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A B S T R A C T   

This paper deals with the problem of the optimal placement and sizing of distribution static compensators (D- 
STATCOM) in electrical distribution networks to reduce the total annual operative costs associated with the total 
costs of energy losses added with the investment costs in D-STATCOM. The metaheuristic sine-cosine optimi-
zation algorithm determines nodes with the location and optimal sizes of the D-STATCOM. A discrete-continuous 
codification represents the decision variables, where the discrete part is entrusted with the best candidate nodes 
selection. The continuous part deals with the optimal sizes assigned to the D-STATCOM. Numerical results in the 
IEEE 33- and IEEE 69-bus systems demonstrate the effectiveness of this approach since it helps to minimize the 
total grid operation costs compared with the solution of the mixed-integer nonlinear programming model in 
GAMS. All the numerical validations are carried out in the MATLAB programming environment.   

1. Introduction 

1.1. General context 

Electrical distribution networks provide electricity to all end-users at 
medium- and low-voltage levels [1]; grids, typically created in radial 
topologies, minimize investment costs in conductors and protection 
schemes [2,3]. The radial system generates a new problem; it leads to 
high energy level losses that can oscillate between 6% and 18% of the 
total energy input [4–6]. This amount of energy losses is concerning 
compared with transmission networks where energy losses are not 
higher than 2.0% [3,7]. In order to minimize the energy losses in dis-
tribution networks [8,9] (mainly caused by its radial topology and 
voltage levels), several recent studies and researches have proposed 
multiple approaches that include: (i) optimal grid reconfiguration [10]; 
(ii) optimal placement and sizing of capacitor banks [11]; (iii) optimal 
placement and sizing of battery energy storage systems [12]; (iv) 
Optimal siting and sizing of dispersed generators [13,14]; and (v) 

optimal siting and sizing distribution-static compensators (D-STAT-
COM) [15]. Those methodologies indeed help with the reduction of the 
total grid energy losses. Nonetheless, in the case of the grid reconfigu-
ration, there are crucial costs associated with the new lines’ creation that 
are higher than the cost of total energy losses recovered in the planning 
period. In the case of the capacitors, they are low-cost devices with high 
reliability and durability; however, they inject reactive power in fixed 
steps while the grid demand is dynamic. This continuous dynamic im-
plies that the energy loss reduction can be limited due to the discrete 
nature of the reactive power injection [15]. The optimal placement of 
batteries and capacitors effectively reduces the amount of grid power 
losses; notwithstanding the above, due to the investment and operating 
costs, these devices are used to minimize the energy grid purchasing and 
greenhouse gas emissions reduction and not only for energy losses 
reduction [12]. In the case of the D-STATCOM, there are reactive power 
compensators with similar reliability and durability compared with 
fixed-step capacitors. Nevertheless, their prices are superior to the ca-
pacitors since these include converters that allow the management of 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: odmontoyag@udistrital.edu.co, omontoya@utb.edu.co (O.D. Montoya), almo@utp.edu.co (A. Molina-Cabrera), dagiralr@udistrital.edu.co 
(D.A. Giral-Ramírez), erivas@udistrital.edu.co (E. Rivas-Trujillo), jaalarconv@udistrital.edu.co (J.A. Alarcón-Villamil).  

Contents lists available at ScienceDirect 

Results in Engineering 

journal homepage: www.sciencedirect.com/journal/results-in-engineering 

https://doi.org/10.1016/j.rineng.2022.100768 
Received 24 February 2022; Received in revised form 14 October 2022; Accepted 11 November 2022   

mailto:odmontoyag@udistrital.edu.co
mailto:omontoya@utb.edu.co
mailto:almo@utp.edu.co
mailto:dagiralr@udistrital.edu.co
mailto:erivas@udistrital.edu.co
mailto:jaalarconv@udistrital.edu.co
www.sciencedirect.com/science/journal/25901230
https://www.sciencedirect.com/journal/results-in-engineering
https://doi.org/10.1016/j.rineng.2022.100768
https://doi.org/10.1016/j.rineng.2022.100768
https://doi.org/10.1016/j.rineng.2022.100768
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rineng.2022.100768&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results in Engineering 16 (2022) 100768

2

reactive power amounts [16]. Hence, the main advantage of D-STAT-
COM is that they compensate reactive power flow dynamically as a 
function of the grid requirements, with subsequent better reductions in 
the grid operative costs compared with conventional capacitor banks. 

