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1. Introduction

The finite-dimensional simple Lie algebras over an algebraically closed field
of characteristic zero are well known. A better description can be obtained
for instance in [4]. They are divided in four infinite families: the special
linear algebra An = sl(n + 1) for n ≥ 1, the special orthogonal algebra of
odd rank Bn = so(2n+ 1) for n ≥ 2, the symplectic algebra Cn = sp(2n)
for n ≥ 3 and the special orthogonal algebra of even rank Dn = so(2n) for
n ≥ 4; and five exceptional cases E6, E7, E8, G2 and F4. Such algebras also
can be defined over an arbitrary field of characteristic p > 0, in the following
way: for a finite-dimensional simple Lie algebra over an algebraically closed
field of characteristic zero, one chooses a Chevalley basis of the Lie algebra,
i.e., a basis of the underlying vector space of the Lie algebra such that all
the structure constants are integers, and then one reduces these structure
constants modulo a prime number p. These new Lie algebras are called Lie
algebras of classical type and they are simple for p ≥ 5 (for details see [16,
Ch. 4]).

However, over algebraically closed fields of characteristic p ≥ 5 there
also exist several families of non-classical Lie algebras. Similar to Cartan’s
four families of finite-dimensional simple Lie algebras, there are four infinite
families of Lie algebras of generalized Cartan type, namely algebras of Witt,
special, Hamiltonian, or contact type. Moreover, in characteristic 5 there
exists another infinite family of so-called Melikian algebras.

The classification problem of simple Lie algebras of finite dimension over
an algebraically closed field F of characteristic p > 3 was resolved in the
period between 1980 and 2008 by Block—Wilson—Premet—Strade in several
of their works [1, 2, 3, 6, 7, 8, 9, 11, 12, 18, 16, 15, 14]. They give an
answer to the generalized Kostrikin—Shafarevich conjecture, formulated by
V. Kac in [5]. Exactly, they proved that, every finite-dimensional simple
Lie algebra over F with p > 3 is classical (and hence restricted), a filtered
Lie algebra of Cartan or Melikian type.

In characteristic p = 2, 3 there are many examples of simple Lie algebra
and simple restricted Lie algebras. The classification problem of these
algebras still remains open. The main result for the classification problem
of simple Lie algebras in characteristic 2 and 3 was obtained by S. Skryabin
in [13]. He proved that any finite-dimensional simple Lie algebra over an
algebraically closed field of characteristic 2 has absolute toral rank greater
than or equal to 2. In the same paper, Skryabin also proved that any finite-
dimensional simple Lie algebra of absolute toral rank 1 over an algebraically



Equivalence of categories of simple Lie algebras in positive ... 817

closed field of characteristic 3 is isomorphic to either sl(2) or psl(3). In [10,
Problem 1], A. Premet and H. Strade present the following problem which
is still open.

Problem 1: Classify all finite-dimensional simple Lie algebras of absolute
toral rank two over an algebraically closed field of characteristics 2 and 3.

In the case of absolute toral rank 2, work in progress by A. Grishkov
and A. Premet was announced in [10]. Their main result states that every
finite-dimensional simple Lie algebra of absolute toral rank 2 over an alge-
braically closed field of characteristic 2 is classical of dimension 3, 8, 14, or
26. The problem is still open in characteristic 3. Furthermore, extending
Problem 1 to absolute toral rank greater than two, is a problem still open
in characteristic two and three.

It is well-known that there is a one-to-one correspondence between sim-
ple restricted Lie algebras and simple Lie algebras over F (cf. [19, Proposi-
tion 4.1]). However, only this fact does not imply the equivalence between
such categories, for instance, the category associated to a group G has a
unique object and the set of morphisms is G itself.

Motivated by the equivalence of The classification problem between sim-
ple Lie algebras and simple restricted Lie algebras, we prove in this paper
that such categories are equivalent for any characteristic p > 0, which is
the main result of this paper.

The paper is organized as follows. In Section 2 we recall the general
notions of restricted Lie algebras (or Lie p-algebras), of p-envelope and
minimal p-envelope of a Lie algebra; we also give some known facts. In
Section 3 we define two functors between simple Lie algebras and simple
restricted Lie algebras, and we prove that these functors form a pair of
adjoint equivalences of categories.

