstances, the leaf- 
off conditions of trees in the post-event image may introduce an addi
tional change that could potentially be mistaken for windthrow damage 
(Rüetschi et al., 2019). 

2. Data set description 

2.1. Study area 

The study area encompasses the administrative districts of the 
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Fiemme and Fassa valleys, located in the North-East part of the Auton
omous Province of Trento (PAT) in Italy (Fig. 1). It spans a total area of 
732 km2, with approximately 454 km2 covered by forests. The topog
raphy of the region is predominantly mountainous, and the most prev
alent tree species include Norway spruce (Picea abies (L.) H. Karst), silver 
fir (Abies alba Mill.) and European beech (Fagus sylvatica L.). In late 
October 2018, the area, along with the entire Northeast of Italy, expe
rienced the devastating Vaia storm, which stands out as one of the most 
severe storm events to occur in Italy in recent decades (Giovannini et al., 
2021). The storm brought heavy precipitation and snowfall at higher 
altitudes, accompanied by strong winds reaching speeds of up to 200 
km/h. The consequences for the forests in the study area were signifi
cant. Within our defined study area, a total of 46 km2 of forested land 
suffered damage out of the 454 km2 that were initially forested (Servizio 
Foreste e Fauna - Provincia Autonoma di Trento, 2018). Approximately 
65% of the damaged areas were dominated by Norway spruce, 17% by 
silver fir, 6% by pines, 5% by European beech, 4% by larch, and 3% by 
other species (Servizio Foreste e Fauna - Provincia Autonoma di Trento, 
2018). 

2.2. Reference data 

The reference data used for windthrows detection were obtained 
from three specific areas. The delineation of windthrows was carried out 
through manual photointerpretation using high-resolution imagery. 
Two SPOT-7 images with a spatial resolution of 1.5 m, captured on 17 
and 28 November 2018, were utilized for the initial mapping. Addi
tionally, four Dove images with a spatial resolution of 3 m, acquired 
before (two images: 23 June 2018 and 22 October 2018) and after (14 
November 2018 and 26 June 2019) the windthrows event, were used to 
refine the mapping in the areas shadowed or covered by snow in the 
SPOT-7 images. The minimum mapping unit was driven by the pixel size 
of the images used in the photointerpretation: the smallest area mapped 
was 9 m2, the largest 1,746,189 m2, the mean value was 6433 m2, and 
the median 396 m2. Fig. 1 displays the three designated areas where 
windthrows were delineated, and their specific characteristics are pre
sented in Table 1. The main distinguishing factors among the three areas 
are the variation in the percentage of deciduous forest types and the 
variation in median aspect of the covered terrain. 

2.3. COSMO-SkyMed data 

COSMO-SkyMed (COnstellation of small Satellites for the Mediter
ranean basin Observation) is a space-based satellite SAR constellation 
managed by the Italian Space Agency (ASI).1 This constellation consists 
of four medium-sized satellites (approximately 1700 kg) that provide 
global coverage. The satellites can collect observations on-demand and 
can revisit an area of interest twice a day, regardless of weather condi
tions. The SAR data acquired by COSMO-SkyMed can be obtained in 
both single- and dual-polarization, specifically in the X-band. The spatial 
resolution varies depending on the acquisition modes. In this study, 
archived data were utilized, with different images selected for each 
study site (refer to Table 2). Whenever possible, images were chosen 
from periods without heavy precipitations events, as illustrated in Fig. 2. 
All the images were acquired in the Stripmap HIMAGE mode in the HH 
polarization. The images were provided by ASI through the COSMO- 
SkyMed Open Call for Science in the processing level 1B - Detected 
Ground Multi-look (DGM). The level 1B (DGM) products are obtained 
starting from the L1A data and they contain: focused data, detected, 
radiometrically equalized and in ground range/azimuth projection. The 
main processing steps, performed on L1A input data, are: multi-looking 
for speckle reduction, image detection (amplitude), and ellipsoid ground 
projection. The images have a range and azimuth resolution of 5 m, a 

pixel spacing of 2.5 m, and a swath width and scene length of 40 km 
(Italian Space Agency, 2019). The equivalent number of looks is slightly 
larger than 3 for all the images used. 

2.4. Sentinel-1 data 

Sentinel-1 is a satellite SAR constellation managed by the European 
Space Agency (ESA) inside the Copernicus programme. The constella
tion includes two polar-orbiting satellites with global coverage of the 
planet. The constellation operates in the C-band. In this study we 
considered data acquired in Interferometric Wide (IW) swath mode that 
is the predefined mode used over land areas. The polarizations used 
were VV and VH which are the standard polarization used outside the 
polar and sea-ice regions. As for the COSMO-SkyMed data, we used the 
Level-1 Ground Range Detected (GRD) products that consist of focused 
SAR data that has been detected, multi-looked and projected to ground 
range using the Earth ellipsoid model WGS84. Inside the Level-1 GRD 
products we chose the high-resolution ones (GRDH), having a swath 
width of 250 km, azimuth resolution of 22.5 m, a range resolution of 
20.4 m, and a pixel spacing of 10 m. The equivalent number of looks is 
4.42. The images used in this study are summarized in Table 2 and Fig. 2. 