1.2. Contributions and scope 

In this research, we explore the problem of the optimal location and 
sizing of D-STATCOM for minimizing the total annual grid operative 
costs. This problem has been widely studied in the current literature. 
Some of these approaches have presented below. This work does not 
propose a “new” metaheuristic optimization strategy nor establishes 
improvements over the respective original method [17,18]; the objec-
tive is to apply the Discrete Version Sine-Cosine Algorithm to a power 
system operation problem. The contribution and newness of this work is 
the adaptation and implementation of Discrete Version Sine-Cosine for 
the Annual Operating Costs Reduction process in distribution networks. 
The main advantage of the suggested SCA is that it requires a classical 
power flow methodology to explore and exploit the solution space. For 
the analysis of the results, taking into account the weaknesses of the 
comparative analysis between metaheuristics [17,19,20], we use the 
solvers of the GAMS software; for a fair comparison, in each of the 
scenarios, we use the same computational equipment. It is relevant to 
highlight that the analysis of this work focuses on cost reduction for the 
operation of distribution networks. For this reason, we implement two 
test feeders, the IEEE 33-node system and the IEEE 69-node system. 

1.3. Literature review 

Authors [21] present the optimal placement and sizing problem of 
the D-STATCOM solution in distribution and transmission networks. 
This result is achieved by solving the exact optimization model in the 
General Algebraic Modeling Systems (GAMS). Numerical results vali-
dated the proposed mixed-integer nonlinear programming model 
(MINLP) effectiveness in representing the dynamic injection of reactive 
power in electrical networks. Authors [22] present the simultaneous 
optimal placement and sizing of D-STATCOM, a modified sine cosine 
algorithm (MoSCA). The proposed method was validated on two stan-
dard test systems, the 33-bus, and the 69-bus systems. Authors [23] 
suggested the classical genetic algorithm application to locate and size 
D-STATCOM in radial; and meshed distribution networks considering 
daily residential, industrial, and commercial demand curves. Numerical 
results in the IEEE 33-bus system show the efficiency of the genetic al-
gorithm compared with the GAMS solver. In Ref. [24], the authors have 
recommended the whale optimization algorithm application to locate 
and size D-STATCOM considering different load curves. This study for-
mulates a multi-objective optimization problem considering voltage 
quality, non-supplied energy, and power losses. Numerical results in test 
feeders with 33 and 59 nodes are presented in the cited reference. 
Despite positive solutions illustrated in the papers, no comparisons are 
provided to show the effectiveness and robustness of the proposed al-
gorithm. Authors [15] have combined the sine cosine algorithm to 
locate the D-STATCOM in distribution networks and a conic formulation 
to find their optimal size. Residential, industrial, and commercial curves 
are used in the optimization process of the test feeders composed of 33 
and 69 nodes. Numerical results show the effectiveness and robustness 
of the proposed approach when compared with the GAMS solutions. 
Additional works regarding the optimal placement of D-STATCOM in 
distribution networks include gravitational search algorithm [25]; 
linear approximations [26]; bat algorithms [27]; vortex search algo-
rithm [28], and crow search algorithm [29], among others. 

Unlike previous literature reports, this research proposes a discrete- 
continuous version of the sine-cosine algorithm (SCA) application to 
locate and size D-STATCOM in distribution networks. The discrete part 
of the codification determines the places (i.e., nodes) where these will be 
installed; the continuous part defines their optimal sizes. The main 

advantage of the suggested SCA is that it requires a classical power flow 
methodology to explore and exploit the solution space. It also helps with 
the total time processing reduction necessary in solving the exact MINLP 
model that represents the studied problem. Numerical results in the IEEE 
33- and IEEE 69-bus systems will demonstrate the effectiveness and 
robustness of the proposed approach when compared with the GAMS 
solvers. 