2. Preliminaries

In this paper F denotes a field of characteristic p > 0 and all Lie algebras
are assumed to be finite-dimensional over F. We denote by adL the adjoint
representation of a Lie algebra L and by adnL(x) the composition (adL(x))

n

for all x ∈ L and n ∈ N. We shall be interested in a particular class of Lie
algebras, called restricted Lie algebras (or Lie p-algebras). Such concept
was introduced by N. Jacobson [4, p. 187].

Definition 2.1. Let L be a Lie algebra. A map [p]:L −→ L such that
a 7→ a[p] is called p-map if
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1. (λa)[p] = λp a[p], for all λ ∈ F and for all a ∈ L.

2. adpL(a) = adL
³
a[p]

´
, for all a ∈ L.

3. (a+ b)[p] = a[p] + b[p] +
Pp−1

i=1 si(a, b), for all a, b ∈ L.

where isi(a, b) is the coefficient at t
i−1 in the expansion of adp−1L (at+ b)(a)

over the indeterminate t. A Lie algebra with a p-map is called Lie p-algebra
and will be denoted by (L, [p]).

Some classical notions adapted to p-algebras follow:

Definition 2.2. Let L be a Lie p-algebra. A p-subalgebra (p-ideal) is a
subalgebra (ideal) of L which is closed under its p-map.

A simple Lie p-algebra (p-simple Lie p-algebra) is a Lie p-algebra which
does not have nonzero proper ideals (p-ideals).

In the literature a Lie p-algebra is frequently called a restricted Lie
algebra. In this sense a p-simple Lie p-algebra is exactly a simple restricted
Lie algebra.

Every simple Lie p-algebra is a p-simple Lie p-algebra, but its converse
is not true. For instance, the Lie algebra of derivations

Der(so(3)) = {(aij) ∈M3(F) | aij = aji and a11 + a22 + a33 = 0} ,

of the special orthogonal Lie algebra so(3) over F with char(F) = 2 has a
canonical basis {h1, h2, e1, e2, e3}, where h1 := e11 + e22, h2 := e22 + e33,
e1 := e12+ e21, e2 := e13+ e31, e3 := e23+ e32. Table 2.1 exhibits inside its
diagonal the 2-map and outside its Lie bracket. Der(so(3)) is a 2-simple
Lie 2-algebra which is not a simple Lie 2-algebra, because span{e1, e2, e3}
is an ideal of Der(so(3)).
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h1 h2 e1 e2 e3

h1 h1 0 0 e2 e3
h2 0 h2 e1 e2 0

e1 0 e1 h1 e3 e2
e2 e2 e2 e3 h1 + h2 e1
e3 e3 0 e2 e1 h2

Table 2.1: Lie bracket and 2-map on Der(so(3))

Definition 2.3. Let (L1, [p]1) and (L2, [p]2) be two Lie p-algebras. A p-

homomorphism f : L1 → L2 is a Lie homomorphism such that f
³
a[p]1

´
=

f(a)[p]2 for all a ∈ L1.

For a category A (Lie algebras or Lie p-algebras), As (respectively Ass)
will denote the full subcategory of A consisting of simple objects (respec-
tively semisimple) and A[p] the full subcategory of A whose objects have a
p-structure.

Remark 2.4. Denote by Lie the category of finite-dimensional Lie alge-
bras. From above-mentioned, there exists a difference between the cat-

egories
³
Lie[p]

´s
and (Lies)[p]. However, the following relation between

their objects holds:

Obj(Lies) ∩Obj
³
Lie[p]

´s
= Obj (Lies)[p] .

For a subset S of a Lie p-algebra (L, [p]), the p-subalgebra generated by
S in L is Sp := ∩i∈IHi, where {Hi | i ∈ I} is the family of all p-subalgebras
which contain S. Such Sp is the smallest p-subalgebra of L containing S.

Proposition 2.5. [17, p. 66] Let L be a Lie p-algebra and let M be a Lie
subalgebra of L and {e1, e2, . . . , en} a basis for M . Then

1. Mp = spanF
n
e
[p]j

i | i = 1, 2, . . . , n; j ∈ Z≥0
o
.

2. [L,Mp] = [L,M ] and [Mp,Mp] = [M,M ].

3. If I is an ideal of L, then Ip is a p-ideal of L.

Lemma 2.6. Let L be a Lie p-algebra and let M be a Lie subalgebra of
L. If I is an ideal of M , then I is an ideal of Mp.
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Proof. Let x ∈ I and y ∈ Mp be arbitrary elements. Suppose that
{e1, e2, . . . , en} is a basis of M . From Proposition 2.5

y =
X
i,j

αije
[p]j

i .