3. Methods 

3.1. Data pre-processing 

Each input image (XPRE and XPOST) was processed using the software 
SNAP (SNAP - ESA Sentinel Application Platform v8.0, http://step.esa.int). 
To each image, the calibration module and the range-doppler terrain 
correction module were applied (Fig. 3). The objective of SAR calibra
tion is to provide imagery in which the pixel values can be directly 
related to the radar backscatter of the scene. Due to topographical 
variations of a scene and the tilt of the satellite sensor, distances can be 
distorted in the SAR images. Terrain corrections are intended to 
compensate for these distortions so that the geometric representation of 
the image will be as close as possible to the real world. The range- 
doppler terrain correction module applies both an orthorectification 
and a radiometric normalization. The orthorectification is done applying 
the method proposed by (Small and Schuber, 2008), while the radio
metric normalization is based on the approach proposed by (Kellndorfer 
et al., 1998). The range-doppler terrain correction was done using a 
digital terrain model (DTM) at 2 m ground sampling distance provided 
by the local administration and extracted from a LiDAR survey carried 
out in 2015. Regarding the COSMO-SkyMed constellation we produced 
the images of the calibrated backscatter (sigma0 band) for the HH po
larization at a pixel spacing of 2.5 m (afterward referred to as CSK2.5) 
and at 10 m (afterwards referred to as CSK10), while for the Sentinel-1 
we produced the sigma0 bands of the VH and VV polarizations at 10 
m pixel spacing (afterward referred to as S1VH and S1VV). It is important 
to keep in mind that CSK10 is only an approximation of data at 10 m, 
since it has been generated starting from the CSK2.5, and not originally 
acquired at this resolution. 

Shadow and layover masks (MLS) were also extracted for each input 
image by means of SNAP using the SAR simulation module having the 
same DTM, used for the terrain correction, as input. The spatial reso
lution of these masks was the same as the corresponding sigma0 bands. 
Each sigma0 band was then masked using the corresponding MLS. All 
images were also masked using the forest/non-forest layer provided by 
the Forest Service of the Autonomous Province of Trento: only areas 
considered as forest were retained for the windthrows detection. These 
final images (XP

PRE and XP
POST) were the ones used as input to the wind

throws detection algorithm. 

1 https://www.asi.it/en/earth-science/cosmo-skymed/ 

2 https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-s 
ar/products-algorithms/level-1-algorithms/ground-range-detected/iw 
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3.2. Windthrows detection 

The proposed windthrows detection methodology was developed 
based on the change detection method proposed by Bovolo and Bruz
zone (2005) to detect forest fires using ERS-1 SAR data. The proposed 
windthrows detection is organised into four steps: i) creation of the log- 
ratio image; ii) multiscale decomposition/reconstruction; iii) Otsu 
thresholding of each multiscale component; and iv) final decision using 
a majority rule for each pixel. 

3.2.1. Creation of the log-ratio image 
In contrast to what happens in optical data when performing mul

titemporal analysis, SAR data cannot be directly compared by a uni
variate image difference because of the speckle noise present in these 
images that changes the statistical distribution of the data. The com

parison is then made by a ratio operation, instead of a subtraction one. 
This operation not only helps to reduce the speckle effects, but also to 
have independent absolute intensity with respect to the measured signal 
(Bovolo and Bruzzone, 2005). Since low-intensity values can be present 
in the images, it is common to express the ratio image in a logarithmic 
scale. Thus, the resulting log-ratio image XLR can be defined as the 
logarithm of the ratio between the pre-processed post- (XP

POST) and pre- 
event (XP

PRE) images: 

XLR = log
(

XP
POST

XP
PRE

)

(1) 

In XLR unchanged pixels assume values close to zero, whereas in
crease and decrease of backscattering assume positive and negative 
values far from zero, respectively. 

3.2.2. Multiscale decomposition/reconstruction 
Given the inherent noise present in SAR data, it is often necessary to 

apply spatial filtering techniques to enhance the Signal-to-Noise Ratio 
(SNR) of the images. However, such filtering operations typically lead to 
a trade-off between noise reduction in homogeneous areas and loss of 
spatial details. To address this challenge and preserve spatial details 
while reducing noise in homogeneous regions, a viable solution is to 
analyse the data at multiple spatial scales. This approach allows for 
noise reduction while retaining sensitivity to geometric details (Marin 
et al., 2015). The multiscale analysis involves examining the image at 
various levels of spatial resolution. High-resolution levels are utilized for 
analysing geometric details, while low-resolution levels provide insights 
into homogeneous areas. Specifically, low-resolution levels furnish in
formation about the windthrow’s location and approximate extent, 
while high-resolution levels supply the necessary geometric details to 
delineate area boundaries and detect subtle changes. Various methods 
can be employed to achieve multiscale decomposition, such as Lap
lacian/Gaussian pyramid decomposition, wavelet transform, recursively 
up-sampled bicubic filter, among others. In this study, we adopted a 

Fig. 1. Location of the three study areas. In dark-red the windthrow areas delineated by photointerpretation. In the inset the location of the study areas in Italy. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Characteristics of the three study areas.    

A B C 

Area (km2) 

Non-forest 6.1 3.9 3.9 
Intact forest 16.3 20.9 20.7 
Windthrows 5.0 3.1 2.8 
Total 27.4 27.9 27.4 

Windthrows 
patches 

Number 456 774 426 
Area range 
(m2) 36–1,746,189 9–389,781 9–737,316 

Median area 
(m2) 

472.5 288 567 

Altitude a.s.l. 
(m) 

Range 1095–2318 989–2291 1142–2487 
Median 1513 1511 1808 

Slope (◦) 
Range 0.003–77.7 0.009–79.2 0.255–77.8 
Median 29.7 24.9 31.0 

Aspect (◦) 
Range 0–360 0–360 0–360 
Median 154.8 233.8 193.4 

Forest types (%) Deciduous 12.2 5.4 24.2 
Evergreen 87.8 94.6 75.8  
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two-dimensional discrete Stationary Wavelet Transform (2D-SWT), 
following the approach proposed by Bovolo and Bruzzone (2005). 