1.4. Organization of the document 

The remainder of this document is arranged as follows: Section 2 
presents the MINLP formulation of the optimal siting and sizing of the D- 
STATCOM problem in distribution networks, considering their daily 
operation. In the same way, section 3 represents the main aspects of the 
solution methodology based on the discrete-continuous version of the 
SCA. Besides, Section 4 reveals the main characteristics of the IEEE 33- 
and IEEE 69-bus systems. This section also incorporates the complete 
information to evaluate the annual operative costs of the network, 
including the daily demand curve. Section 5 presents the optimization 
results obtained with the SCA and their comparisons with the GAMS 
solutions. Finally, Section 6 deals with the main concluding remarks 
derived from this research and some possible future developments. 

2. Optimization model 

The problem of the optimal placement and sizing of D-STATCOM in 
electrical distribution networks can be formulated as a mixed-integer 
nonlinear programming model (i.e., MINLP) where the continuous 
part of the optimization problem corresponds to the classical multi- 
period optimal power flow. The discrete part is associated with deci-
sion variables related to the location of a D-STATCOM in a particular 
node [15]. The optimization objective in this problem corresponds to the 
minimization of the total annual grid operative cost, which is the com-
bination of the total energy losses costs and the investment costs in 
D-STATCOM. Equations (1)–(3) define the objective function. 

min Acost = f1 + f2 (1)  

f1 =CkWhT
∑

h∈H

∑

k∈N

∑

m∈N
YkmVkhVmh cos(δkmh − θkm)Δh (2)  

f2 = T
(

k1

k2

)
∑

k∈N
yk
(
αy2

k + βyk + γ
)

(3) 

Equation (1) establishes the annual operating cost function (Acost); it 
is constructed through the sum of function f1 and function f2. Equation 
(2) characterizes f1 and establishes the energy losses in the distribution 
network, where:  

• CkWh corresponds to the expected energy costs during the planning 
period; T is the number of days in an ordinary year, i.e., 365 days.  

• Ykm is the admittance parameter connecting nodes k and m, 
respectively.  

• Vkh is the voltage magnitude at node k during the period h.  
• Vmh has the same interpretation applied to the node m.  
• δkmh is the angular difference between the voltage angles at nodes k 

and m during the time h.  
• θkm corresponds to the admittance angle that relates nodes k and m.  
• Δh is the time where all the electrical variables take constant values 

(i.e., 1 h for this study).  
• H and N represent the sets that contain all the grid nodes and all the 

periods considering the planning period, respectively. 

Equation (3) characterizes f2 and establishes the total investment 
costs in D-STATCOM, where: 
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• k1 and k2 are positive constant concerning the annualization of the D- 
STATCOM investment costs.  

• yk is the size of the D-STATCOM installed at node k. 
• α, β, and γ are coefficients associated with the D-STATCOM invest-

ment costs. 

Note that the objective function defined in Equation (1) is nonlinear 
and non-convex due to the presence of products among variables along 
with trigonometric functions in Equation (2); due to the cubic nature of 
the investment costs in D-STATCOM as defined in Equation (3). 

In addition, the constraints associated with the studied problem 
include power balance at each node of the network, voltage regulation 
bounds, and D-STATCOM capabilities, among others. Equation (4) to 
Equation (8) defines the considered constraints. 

Pg
kh − Pd

kh =
∑

mεN
kmVkhVmh cos(δkmh − θkm)

{
∀k ∈ N

∀h ∈ H

} (4)  

Qg
kh − Qd

kh + yk =
∑

mεN
kmVkhVmh sin(δkmh − θkm)

{
∀k| ∈ N

∀h ∈ H

} (5)  

Vmin ≤Vkh ≤ Vmax

{
∀k ∈ N
∀h ∈ H

}

(6)  

xkQDS
min ≤Vkh ≤ xkQDS

max{∀k∈N} (7)  

∑

k∈N
xk ≤ NDS

ava (8)  

Where Pg
kh and Qg

kh represent the active and reactive power generation in 
the slack node connected at node k during the period h; Pd

kh and Qd
kh are 

the active and reactive constant demands linked to the node k during the 
period h. Vmin and Vmax are the minimum and maximum voltage regu-
lation bounds permitted for all the nodal voltages at any time. xk cor-
responds to the binary variable that determines the location of a D- 
STATCOM at node k: this is; D-STATCOM is located if xk takes the value 
xk = 1; otherwise, this variable takes a zero value; QDS

min and QDS
max are the 

minimum and maximum reactive power generation capabilities of the 
D-STATCOM, and NDS

ava is a constant parameter that defines the number 
of D-STACOMs available for installation along with the distribution 
network. 