Therefore,

[x, y] =
X
i,j

αij
h
x, e

[p]j

i

i
= −

X
i,j

αijadL
³
e
[p]j

i

´
(x) = −

X
i,j

αijad
pj

L (ei) (x) ∈ I.

2

Lemma 2.7. If I is a nonzero ideal of L ∈
³
Lie[p]

´s
, then Ip = L. Fur-

thermore, [L,L] ⊆ J for any nonzero ideal J of I.

Proof. Since Ip is a p-ideal (Proposition 2.5) and L ∈
³
Lie[p]

´s
we

deduce that Ip = L. Now, consider a nonzero ideal J of I. From Lemma
2.6 follows that J is an ideal of Ip = L. Proposition 2.5 now implies that

Jp is a p-ideal of L, which yields Jp = L because L ∈
³
Lie[p]

´s
. Finally,

the same proposition gives [L,L] = [L, Jp] = [L, J ] ⊆ J . 2

The following well-known result (see [19, Proposition 4.1]) is a conse-
quence of the previous lemma.

Corollary 2.8. If L ∈
³
Lie[p]

´s
, then [L,L]p = L and [L,L] ∈ Lies.

Proof. Let us consider I = [L,L]. If J is a nonzero ideal of I we have
I = [L,L] ⊆ J . 2

The next concept is the main tool to define our functor from Lies to³
Lie[p]

´s
.

Definition 2.9. [17, pp. 92− 94] Let L be a Lie algebra.
1. A triple (G, [p], ı) is called a p-envelope of L if (G, [p]) is a Lie

p-algebra and ı:L → G is a Lie algebra monomorphism such that
ı(L)p = G.

2. A p-envelope (G, [p], ı) of L is called minimal if its dimension is
minimal among the dimensions of all p-envelopes of L.

The following proposition is well-known (see for example, [19, Proposi-
tion 4.1])

Proposition 2.10. If L ∈ Lies, then adL(L)p ∈
³
Lie[p]

´s
is the minimal

p-envelope of L with the monomorphism adL : L −→ adL(L).
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3. Functorial approach

In the literature (see [3, 19]) is possible to find a one-to-one correspondence

of objects between
³
Lie[p]

´s
and Lies. Thus the classification of the finite-

dimensional p-simple Lie p-algebras is equivalent to classification of the
finite-dimensional simple Lie algebras. We will show that the categories³
Lie[p]

´s
and Lies are equivalent.

To this end, let us start with the functor from p-simple Lie p-algebras
to simple Lie algebras

Proposition 3.1. There exists a dense and faithful covariant functor F :³
Lie[p]

´s
−→ Lies given by

F(L) := [L,L], for all L ∈ Obj
³
Lie[p]

´s
,

F(f) := f
¯̄̄
[L,L]

, for all f ∈ Hom¡
Lie[p]

¢s(L,L0 ).
Proof. It is easy to check from Corollary 2.8 that F is a covariant func-
tor. Now, consider f, g ∈ Hom¡

Lie[p]
¢s (L,L0) such that F(f) = F(g),

so f
¯̄̄
[L,L]

= g
¯̄̄
[L,L]

, which implies that f ([x, y])[p]
n
2 = g ([x, y])[p]

n
2 , for

all x, y ∈ L and n ∈ Z+. Since f, g are p-homomorphisms we have

f
³
[x, y][p]

n
1

´
= g

³
[x, y][p]

n
1

´
. It follows from Proposition 2.5 that f

¯̄̄
[L,L]p

=

g
¯̄̄
[L,L]p

and [L,L]p is a p-ideal of L. Therefore L = [L,L]p and f = g.

We proceed to show that F is dense. From Proposition 2.10, for every

L ∈ Lies its minimal p-envelope G = adL(L)p of L is an object in
³
Lie[p]

´s
.

Furthermore, it follows from Proposition 2.5 and the simplicity of L that

F(G) = [adL(L)p, adL(L)p] = [adL(L), adL(L)] = ad(L) ∼= L.

2

The remainder of this section will be devoted to the construction of a
covariant functor G : Lies −→

³
Lie[p]

´s
which is an equivalence of cate-

gories.
Let L be the category either Liess or Lies. Since adL : L −→ adL(L) is

an isomorphism in L, because ker(adL) = z(L) is a solvable ideal of L, we
can conclude that ad(L) ∈ L where ad is the covariant functor ad : L −→ L
given by

ad(L) := adL(L), for all L ∈ L,
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ad(f)(adL(x)) := adL0(f(x)), for all f ∈ HomL(L,L0).