In greater detail, from XLR a set of multilevel (ML) images XML =
{
x1

LR,…, xN
LR
}

is computed, where the superscript (i.e., 1, …,N) indicates 
the resolution level. This is done in two steps: a decomposition phase in 
which XLR is filtered through a cascade of n filters, and a reconstruction 
phase, in which only the information of interest is used to reconstruct 
the original image at the nth resolution level. The decomposition is based 
on 2D-SWT using a Daubechies wavelet family with a filter length equal 
to 8. For each approximation sub-band, the inverse stationary wavelet 
transform (2D-ISWT) is applied n + 1 times to reconstruct in the image 
space set XML =

{
x1

LR,…, xN
LR
}
. It is worth noting that, after the recon

struction, all levels have the same pixel spacing as the pixel spacing of 
the input image (XLR). Fig. 4 shows an example of the multiscale 
decomposition with 7 levels on part of the reference area A for the 
CSK2.5 data. The figure clearly shows that the first high-resolution levels 
(i.e., N = 1,2) preserve all the geometrical details while remaining noisy. 
Therefore, the analysis of such levels results in detection maps with a 
high level of spatial detail at the cost of many false alarms. In contrast, 
low-resolution levels (i.e., N = 5, 6, 7) lose most of the high spatial 
frequency information but are almost noise free. Their analysis can 
provide detection maps, with good performance (i.e., few false alarms) 
in homogenous areas, that identify the locations of the windthrows, but 
provide little information regarding their boundaries. This highlights 
how all levels must be analysed in a synergistic way to fuse and exploit 
their different information content. Fig. 5 shows the distribution of the 

pixel values in the two classes in each of the 7 levels of the example in 
Fig. 4. The variability is much higher in the first levels, with less sepa
rability among the classes. Variability decreases while increasing the 
level of analysis, but separability improves at the same time. 

Preliminary analyses were carried out to fix the value of the number 
N of levels in the Wavelet transform. The value of N was fixed at 7 for the 
CSK2.5 data, while for the other experiments (CSK10,S1VH, and S1VV) it 
was fixed at 5. These values were defined both according to some initial 
pre-analyses and according to the fact that it is expected that more levels 
are needed for images at higher resolution. 

3.2.3. Image thresholding and decision 
To fuse the information of the different resolution levels of XML, the 

images were analysed separately according to a thresholding approach 
followed by a fusion of the resulting binary images. The thresholding 
operation separated changed and unchanged pixels in each level of XML 
and was defined using the Otsu thresholding method (Otsu, 1979). The 
Otsu method automatically detects the threshold, by minimizing intra- 
class intensity variance, or, equivalently, by maximising inter-class 
variance (Otsu, 1979). Depending on the SAR band, windthrows areas 
were identified as above or below the threshold: for the COSMO-SkyMed 
images (X-band) we considered as windthrows pixels with values above 
the Otsu threshold, while for the Sentinel-1 images (C-band) pixels with 
value below the threshold were considered as windthrows. More details 
about this choice are presented in the discussions section. 

The set of maps XTH =
{
x1

TH,…, xN
TH
}

was then fused in a single 
detection map using a majority rule: the pixels for which most of the 

Table 2 
COSMO-SkyMed and Sentinel-1 images used in this study for each study area. ASC = Ascending; DSC = Descending; Pre = pre-event; Post = post-event. The incidence 
angle values are the maximum and minimum inside the area.  

Area Direction Time Season COSMO-SkyMed Sentinel-1 

Date Incidence 
angle 

Layover/ 
Shadow 
area (%) 

Date Incidence 
angle 

Layover/ 
Shadow 
area (%) 