It is relevant to mention that Equation (4) and Equation (5) represent 
the active and reactive power equilibrium at each network node during 
each time. The inequality constraint described in Equation (6) portrays 
the voltage regulation limits for all network nodes at any period; this is a 
typical condition imposed by regulatory entities. The inequality 
constraint described in Equation (7) is a box-type restriction that defines 
the optimal size of the D-STATCOM located at node k; the one described 
in Equation (8) establishes the maximum number of D-STATCOM 
installed along the distribution grid. 

It is worth emphasizing that the set of constraints described in 
Equation (4) to Equation (8) is addressed through the implementation of 
a power flow problem that simultaneously solves Equations (4) and (5). 
We, as authors, handle the voltage regulation constraint described in 
Equation (6) through the fitness function defined in the next section. We 
address Equations (7) and (8) through the proposed discrete-continuous 
codification. 

The following section explains the details of the solution methodol-
ogy based on the discrete-continuous version of the sine-cosine 
algorithm. 

3. Solution methodology 

Equations (1)–(8) define the problem of the optimal placement and 
sizing of D-STATCOM in distribution networks to minimize the total grid 
annual operative costs. Hence, through the previous formulation 
emerges a nonlinear non-convex optimization problem. Its solution re-
quires the application of a master-slave optimization methodology that 
deals with the binary and continuous parts of the model. This research 
proposes the application of the discrete-continuous version of the sine- 
cosine algorithm. The sine cosine algorithm is a combinatorial optimi-
zation technique from the family of mathematical-inspired algorithms 
[30]; S. M [31]. 

The SCA has been proposed for multiple nonlinear and mixed-integer 
nonlinear programming models with excellent numerical results. Some 
solved optimization problems have been parametric estimation in 
single-phase transformers [32]. The optimal location of dispersed gen-
eration in electrical distribution grids [33]. Optimal power flow solution 
in transmission networks [30]. And optimization of multimodal con-
strained models [34], among others. 

In this research, we proposed an adaptation of the SCA to locate and 
size D-STATCOM in electrical distribution networks by using a discrete- 
continuous codification. The main steps in the implementation of the 
SCA are described below. 

3.1. Generation of the initial population 

The exploration and exploitation of the solution space through the 
SCA are developed by applying trigonometric evolution rules to an 
initial population [30]. This initial population is generated and 
randomly distributed along with the solution space. To create this 
population, we use a Gaussian distribution in the center of the solution 
space calculated as the average of the maximum and minimum bounds 
of the decision variables. The initial population takes the form presented 
in Equation (9). 

X0 =

⎡

⎢
⎢
⎣

X11 X12 … X1n
X21 X22 … X2n
⋮ ⋮ ⋱ ⋮

Xr1 Xr2 … Xrn

⎤

⎥
⎥
⎦ (9)  

Where n denotes the number of variables in the problem; in this case, the 
studied problem is defined by the number of D-STATCOM available for 
installation, i.e., n = 2NDS

ava. In addition, r in the initial population in 
Equation (9) is the number of potential solutions. Here, the matrix X0 

represents the initial population at 0 iterations. Note that each row in X0 

is generated with the structure of Equation (10). 

X0
j = [ 10 ⋯ k ⋮ 0.8725 ⋯ yk ],∀j= 1, ..., r (10) 

Note that the first NDS
ava corresponds to discrete variables that define 

the nodes where the D-STATCOM will be installed (integer part of the 
codification). The second part of this vector represents the sizes assigned 
for these D-STATCOM. 