Moreover, there exists a natural isomorphism ad : id −→ ad, where
id : L −→ L is the identity functor and ad := {adL : L −→ ad(L) | L ∈ L}.
Therefore the functor ad is an equivalence of categories.

Let adL be the full subcategory of L with objects {ad(L) | L ∈ L}.

Lemma 3.2. Let H be a Lie subalgebra of L. Then,

(i) adnL(h)
¯̄̄
H
= adnH(h), for all h ∈ H and n ∈ Z+.

(ii) [adnL(h), ad
m
L (h

0)]
¯̄̄
H
= [adnH(h), ad

m
H(h

0)], for all h, h0 ∈ H and n,m ∈
Z+.

Lemma 3.3. Assume that f ∈ HomLie(L,L0) and writeH = Im(f). Then

(i) adnH(f(x))(f(y)) = f (adnL(x)(y)), for all n ∈ Z+ and x, y ∈ L.

(ii) [adnH(f(x)), ad
m
H(f(y))] (f(z)) = f ([adnL(x), ad

m
L (y)] (z)), for all n,m ∈

Z+ and x, y, z ∈ L.

Let L, L0 be simple Lie algebras, for any non zero homomorphism
f ∈ HomLies(L,L0), we will denote by ad(f)p the linear map given by

ad(f)p : ad(L)p −→ ad(L0)p

adp
k

L (x) 7−→ adp
k

L0 (f(x))
.

From Proposition 2.10 we get ad(L)p and ad(L
0)p are object in

³
Lie[p]

´s
.

Therefore, make sense to ask if ad(f)p is a p-homomorphism. To this
end, let us consider a finite basis B = {xi}ni=1 of L. Since f is a Lie
monomorphism we can conclude that f(B) is a basis of H = Im(f) and

ad(L) ∼= ad(H) in Lie. Lemma 2.5 implies that C =
n
adp

ki

L (xi)
on
i=1

and

ad(f)p(C) =
n
adp

ki

H (f(xi))
on
i=1

are a basis of ad(L)p and ad(H)p respec-

tively, where adp
ki

L (xi) ∈ C for all xi ∈ B and some ki ∈ Z+. Consequentlyn
adp

ki

L0 (f(xi))
on
i=1

is a basis for adL0(H)p, because ad(H) ∼= Im(ad(iH)) =
adL0(H) in Lie, where iH : H → L0 is the canonical inclusion. Using such
basis we will prove the following proposition.

Proposition 3.4. ad(f)p is a p-homomorphism for any f ∈ HomLies(L,L0).
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Proof. To prove that ad(f)p is a morphism in Lie, let us consider

∙
adp

kt

L (xt), ad
pkj

L (xj)

¸
=

nX
i=1

αiad
pki
L (xi), αi ∈ F

Since

∙
adp

kt

L0 (f(xt)), ad
pkj

L0 (f(xj))

¸
∈ adL0(H)p,

∙
adp

kt

L0 (f(xt)), ad
pkj

L0 (f(xj))

¸
=

nX
i=1

βiad
pki
L0 (f(xi)), βi ∈ F.

We shall prove αi = βi for all i = 1, 2, . . . , n. From Lemma 3.2 it follows
that ∙

adp
kt

H (f(xt)), ad
pkj

H (f(xj))

¸
=

∙
adp

kt

L0 (f(xt)), ad
pkj

L0 (f(xj))

¸ ¯̄̄̄
H

=
Pn

i=1 βiad
pki
L0 (f(xi))

¯̄̄̄
H

=
Pn

i=1 βiad
pki
H (f(xi))

On the other hand, from Lemma 3.3 we have∙
adp

kt

H (f(xt)), ad
pkj

H (f(xj))

¸
(f(y)) = f

µ∙
adp

kt

L (xt), ad
pkj

L (xj)

¸
(y)

¶
= f

³Pn
i=1 αiad

pki
L (xi)(y)

´
=
Pn

i=1 αif
³
adp

ki

L (xi)(y)
´

=
Pn

i=1 αiad
pki
H (f(xi)) (f(y)).