A 

ASC 

Pre 
Summer 2018-08-16 26.5◦ - 27.1◦ 40.5 2018-08-17 40.1◦ - 40.4◦ 16.3 

Autumn 2018-10-19 26.6◦ - 27.2◦ 40.1 2018-10-16 40.1◦ - 40.4◦ 16.4 

Post 
Winter 2018-12-06 26.6◦ - 27.2◦ 40.4 2018-11-21 40.1◦ - 40.4◦ 16.4 

Summer 2019-08-03 26.5◦ - 27.1◦ 40.5 2019-08-12 40.1◦ - 40.4◦ 16.4 

DSC 

Pre 
Summer 2018-08-09 31.4◦ - 31.9◦ 38.9 2018-08-16 42.9◦ - 43.2◦ 15.3 

Autumn – – – 2018-10-15 42.8◦ - 43.2◦ 15.1 

Post 
Winter 2018-11-29 31.4◦ - 31.9◦ 39.1 2018-11-20 42.9◦ - 43.2◦ 15.2 

Summer 2019-08-23 31.4◦ - 31.9◦ 38.6 2019-08-11 42.9◦ - 43.2◦ 15.2 

B 

ASC 

Pre 
Summer 2018-08-16 26.3◦ - 26.9◦ 48.8 2018-08-17 39.9◦ - 40.2◦ 21.1 

Autumn 2018-10-19 26.4◦ - 26.9◦ 48.7 2018-10-16 39.9◦ - 40.2◦ 20.9 

Post 
Winter 2018-12-06 26.4◦ - 26.9◦ 48.7 2018-11-21 39.9◦ - 40.2◦ 21 

Summer 2019-08-03 26.3◦ - 26.8◦ 48.9 2019-08-12 39.9◦ - 40.2◦ 20.9 

DSC 

Pre 
Summer 2018-08-09 31.3◦ - 31.9◦ 24 2018-08-16 42.8◦ - 43.2◦ 13.7 

Autumn – – – 2018-10-15 42.8◦ - 43.2◦ 13.7 

Post 
Winter 2018-11-29 31.3◦ - 31.9◦ 23.9 2018-11-20 42.8◦ - 43.2◦ 13.7 

Summer 2019-08-23 31.4◦ - 31.9◦ 23.9 2019-08-11 42.8◦ - 43.2◦ 13.7 

C 

ASC 

Pre 
Summer 2018-08-15 34.0◦ - 34.5◦ 35.7 2018-08-17 38.8◦ - 39.2◦ 17.8 

Autumn 2018-10-18 34.0◦ - 34.5◦ 35.7 2018-10-16 38.8◦ - 39.2◦ 17.9 

Post 
Winter 2018-11-19 34.0◦ - 34.5◦ 35.8 2018-11-21 38.8◦ - 39.2◦ 17.9 

Summer 2019-08-13 33.9◦ - 34.4◦ 35.8 2019-08-12 38.8◦ - 39.2◦ 17.9 

DSC 

Pre 
Summer 2018-08-09 32.4◦ - 32.9◦ 38.4 2018-08-16 43.6◦ - 43.9◦ 13.3 

Autumn 2018-10-15 32.4◦ - 32.8◦ 34.9 2018-10-15 43.6◦ - 43.9◦ 13.4 

Post 
Winter 2018-11-29 32.4◦ - 32.8◦ 38.5 2018-11-20 43.6◦ - 43.9◦ 13.3 

Summer 2019-08-23 32.4◦ - 32.9◦ 38.4 2019-08-11 43.6◦ - 43.9◦ 13.4  
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maps assigned a change were considered windthrows, while the others 
were considered as non windthrows. In such a way, the information 
content of the different levels is fused preserving the geometrical details 
of the first levels while reducing the number of false alarms due to the 
better representation of homogenous areas in the lower levels. Fig. 4 
bottom panel shows an example of how the binary images are fused 
according to a majority rule. In particular, the image clearly shows how 
almost all false detections caused by noise in the high levels are asso
ciated with a low number of votes. In contrast, areas with windthrows 
show a high number of votes in homogenous areas and a slightly smaller 
number of votes on the border of such areas (i.e., the areas with geo
metric details). 

To ensure a wall-to-wall coverage of the analysed area in an opera
tional scenario, it is necessary to generate maps using both ascending 
and descending data, as images acquired in these modes have different 
masking characteristics for layover and shadows. The merging of these 
maps can be performed in two ways: i) before the analysis: the original 
data from ascending and descending acquisitions are merged prior to the 

windthrow detection process; ii) after the mapping: the detection maps 
generated separately from ascending and descending data are merged. 
In this study the merging was done after the mapping. 

3.3. Design of experiments 

In this study, we considered four scenarios for windthrow detection 
based on the spatial resolution of the data and the available polariza
tions: i) COSMO-SkyMed images at the original pixel spacing of 2.5 m 
(CSK2.5); ii) COSMO-SkyMed images resampled to the same pixel 
spacing as Sentinel-1 images (10 m; CSK10); iii) Sentinel-1 images in VV 
polarization at 10 m pixel spacing (S1VV); and iv) Sentinel-1 images in 
VH polarization at 10 m pixel spacing (S1VH). For each sensor and res
olution, we evaluated four combinations of pre- and post-event images 
based on different seasons: i) summer-winter (SW): images acquired in 
summer before the windthrow event and in winter after the event; ii) 
summer-summer (SS): images acquired in summer before and after the 
event; iii) autumn-winter (AW): images acquired in autumn before the 

Fig. 2. Precipitations around the acquisition dates of the images for the three study areas. The precipitations values were extracted from the data measured by three 
weather stations located inside the three areas. 
https://www.meteotrentino.it/index.html#!/content?menuItemDesktop=111 

Fig. 3. Architecture of the methods adopted in this study.  
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event and in winter after the event; iv) autumn-summer (AS): images 
acquired in autumn before the event and in summer after the event. The 
rationale behind using different combinations of seasons is to address 
the need for timely windthrow mapping while considering potential 
limitations of images acquired very close to the event due to concurrent 
changes. Thus, we explored four combinations: one involving images 
closest to the event (AW); one minimizing the effects of phenology and 
snow cover (SS); and two intermediate combinations (SW and AS). 
Additionally, we considered two forest type scenarios: all forest types 
and only evergreen forest areas. This distinction is particularly impor
tant when windthrows predominantly affect evergreen trees and occur 
in autumn in areas with broadleaved species. For each combination, we 
produced maps separately using both ascending and descending data 
from the respective sensors. We then merged the two maps to create a 
wall-to-wall map, considering a pixel as a windthrow if it was detected 
as such in either the ascending or descending image. This approach 
allowed us to take advantage of both ascending and descending acqui
sitions, increasing the coverage of the windthrow detection maps. 

The validation of the maps was done both at pixel and patch level 
using the metrics of Table 3: RP is defined as a windthrow patch 
delineated in the reference map, and MP as a windthrow patch mapped 
by the windthrows detection algorithm. The metrics used for the pixel 
level accuracy are the standard metrics used in change detection and 

automatic classification studies (Table 3). Regarding the patch level 
non-standard metrics have been used (Table 3). We opted to use the term 
“patch” instead of “polygon” as it better represents the highly frag
mented windthrows areas. The application of different masks (e.g., 
layover/shadow and forest/non-forest masks) resulted in windthrow 
objects exhibiting highly irregular shapes, including potential holes. 
Moreover, these windthrow areas varied significantly in size, ranging 
from extensive regions to small fragments. To analyse the detection 
accuracy for small and large patches some metrics were analysed 
considering only patches of size lower or equal than 500 m2, and >500 
m2 (superscripts “≤500” and “>500”, respectively). #MP and MPAREA 
are intended to indicate the amount and size of windthrows patches 
found by the algorithm particularly in relation to the different pixel 
spacings analysed. RP≤500

DET and RP>500
DET are used to indicate the percent

age of the windthrows patches present in the reference map that had an 
overlap with the windthrows patches delineated by the algorithm. For 
both indexes, to classify a patch as detected, it is sufficient that at least 
one pixel of the windthrow map overlaps with a reference patch. The 
metrics MP⇉RP≤500, MP⇉RP>500,RP≤500⇉MP and RP>500⇉MP quan
tify: i) the degree of sub-patch splitting performed by the algorithm 
(MP⇉RP≤500 and MP⇉RP>500) and ii) the extent of over-detection 
leading to large patches encompassing multiple reference areas 
(RP≤500⇉MP and RP>500⇉MP). Ideally, perfect windthrow detection 

Fig. 4. Multiscale image sequence obtained by applying the decomposition/reconstruction with 7 layers over part of the reference area A on the CSK2.5 data. The 
input image is the combination of ascending and descending images acquired in summer 2018 and 2019. The areas in gray are areas below the threshold and thus 
classified as non-windthrows. 