To generate each component of the initial population in Equation 
(9), with the same structure defined in Equation (10), we implemented 
the rule presented in Equation (11). 

Xjl = Xmin
l + r1

(
Xmax

l − Xmin
l

)

∀l = 1,…, n
∀j = 1, 2,…, r

(11)  

Here, l corresponds to the row, j corresponds to the matrix column X0, 
and r1 is a random number with normal distribution in the rank [0,1]. 
Now, Xmax

l and Xmin
l denote the maximum and minimum values for the 

variables. It is worth noting that for l ≤ NDS
ava, the rates generated with 

Equation (11) are rounded to the nearest integer value. 
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3.2. Fitness function 

The evolution of the initial population through the solution space is 
guided by a modification of the objective function known as the fitness 
function. This function allows the metaheuristic optimizer to explore 
inaccessible zones that conduce to promissory non-explored solution 
regions [32]. The fitness function proposed in this research takes the 
form presented in Equation (12). 

min ff =

{

Acost − μ1 min
{k∈N,h∈H}

{0,Vmax − Vkh}+ μ2 max
{k∈N,h∈H}

{0,Vmin − Vkh}

}

(12) 

μ1 and μ2 are positive penalty factors associated with the possible 
voltage deviations regardless of their regulation bounds. 

It is worth emphasizing that the evaluation of the proposed fitness 
function in Equation (12) requires the solution of the power flow 
Equation (4) and Equation (5). The answer to these equations is 
addressed in this research through the successive approximation power 
flow method reported in Ref. [35]. 

Equation (7) and Equation (8) are not included in the fitness function 
as penalizations since those are fulfilled by Equation (10). 

3.3. Evolution of the population 

The SCA receives its name incurring its trigonometric sine and cosine 
functions studies to explore and exploit the solution space. For doing so, 
the initial population is evaluated in the fitness function (Equation (12) 
with the help of the successive approximation power flow method [35]. 
This evaluation allows for identifying the best current solution named 
Xbest . This solution is used to update the offspring in the later iterations 
for Xt

j (Equation (13) and Equation (14). 

Yt+1
j = Xt

j + r2 sin(r3)

⃒
⃒
⃒r4Xbest − Xt

j

⃒
⃒
⃒

j = 1, 2,…, r
(13)  

Zt+1
j = Xt

j + r2 cos(r3)

⃒
⃒
⃒r4Xbest − Xt

j

⃒
⃒
⃒

j = 1, 2,…, r
(14)  

Where r3 and r4 are random numbers with normal distribution in the 
rank [0,1] and [ − π, − π], respectively; besides, r2 is a variable factor 
that guides the convergence of the SCA. This factor can be defined as the 
current iteration t and the maximum number of iterations, i.e., tmáx. 
Equation (15) defines the mathematical form of the r2 coefficient. 

r2 = 1 −
t

tmax
(15) 

The SCA determines which offspring individuals, i.e., Yt+1
i and Zt+1

i 
will make part of the new population. The following evaluation defines 
which individual will replace the current solution Xt

i in Xt+1
i .  

• Select Xt+1
i = Yt+1

i as the new solution if Zf (Yt+1
i )< ff (Zt+1

i ), and if it 
is better than ff (Xt

i).

• Select Xt+1
i = Zt+1

i as the new solution if Zf (Zt+1
i )< ff (Yt+1

i ), and if it 
is better than ff (Xt

i).

• Otherwise, choose Xt+1
i = Xt

i . 

It is relevant to mention that before the evaluation of the individuals 
Yt+1

i and Zt+1
i in the fitness function (Equation (12)), they must be 

adjusted using Equation (11) to preserve the feasibility of the population 
[32]. 

3.4. Ending the searching process of the SCA 

The SCA iterative process finishes the solution space exploration and 

exploitation if one of the following criteria is met [32].  

• If the process reaches the maximum number of iterations tmáx.  
• If, during kmax iterations, the best fitness function does not improve. 

3.5. Algorithm 

Following Algorithm 1, it is possible to solve the numerical imple-
mentation of the proposed SCA problem of the optimal placement and 
sizing of D-STATCOM in electrical distribution networks. Additionally, 
as an annex, Fig. 1 presents the respective flow diagram. 