Therefore∙
adp

kt

H (f(xt)), ad
pkj

H (f(xj))

¸
=

nX
i=1

αiad
pki
H (f(xi))

Consequently αi = βi for all i = 1, 2, . . . , n and

ad(f)p

µ∙
adp

kt

L (xt), ad
pkj

L (xj)

¸¶
= ad(f)p

³Pn
i=1 αiad

pki
L (xi)

´
=
Pn

i=1 αiad(f)p
³
adp

ki

L (xi)
´

=
Pn

i=1 αiad
pki
L0 (f(xi))

=

∙
adp

kt

L0 (f(xt)), ad
pkj

L0 (f(xj))

¸
=

∙
ad(f)p

³
adp

kt

L (xt)
´
,ad(f)p

µ
adp

kj

L (xj)

¶¸
.
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We proceed to show that ad(f)p is a p-homomorphism. Let us consider

x =
nX
i=1

αiad
pki
L (xi), αi ∈ F

be a nonzero element in ad(L)p. Since

ad(f)p
³³

αadp
k

L (y)
´p´

= ad(f)p
³
αpadp

k+1

L (y)
´
= αpadp

k+1

L0 (f(y))

=
³
αadp

k

L0 (f(y))
´p

for all α ∈ F, y ∈ L and k ∈ Z+. Now suppose that for 1 < t < n holds

ad(f)p

ÃÃ
t−1X
i=1

αiad
pki
L (xi)

!p!
=

Ã
t−1X
i=1

αiad
pki
L0 (f(xi))

!p

.

Then
ad(f)p

³³Pt
i=1 αiad

pki
L (xi)

´p´
= ad(f)p

³³Pt−1
i=1 αiad

pki
L (xi) + αtad

pkt
L (xt)

´p´
= ad(f)p

³³Pt−1
i=1 αiad

pki
L (xi)

´p´
+ad(f)p

³³
αtad

pkt
L (xt)

´p´
+ ad(f)p

(
Pp−1

j=1 sj
³Pt−1

i=1 αiad
pki
L (xi), αtad

pkt
L (xt)

´
=
³Pt−1

i=1 αiad
pki
L0 (f(xi))

´p
+
³
αtad

pkt
L0 (f(xt))

´p
+
Pp−1

j=1 sj
³Pt−1

i=1 αiad
pki
L0 (f(xi)), αtad

pkt
L0 (f(xt))

´
=
³Pt

i=1 αiad
pki
L0 (f(xi))

´p
=
³
ad(f)p

³Pt
i=1 αiad

pki
L0 (xi)

´´p
.

The third equality follows from [17, Exercise 4, p. 69]. This completes
the proof. 2

Corollary 3.5. There exists a covariant functor (−)p : adLies −→
³
Lie[p]

´s
given by

(−)p(ad(L)) := ad(L)p, for all L ∈ Lies,
(−)p(ad(f)) := ad(f)p, for all f ∈ HomLies(L,L0).

To prove our main theorem, we will need of the following technical
lemma.

Lemma 3.6. If L ∈
³
Lie[p]

´s
, then ad(L) ∈

³
Lie[p]

´s
. Moreover, adL ([L,L])p =

ad(L).
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Proof. From the fact that adL : L −→ ad(L) is a p-isomorphism it

follows that ad(L) ∈
³
Lie[p]

´s
. Now, since for all adL(x) ∈ ad(L) and

adp
k

L ([ei, ej ]) ∈ adL ([L,L])ph
adL(x), ad

pk

L ([ei, ej ])
i
=
h
adL(x), adL

³
[ei, ej ]

[p]k
´i

= adL
³h
x, [ei, ej ]

[p]k
i´
∈ adL ([L,L]) ⊂ adL ([L,L])p

we can conclude that adL ([L,L])p is an ideal of ad(L) and from Proposition
2.5 we have adL ([L,L])p is a p-ideal of ad(L). This proves our Lemma. 2

Theorem 3.7. The functors F :
³
Lie[p]

´s
−→ Lies and (−)p ◦ ad :

Lies −→
³
Lie[p]

´s
are a pair of adjoint equivalences of categories.

Proof. Denote by G the functor (−)p ◦ ad. Note that

FG(L) = [ad(L)p,ad(L)p] = [ad(L),ad(L)] = ad(L), for all L ∈ Lies.

On the other hand, for all L ∈
³
Lie[p]

´s
we have ψL : ad([L,L])p −→

adL([L,L])p given by ψL
³
adp

k

[L,L](x)
´
= adp

k

L (x) is a p-isomorphism. Simi-

larly to Proposition 3.4, it is easy to check that ψL is a p-homomorphism.
From Lemma 3.6

GF(L) = ad([L,L])p ∼= adL([L,L])p = ad(L), for all L ∈
³
Lie[p]

´s
.