M. Dalponte et al.                                                                                                                                                                                                                               



Remote Sensing of Environment 297 (2023) 113787

8

would result in all four metrics equalling 1. For instance, a value of 2 for 
MP⇉RP>500 indicates that, on average, there are two mapped patches 
(MP) for each reference area (RP>500). 

In the computation of the accuracy metrics discussed earlier, we 
decided to use only the part of the maps that were not masked in any 
combination. Specifically, for both satellite constellations, we used 
ascending mode images for areas A and B, and both ascending and 
descending images for area C. By considering only the pixels available in 
all data sources, we ensured that the final maps were masked and 
restricted to a consistent set of data. Although this approach reduced the 
overall surface area analysed, it enabled us to obtain comparable results 
across the four data combination experiments and the two sensors. It is 
important to note that this masking process was exclusively applied to 
ensure a rigorous computation of the accuracy metrics and was not used 
in the generation of the maps themselves. The results presented in the 
paper treated the three areas as a unified area, but in the supplementary 

materials, we also provided separate results for each individual area. 
In the experiments that incorporated forest type analysis, the study 

areas underwent masking based on two criteria: (1) considering all 
forest areas, and (2) considering forest areas predominantly composed 
of evergreen species. To accomplish this, we used a shapefile containing 
information on forest type, which was generated during the forest in
ventories conducted in the respective areas. 

4. Results 

Fig. 6 illustrates the results of windthrow detection when considering 
all four data sets and combinations of the four seasons. Among the 
various data sources, the use of summer images before and after the 
event yielded the highest accuracies in windthrow detection. Specif
ically, CSK2.5 data demonstrated the highest accuracies, followed by 
CSK10 data (Fig. 6). The accuracies obtained from Sentinel-1 data were 
relatively lower, with variations observed between the VH and VV po
larizations. VH polarization generally exhibited better performance 
compared to VV polarization. Upon closer examination of the producer’s 
and user’s accuracies, some notable trends emerged. PAW remained 
relatively stable across seasons, pixel spacings, and data sources, 
consistently surpassing 60%. UANW consistently exceeded 75% and 
showed stability regardless of the seasons’ combinations and data 
sources. However, PANW and UAW exhibited significant variations 
depending on the seasons’ combinations and data sources. Sentinel-1 
data consistently yielded low values for PANW and UAW, with PANW 
below 50% (except for the summer-summer combination with Sentinel- 
1 VH data) and UAW below 30%. The only combinations that achieved 
PANW and UAW values above 50% were the summer-summer combina
tions with COSMO-SkyMed data. 

The patch-level results are presented in Fig. 7. When using CSK2.5 
and CSK10 data, the number of mapped patches (#MP) varies depending 
on the post-event season, with higher values when a winter image is 
considered as the post-event image. The value of #MP remains relatively 
stable for both Sentinel-1 datasets. Conversely, MPAREA is much smaller 
when using CSK2.5 data (796–1016 m2) compared to the other datasets 
(CSK10, S1VV and S1VH) (3481–7976 m2). Similar to the previous metric, 
the results from the two Sentinel-1 data sources exhibited less variability 
(5412–7976 m2), while it varies depending on the post-event season 
image for CSK10 data (3481 m2 vs. 6170 m2). RP≤500

DET and RP>500
DET show 

distinct behaviors. RP≤500
DET remains relatively stable for Sentinel-1 data

sets, while for COSMO-SkyMed datasets, the values are significantly 
lower for SS and AS combinations. Similar trends were observed for 
RP>500

DET , although the differences between SS/AS and SW/AW combi
nations are limited. For COSMO-SkyMed datasets, the best results for 
RP≤500

DET were obtained when a winter image was used as the post-event 
image (76.1% for CSK2.5 and 67.2% for CSK10). In contrast, the best 
results for Sentinel-1 datasets were observed for AS combinations 
(68.8% and 66.9%, respectively). RP≤500⇉MP and RP>500⇉MP were not 
significantly influenced by the combinations of seasons but varied 
depending on the dataset. The lower and more favourable values, 
slightly higher than 1, were obtained for the CSK2.5 dataset for 
RP≤500⇉MP, indicating that, on average, one reference patch over
lapped with one mapped patch. For CSK10, this value increased to 
approximately 1.4, and for Sentinel-1 datasets, it further increased to 
around 1.7. RP>500⇉MP reached larger values (about 0.5 higher) 
keeping similar trends among sensors and season’s combinations. MP⇉ 
RP≤500 had very similar values for all sensors and combinations, with 
slightly higher values for CSK2.5. Differently MP⇉RP>500 showed a clear 
difference between the results obtained with CSK2.5 and the ones ob
tained with data at pixel spacing at 10 m: for CSK2.5 the value of this 
metric was above 6, while for the other sensors it was around 1.8. It 
clearly indicated a high level of fragmentation for the CSK2.5 results. 

For the seasons combination that showed the highest accuracies (SS) 

Fig. 5. Boxplots of the values of the 7 levels images of Fig. 4 separated into the 
two classes. 

Table 3 
Accuracy metrics used in this study.  