Algorithm 1 
Application of the SCA to the problem of the optimal placement and sizing of D- 
STATCOM in distribution networks  

Data: Parametrize the SCA, i.e., the number of iterations and repetitions. 
Construct the initial population Xt ; 

Solve the power flow problem to fine the fitness function for each Xt
i to find Xbest ; 

(continued on next page) 

Fig. 1. Flowchart optimal integration of d-statcom with the discrete 
SCA algorithm. 
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Algorithm 1 (continued ) 

for t = 1 : tmax do 
for i = 1 : n do 

Generate the solutions Yt+1
i and Zt+1

i ; 
Verify the feasibility of these individuals and correct them when necessary. 
Evaluate Yt+1

i and Zt+1
i in the fitness function, i.e., ff (Yt+1

i ) and ff (Zt+1
i ); 

Revise the replacing criteria for each individual to create the population for the 
following generation Xt+1; 

end 
Evaluation of iterations without improvements of ff ; 

if k≥ kmax‖t≥ tmax then 
Selection of the better solution in Xt+1; 
Return decision variables and objective function; 
break; 

end 
end 

Result: Return results  

4. Test cases 

The evaluation of the proposed optimization methodology to locate 
and size D-STATCOM in electric distribution grids is made in two clas-
sical and well-known distribution grids composed of 33 and 69 nodes 
with radial structures. Below, we present the main details of these test. 

4.1. IEEE 33-node test feeder 

The IEEE 33-bus system is a radial distribution network composed of 
33 nodes and 32 lines operated at the substation bus with a voltage 
magnitude of 12.66 kV [36]. Fig. 2 shows the electrical configuration of 
this test feeder. 

Table 1 lists the peak active and reactive power consumptions as well 
as the resistances and reactances of the branches. 

Fig. 2. IEEE 33-bus system configuration.  

Table 1 
Line and load parameters for the IEEE 33-bus system.  

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) 

1 2 0.0922 0.0477 100 60 
2 3 0.4930 0.2511 90 40 
3 4 0.3660 0.1864 120 80 
4 5 0.3811 0.1941 60 30 
5 6 0.8190 0.7070 60 20 
6 7 0.1872 0.6188 200 100 
7 8 1.7114 1.2351 200 100 
8 9 1.0300 0.7400 60 20 
9 10 1.0400 0.7400 60 20 
10 11 0.1966 0.0650 45 30 
11 12 0.3744 0.1238 60 35 
12 13 1.4680 1.1550 60 35 
13 14 0.5416 0.7129 120 80 
14 15 0.5910 0.5260 60 10 
15 16 0.7463 0.5450 60 20 
16 17 1.2860 1.7210 60 20 
17 18 0.7320 0.5740 90 40 
2 19 0.1640 0.1565 90 40 
19 20 1.5042 1.3554 90 40 
20 21 0.4095 0.4784 90 40 
21 22 0.7089 0.9373 90 40 
3 23 0.4512 0.3083 90 50 
23 24 0.8980 0.7091 420 200 
24 25 0.8960 0.7011 420 200 
6 26 0.2030 0.1034 60 25 
26 27 0.2842 0.1447 60 25 
27 28 1.0590 0.9337 60 20 
28 29 0.8042 0.7006 120 70 
29 30 0.5075 0.2585 200 600 
30 31 0.9744 0.9630 150 70 
31 32 0.3105 0.3619 210 100 
32 33 0.3410 0.5302 60 40  

Fig. 3. IEEE 69-bus system configuration.  
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4.2. IEEE 69-node test feeder 

The IEEE 69-bus system corresponds to a radial distribution grid 
operated with 12.66 kV at the substation bus. Fig. 3 depicts the electrical 
configuration for this test feeder. 

Table 2 classifies the peak active and reactive power consumptions 
and the resistances, reactances, and branches for the IEEE 69-bus 
system. 

4.3. Active and reactive demand curves and D-STATCOM parameters 

Table 3 details the active and reactive power curves that help to 
evaluate daily network energy losses. 