Let us consider the following morphisms sequences in Lies and
³
Lie[p]

´s
respectively

η := {ηL : L −→ FG(L)}L∈Lies and ν := {νL : L −→ GF(L)}
L∈
¡
Lie[p]

¢s
given by ηL := adL and νL := ψ−1L adL

L
adL−→ adL = adL([L,L])p

ψ−1L−→ ad([L,L])p.

Since L is simple (resp. p-simple) Lie algebra, we deduce that ηL (resp.
νL) is an isomorphism (resp. p-isomorphism)
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For all f ∈ HomLies(L,L0) the following diagram commutes

because,

FG(f) = F (ad(f)p) = ad(f)p
¯̄̄
[ad(L)p,ad(L)p]

= ad(f)p
¯̄̄
[ad(L),ad(L)]

= ad(f)p
¯̄̄
ad(L)

= ad(f).

On the other hand, for every g ∈ Hom¡
Lie[p]

¢s(L,L0) the following dia-
gram commutes

because, for any x ∈ L (from Corollary 2.8 without loss of generality we

can assume x = y[p]
k
with y ∈ [L,L] and k ∈ Z+)

pc
fe1

pc
fe2
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GF(g)νL(x) = GF(g)
³
ψ−1L adL

³
y[p]

k
´´

= GF(g)
³
ψ−1L adp

k

L (y)
´

= GF(g)
³
adp

k

[L,L](y)
´

= G
µ
g
¯̄̄
[L,L]

¶³
adp

k

[L,L](y)
´

= ad

µ
g
¯̄̄
[L,L]

¶
p

³
adp

k

[L,L](y)
´

= adp
k

[L0,L0] (g(y))

= ψ−1L0 ad
pk

L0 (g(y))

= ψ−1L0 adL0
³
g
³
y[p]

k
´´

= ψ−1L0 adL0(g(x))
= νL0g(x).

Therefore, both η and ν are natural isomorphism, which implies that
the functors F and G are adjoint equivalence of categories. This proves our
theorem. 2

Let us mention two examples.

Example 3.8. For every L ∈ (Lies)[p] = Lies ∩
³
Lie[p]

´s
we have G(L) =

ad(L) and G(f) = ad(f) for all f ∈ HomLies(L,L0).

Example 3.9. Let us consider the simple Lie algebra so(3) with char(F) =
2 and the Lie homomorphism

f : so(3) −→ so(3)
ei 7−→ f(ei) := e4−i, for i = 1, 2, 3

Since so(3) ⊂ Der (so(3)) and so(3)2 = Der (so(3)) by abuse of nota-
tion

ad(f)2 : Der (so(3)) −→ Der (so(3))
hi 7−→ h3−i, for i = 1, 2
ei 7−→ e4−i, for i = 1, 2, 3

Note that e
[2]
1 = h1, e

[2]
2 = h1 + h2 and e

[2]
3 = h2, so

n
e1, e2, e3, e

[2]
1 , e

[2]
3

o
is

a basis to Der (so(3)).

It is well known that for an algebraically closed field F with char(F) =
p ≥ 5, all objects (up to isomorphism) in Lies are classical Lie algebras,
Lie algebras of generalized Cartan type, or Melikian algebras (see [10, p.
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202]). As a consequence of Theorem 3.7 for an algebraically closed field

with char(F) = p ≥ 5 (up to isomorphism) all objects in
³
Lie[p]

´s
are

minimal p-envelopes of classical Lie algebras, Lie algebras of generalized
Cartan type, or Melikian algebras (using the image over the functor G =
(−)p ◦ ad : Lies −→

³
Lie[p]

´s
). For more details on the computations of

such minimal p-envelope see Example 3.8 for classical Lie algebras and [16,
p. 368] for the other ones.

In contrast with p ≥ 5, the classification problem of simple Lie algebras
is open for p = 2, 3 and one of the approach is fixing the absolute toral rank.
Since the absolute toral rank of a simple Lie algebra L and the relative toral
rank of G(L) coincide, from Theorem 3.7 such classification problem fixing
the absolute toral rank is equivalent to following problem:

Problem 2: Classify all finite-dimensional p-simple Lie p-algebras of fixed
relative toral rank over an algebraically closed field of characteristics 2 and
3

Note that Problem 1 (Section 1) and Problem 2 are equivalent when-
ever the toral rank is 2.
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