Level Acronym Description 

Pixel 

K Kappa accuracy 
BA Balanced accuracy in %: mean value of the PAs 
PAW Producer’s accuracy in % of the windthrows class 
PANW Producer’s accuracy in % of the non-windthrows class 
UAW User’s accuracy in % of the windthrows class 
UANW User’s accuracy in % of the non-windthrows class 

Patch 

#MP The total number of windthrows mapped patches MP 
MPAREA Mean area in m2 of the mapped patches 

RP≤500
DET 

% of the detected reference patches RP with area below or 
equal to 500 m2 

RP>500
DET 

% of the detected reference patches RP with area above 500 
m2 

MP⇉RP≤500 Mean number of MP overlapping each RP with area below 
or equal to 500 m2 

MP⇉RP>500 Mean number of MP overlapping each RP with area above 
500 m2 

RP≤500⇉MP 
Mean number of RP with area below or equal to 500 m2 

overlapping each MP 

RP>500⇉MP 
Mean number of RP with area above 500 m2 overlapping 
each MP  
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we provide in Table 4 also the results obtained considering the wall-to- 
wall coverage of the three areas (ascending plus descending data). These 
numbers confirm what showed in the figures considering only the areas 
after masking. 

Fig. 8 and Fig. 9 illustrate the differences in the values of pixel and 
patch level accuracy metrics when considering all forest areas versus 
only evergreen areas. In the case of pixel level metrics, a negative value 
indicates an improvement when considering only evergreen areas, while 
a positive value indicates the opposite. For the COSMO-SkyMed com
binations with a winter post-event image, all the pixel level metrics 
showed improvement when considering only evergreen areas. However, 
this improvement was not observed for the Sentinel-1 data, although the 
decrease in performance was limited. Notably, UANW consistently 
showed a decrease when considering only evergreen areas, particularly 
for the Sentinel-1 data. In terms of patch level metrics, when considering 
only evergreen areas, the average size of the patches (MPAREA) increased 
(mainly for CSK10, S1VV and S1VH). 

The distinctions between considering all forest areas and solely the 
evergreen areas are also evident in the detection maps presented in 
Fig. 10, Fig. 11, and Fig. 12. It is worth noting that a significant number 
of false alarms occurred in deciduous forest regions when utilizing 
winter post-event images (SW and AW season combinations) and when 
using Sentinel-1 data. 

5. Discussion 

To the best of our knowledge, this study represents the first inves
tigation into the utilization of SAR COSMO-SkyMed data for detecting 
forest windthrows in mountainous regions, as well as the first compar
ative analysis with Sentinel-1 data. In summary, our analysis encom
passed the following aspects: i) the effectiveness of different SAR data in 
X and C bands (COSMO-SkyMed and Sentinel-1, respectively) for 
windthrow detection; ii) the influence of varying pixel spacing in 
COSMO-SkyMed data and the utilization of different polarizations in 
Sentinel-1 data; iii) the impact of different combinations of seasonal 

imagery on windthrow detection; and iv) the implications of considering 
all tree species versus solely evergreen species. The outcomes of this 
study hold significant implications for the practical application of SAR 
data in windthrow detection and provide valuable insights for decision 
makers aiming to enhance forest management strategies.  

5.1.1. Algorithm parameters setting 
The proposed methodology requires tuning of only two parameters: 

i) the number of layers in the 2D-SWT, and ii) the thresholding direction 
for generating windthrow maps at each level. The number of 2D-SWT 
layers parameter should be set within a range of 3 to a value related 
to the image size. It is important to note that setting the number of layers 
too high may diminish the ability to detect small windthrow patches as 
the influence of higher layers increases. Previous studies by Bovolo and 
Bruzzone (2005) used a value of 8, while Marin et al. (2015) used N = 4. 
A suggestion is to adjust this value according to the spatial resolution of 
the images employed. In our preliminary experiments, we tested values 
of 3, 5, 7, and 9, and observed similar results for all values except for 3. 

Regarding the second parameter, there are two options: considering 
as windthrows pixel values (i) above or (ii) below the Otsu threshold. In 
this study, we used values above the threshold for COSMO-SkyMed 
images and below the threshold for Sentinel-1 images. This choice was 
based on some initial analysis of the decomposed/reconstructed images, 
where we observed an increase in values within windthrow areas for 
COSMO-SkyMed data and a decrease for Sentinel-1 data. Further ana
lysing the literature, we found some previous studies supporting this 
choice. Eriksson et al. (2012) investigated the backscatter values of 
forest windthrows across different SAR bands and found that the back
scatter signal from TerraSAR-X (X-band) increased by approximately 
1.5 dB for fallen trees compared to standing trees, while ALOS PALSAR 
(L-band) showed a decrease of the same magnitude. Tomppo et al. 
(2021) mapped forest windthrows using Sentinel-1 data (C-band) and 

Fig. 6. Windthrows detection results at pixel level, different seasons and different spatial resolutions and sensors. The accuracy metrics are described in Table 3.  
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noted that extensive and severe windstorm damage may cause a 
decrease in backscatter intensity similar to clear-cut areas, whereas 
small-scale damage can lead to an increase in backscatter in neigh
bouring areas due to various scattering mechanisms. 

Indeed, some information about the location of the windthrow event 
could enhance the results. This does not imply the need for extensive 
field observations, but rather that some preliminary information could 
be advantageous. Typically, such information is available when 
applying a detection method, as it assumes knowledge of a windthrow 
event having occurred. 

5.1.2. Capability to detect forest windthrows using SAR data in C and X 
bands in mountain areas 

In mountainous areas, the use of remote sensing data, including both 
SAR and optical images, for windthrow detection is influenced by two 
primary factors: morphology and weather conditions. With respect to 

morphology, both SAR and optical images face challenges due to the 
complex terrain found in mountain regions. In SAR data, this complexity 
results in layover and shadow areas that are not suitable for windthrow 
detection. While using images acquired in a single orbit direction 
(ascending or descending) enables windthrow detection, the presence of 
extensive layover and shadow areas in mountainous regions compro
mises the mapping of all damages. To ensure the practical application of 
SAR data for windthrow detection, it is crucial to have access to images 
acquired from both viewing geometries. Unlike Sentinel-1 data, which 
provides continuous image acquisitions, COSMO-SkyMed data is ac
quired on-demand. This limitation is inherent to all on-demand systems 
and should be considered when making use of such data. Since wind
throw events cannot be predicted in advance, the availability of both 
ascending and descending images would likely be limited to the post- 
event period. This potential limitation may impact the use of COSMO- 
SkyMed data with the adopted methodology, particularly outside of 

Fig. 7. Windthrows detection results at patch level, different seasons and different spatial resolutions and sensors. The accuracy metrics are described in Table 3.  
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Italy, as Italy benefits from a relatively large archive of past COSMO- 
SkyMed acquisitions. Regarding the combination of ascending and 
descending data, this study employed a combination of windthrow maps 
generated from both data sources. More advanced methods for 
combining these data involve creating composites prior to applying the 
windthrow detection method. Several studies have investigated the 
optimal procedures for this composite creation (Rüetschi et al., 2019; 
Small et al., 2022). 