Regarding the parametrization of the objective functions associated 
with the annual energy losses costs added with the investment costs in D- 
STATCOM, the parameters listed in Table 4 are employed. 

4.4. characteristics assigned to the algorithm 

The parametrization of the SCA to locate and size D-STATCOM in 
electrical distribution networks was developed through the imple-
mentation of multiple simulations varying the number of iterations and 
the population size. The number of iterations was between 500 and 
2000, while the population sizes were between 5 and 30 individuals. 
After these simulations, results with 10 individuals in the population and 
1000 iterations showed adequate convergence regarding the objective 
function value and processing times, for this reason, those values were 
set for the proposed SCA in this study. 

5. Computational validations 

As presented in Algorithm 1, the SCA implementation was made 
using MATLAB® 2021. The simulations were run on a PC with an AMD 
Ryzen 7 3700 2.3-GHz processor and 16.0 GB RAM, running on a 64-bit 
version of Microsoft Windows 10 (Single Language). As a different 
methodology, we consider the solution of the exact optimization model 
defined from Equation (1) to Equation (8) using the GAMS software with 

Table 2 
Line and load parameters for the IEEE 69-bus system.  

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) 

1 2 0.0005 0,0012 0 0 
2 3 0.0005 0,0012 0 0 
3 4 0.0015 0,0036 0 0 
4 5 0.0251 0,0294 0 0 
5 6 0.3660 0,1864 2.60 2.20 
6 7 0.3810 0,1941 40.40 30 
7 8 0.0922 0,0470 75 54 
8 9 0.0493 0,0251 30 22 
9 10 0.8190 0,2707 28 19 
10 11 0.1872 0,0619 145 104 
11 12 0.7114 0,2351 145 104 
12 13 1.0300 0,3400 8 5 
13 14 1.0440 0,3450 8 5,5 
14 15 1.0580 0,3496 0 0 
15 16 0.1966 0,0650 45.50 30 
16 17 0.3744 0,1238 60 35 
17 18 0.0047 0,0016 60 35 
18 19 0.3276 0,1083 0 0 
19 20 0.2106 0,0690 1 0.60 
20 21 0.3416 0,1129 114 81 
21 22 0.0140 0,0046 5 3.50 
22 23 0.1591 0,0526 0 0 
23 24 0.3463 0,1145 28 20 
24 25 0.7488 0,2475 0 0 
25 26 0.3089 0,1021 14 10 
26 27 0.1732 0,0572 14 10 
3 28 0.0044 0,0108 26 18.60 
28 29 0.0640 0,1565 26 18.60 
29 30 0.3978 0,1315 0 0 
30 31 0.0702 0,0232 0 0 
31 32 0.3510 0,1160 0 0 
32 33 0.8390 0.2816 14 10 
33 34 1.7080 0.5646 19.5 14 
34 35 1.4740 0.4873 6 4 
3 36 0.0044 0.0108 26 18.55 
36 37 0.0640 0.1565 26 18.55 
37 38 0.1053 0.1230 0 0 
38 39 0.0304 0.0355 24 17 
39 40 0.0018 0.0021 24 17 
40 41 0.7283 0.8509 1.20 1 
41 42 0.3100 0.3623 0 0 
42 43 0.0410 0.0478 6 4,3 
43 44 0.0092 0.0116 0 0 
44 45 0.1089 0.1373 39.22 26.30 
45 46 0.0009 0.0012 29.22 26.30 
4 47 0.0034 0.0084 0 0 
47 48 0.0851 0.2083 79 56.40 
48 49 0.2898 0.7091 384.7 274.50 
49 50 0.0822 0.2011 384.7 274.50 
8 51 0.0928 0.0473 40.5 28.30 
51 52 0.3319 0.1114 3.60 2,7 
9 53 0.1740 0.0886 4.35 3.50 
53 54 0.2030 0.1034 26.40 19 
54 55 0.2842 0.1447 24 17.20 
55 56 0.2813 0.1433 0 0 
56 57 1.5900 0.5337 0 0 
57 58 0.7837 0.2630 0 0 
58 59 0.3042 0.1006 100 72 
59 60 0.3861 0.1172 0 0 
60 61 0.5075 0.2585 1244 888 
61 62 0.0974 0.0496 32 23 
62 63 0.1450 0.0738 0 0 
63 64 0.7105 0.3619 227 162 
64 65 1.0410 0.5302 59 42 
11 66 0.2012 0.0611 18 13 
66 67 0.0470 0.0140 18 13 
12 68 0.7394 0.2444 28 20 
68 69 0.0047 0.0016 28 20  

Table 3 
Active and reactive power behavior in a typical working day.  