While SAR data is generally less affected by clouds and precipitation 
compared to optical data, they can still be impacted. Danklmayer et al. 
(2009) demonstrated that heavy precipitations events cause artifacts in 
X-band SAR images. Conversely, C-band data is less susceptible to pre
cipitations, although a heavy precipitations event can cause attenuation 
of the SAR signal. The effects of precipitations can persist for hours after 
the event due to the high humidity in the air and on the ground. In our 
study, as depicted in Fig. 2, we carefully selected images that were not 

acquired during or immediately after heavy precipitations events. This 
ensures that the analyses presented in this study are not influenced by 
adverse precipitations conditions. It is important to consider this factor 
when choosing SAR images, especially in mountainous regions that are 
prone to heavy precipitations. 

The disparities in results between COSMO-SkyMed data and 
Sentinel-1 data are substantial, with COSMO-SkyMed consistently out
performing Sentinel-1 and yielding significantly better outcomes. Both 
at the pixel and patch levels, Sentinel-1 produced a higher number of 
false alarms. This is evident from the low values of PANW and UAW at the 
pixel level, as well as the high RP⇉MP metric (approximately 2.5). 
Sentinel-1 tends to detect very large windthrow patches, which inflates 
PAW, RP≤500

DET and RP>500
DET at the expense of numerous false alarms. These 

findings suggest that the proposed methodology is better suited for 
detecting forest windthrows using COSMO-SkyMed data. While Tomppo 
et al. (2021) emphasized the challenges of windthrow detection using C- 
band data, there are existing studies in the literature that employed 
Sentinel-1 data for analysing different forest disturbances such as 
windthrows, droughts or ice related affectations (Lazecky et al., 2021; 
Rüetschi et al., 2019; Schellenberg et al., 2023; Zoltán et al., 2021). 
Regarding windthrows, Rüetschi et al. (2019) reported, a producer’s 
accuracy of 88% and user’s accuracy of 85%, while Lazecky et al. (2021) 
did not provided results in terms of accuracies. For other type of dis
turbances, overall accuracies of 65.7% are reported (Zoltán et al., 2021). 
This may imply that the results are dependent on the specific algorithm 
employed, and therefore, the adopted methodology may not be ideal for 
analysing Sentinel-1 data. 

5.1.3. Impacts of using different pixel spacing: pixel vs patch-level analysis 
The choice of pixel spacing for generating the sigma0 band from level 

1B data appears to have some impact on the results. In this study, we 
considered pixel spacings of 2.5 m and 10 m for the COSMO-SkyMed 
data. It is important to note that both pixel spacings are high and 
capable of capturing small windthrow patches. Examining the pixel- 

Table 4 
Accuracy metrics obtained for the four scenarios in the case of SS seasons 
combinations combining all the three areas and ascending and descending data.   

CSK2.5 CSK10 S1VV S1VH 

K 0.46 0.39 0.09 0.14 
BA 75.2 73.8 59.4 63.6 
PAW 61.5 64.5 73.1 72.9 
PANW 88.8 83 45.6 54.3 
UAW 50.2 41.1 19.8 22.6 
UANW 92.6 92.7 90.2 91.6 
#MP 16,082 3072 3153 3210 
MPAREA 831 5583 13,172 11,166 
RP≤500

DET 42.8 35.8 71.1 66.2 
RP>500

DET 81.8 71.9 93 90.3 
MP⇉RP≤500 1.66 2.49 7.24 4.99 
MP⇉RP>500 1.16 1.01 1.01 1.02 
RP≤500⇉MP 1.07 1.47 2.38 2.15 
RP>500⇉MP 7.07 1.88 1.56 1.6  

Fig. 8. Differences of the pixel level accuracy metrics (see Table 3) between all pixels (superscript ALL) and pixels over evergreen forest areas (super
script EVERGREEN). 
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level accuracies in Fig. 6, we observed slightly better results for the 
CSK2.5 case, while using CSK10 data resulted in a slight decrease (2–7%) 
in PANW compared to CSK2.5, indicating a higher number of false alarms 
with 10 m data. This trend is also evident in the patch-level results 
shown in Fig. 7, where using a 10 m spatial resolution led to an increase 
in MPAREA, RP≤500⇉MP and RP>500⇉MP metrics. The RP≤500⇉MP 
metric indicated that, on average, there were approximately 2 or more 
reference patches per mapped patch when using a 10 m spatial resolu
tion. Conversely, employing a 2.5 m spatial resolution resulted in a 
significant increase in the number of windthrow patches (#MP) and 
MP⇉RP>500, indicating that reference patches were split into multiple 
patches. In this study, we did not apply any post-processing to the output 
maps of the windthrow detection algorithm to provide a simple meth
odology. However, post-processing techniques such as majority filtering 
or removing very small patches (e.g., those consisting of only 1 or 2 
pixels in the CSK2.5 data) could marginally improve the results, espe
cially at the patch level. Such post-processing steps are particularly 
relevant for CSK2.5 maps, where single-pixel windthrow detections are 
more likely to be noise than genuine detections. Nevertheless, based on 
the presented results, we can conclude that a high spatial resolution (2.5 
m pixel spacing) is advantageous, although working with data at 10 m 
spatial resolution is more practical and enables faster processing over 
large areas. It is important to note that these considerations are specific 
to the analysed event in this study, where the median patch size (472.5 
m2 for area A, 288 m2 for area B, and 567 m2 for area C) was much larger 
than 100 m2 (the size of a 10 × 10 pixel). In other scenarios, where trees 
are smaller (e.g., boreal forests), degrading the resolution could have a 
more significant impact on the results. 

Regarding Sentinel-1 data, both VV and VH polarizations were 
analysed over the study areas. The results were quite similar between 
the two polarizations, although VH polarization exhibited slightly better 
performance. This observation aligns with previous studies in the liter
ature (Rüetschi et al., 2019; Schellenberg et al., 2023; Zoltán et al., 
2021). Rüetschi et al. (2017) suggested that this behaviour could be 
attributed to the changing scattering mechanisms when the wooded 
material is randomly oriented after windthrow, making cross-polarized 
backscatter (VH) more sensitive to this random arrangement of scat
terers compared to co-polarized channels (VV). 

5.1.4. Influence of different seasons’ combinations 
The choice of seasons’ combinations was found to be a crucial factor 

in achieving accurate windthrow detections, regardless of the data 
source (COSMO-SkyMed or Sentinel-1), pixel spacing (2.5 m and 10 m), 
and polarization. The use of a summer post-event image consistently 
outperformed a winter post-event image. The pre-event image had a 
lesser impact on the accuracy, although having a summer pre-event 
image also improved the results. These findings are specific to the al
gorithm used, the analysed event (which occurred in late autumn), and 
the characteristics of the forests (including both deciduous and ever
green species). However, these characteristics provided valuable in
sights into windthrow detection. Combining pre and post-event images 
acquired when the forest was in the same phenological phase was crucial 
for eliminating false alarms related to forest phenology. It is important 
to note that achieving such temporal alignment may not always be 
feasible, especially if the event occurs in autumn or winter when rapid 
detection is required after the event. 

Alternatively, heterogeneous change detection using both SAR and 
optical data or relying on a single post-event image are potential ap
proaches. In the case of heterogeneous change detection, several studies 
in the literature address complex detections of this nature (Chen et al., 
2022, 2023; Jiang et al., 2020; Sun et al., 2022). However, using a single 
post-event image would shift the analysis from a change detection sce
nario to a land cover classification task. In such cases, additional 
research would be needed to collect windthrow reference data for su
pervised classification or to select an appropriate unsupervised 
approach and detection features. Therefore, using pre- and post-event 
data with similar seasonality could serve as an alternative solution 
that remains unsupervised, avoiding the need for additional reference 
data collection or a complex classification framework. 

5.1.5. Implications of different forest types 
In this study, it was demonstrated that having prior knowledge about 

the area, particularly regarding the dominant tree species, can signifi
cantly improve the results even under non-optimal conditions. In the 
case of the analysed Vaia storm, where the majority of the damage 
occurred in Norway spruce forests, using a forest management plan layer 
to filter the data and focus on evergreen stands resulted in a substantial 
reduction in false alarms, especially in the autumn/winter combination. 
This improvement was evident at both the pixel and patch level ana
lyses. At the pixel level, there was an enhancement in all metrics, 
particularly in terms of the user’s accuracy for windthrow detection, 
indicating a significant reduction in false alarms. At the patch level, the 

Fig. 9. Differences of patch level accuracy metrics (see Table 3) between all patches (superscript ALL) and patches containing only evergreen forest (super
script EVERGREEN). 
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Fig. 10. Windthrows detection maps for the study area A.  
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Fig. 11. Windthrows detection maps for the study area B.  
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Fig. 12. Windthrows detection maps for the study area C.  
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analysis showed a decrease in the number of windthrow patches (#MP) 
and an increase in the average patch area (MPAREA), further confirming 
the effectiveness of masking based on forest type. However, in cases 
where prior knowledge about the forest type is not available, or if the 
windthrow event affects both evergreen and deciduous forests, alter
native algorithms should be employed. These algorithms should be 
capable of detecting multiple types of changes, such as Change Vector 
Analysis (CVA) or multiscale convolutional networks (He et al., 2021; Lv 
et al., 2022; Solano-Correa et al., 2019; Tang et al., 2022). Additionally, 
distinguishing different tree species using optical data and a supervised 
classification approach could also be employed (Udali et al., 2021). 
These methods can overcome the limitations posed by lacking prior 
knowledge of the forest type or dealing with mixed forest stands affected 
by windthrows. 

6. Conclusions 

The presented study focused on the detection of forest windthrows in 
mountain areas using COSMO-SkyMed (band X) and Sentinel-1 SAR 
(band C) data. At the best of our knowledge this is the first study to 
analyse COSMO-SkyMed data for windthrows detection. A multiscale 
decomposition/reconstruction strategy was employed, and various 
combinations of data were investigated, including different pixel spac
ings (2.5 m and 10 m), images acquired at different times before and 
after the windthrow event, and different forest types. The comparisons 
conducted in this study demonstrated that COSMO-SkyMed out
performed Sentinel-1 for windthrows detection using the adopted 
methodology. It was observed that combining images acquired under 
optimal conditions, such as during the summer season in this study, 
yielded the best results and minimized false alarms. The phenology of 
trees, specifically the transition between leaf-on and leaf-off conditions, 
was found to have a significant impact on windthrow detection results. 
The pixel spacing was also identified as a contributing factor, although 
the difference in performance between COSMO-SkyMed at 2.5 m and 10 
m pixel spacing was relatively small. However, further exploration of 
change detection techniques capable of detecting multiple changes 
could be beneficial in reducing false alarms resulting from phenological 
changes in broadleaf species. 
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