Time Act. (pu) React. (pu) Time Act. (pu) React. (pu) 

1 0.3400 0.2954 25 0.9400 0.6764 
2 0.2800 0.2238 26 0.9400 0.7228 
3 0.2200 0.1964 27 0.9000 0.7754 
4 0.2200 0.1666 28 0.8400 0.6868 
5 0.2200 0.1478 29 0.8600 0.7542 
6 0.2000 0.1654 30 0.9000 0.8538 
7 0.1800 0.1662 31 0.9000 0.8448 
8 0.1800 0.1274 32 0.9000 0.7294 
9 0.1800 0.1404 33 0.9000 0.8452 
10 0.2000 0.1750 34 0.9000 0.6162 
11 0.2200 0.1456 35 0.9000 0.5988 
12 0.2600 0.2428 36 0.9000 0.6672 
13 0.2800 0.2462 37 0.8600 0.7086 
14 0.3400 0.2780 38 0.8400 0.6798 
15 0.4000 0.2820 39 0.9200 0.8468 
16 0.5000 0.3996 40 1.0000 0.8122 
17 0.6200 0.4994 41 0.9800 0.7640 
18 0.6800 0.6448 42 0.9400 0.7640 
19 0.7200 0.6526 43 0.9000 0.7774 
20 0.7800 0.7322 44 0.8400 0.5502 
21 0.8400 0.7170 45 0.7600 0.6766 
22 0.8600 0.6632 46 0.6800 0.4710 
23 0.9000 0.8374 47 0.5800 0.4602 
24 0.9200 0.7304 48 0.5000 0.3636  

Table 4 
Parametrization of the objective function.  

Parameter Value Unit Parameter Value Unit 

CkWh 0.1390 USD/kWh T 365 Days 
Δh 0.50 h α 0.30 USD/MVAr3 

β − 305.10 USD/MVAr2 γ 127,380 USD/MVAr 
k1 6/2190 Days k2 10 Years  
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the BONMIN and COUENNE solvers. 

6. Results for IEEE 33-bus system 

Table 5 presents the numerical results after implementing the SCA 
during 100 consecutive iterations and selecting the best optimal solution 
compared with the GAMS solvers. 

Table 5 shows that the proposed SCA to locate and size D-STATCOM 
in distribution networks finds the best global optimum compared with 
the solvers COUENNE and BONMIM in the GAMS solvers. Concerning 
the benchmark case, the COUNNE solver reached a reduction of 4.57%. 
The BONMIM solver presented a cutback of 9.13%; for the proposed 
SCA, this reduction was 12.59%. Compared with the solution reported 
by the BONMIN solver, the proposed approach grant saved about 
3897.21 USDper operation year. 

Note that the solution reached by the SCA to located the D-STATCOM 
in nodes 15, 30, and 32 with a total reactive power capacity of 620.38 
kvar; while the best solution provided by the GAMS solver located these 
devices at nodes 17, 18, and 30, with a nominal reactive power capa-
bility of 296.10 kvar; which is about 324.28 kvar less than the SCA. Even 
if this difference is high in installed capacity, the SCA prefers to invest 
more in D-STATCOM to have additional reductions in the total annual 
energy loss costs, which results in an objective function with a lower 
final value, as shown in Table 5. 

To demonstrate the effectiveness of the proposed SCA after 100 
consecutive evaluations in the IEEE 33-node test feeder, Fig. 4 depicts 
the relation between each solution concerning the solution reached by 
the BONMIN solver. 

The relation between the SCA solutions and the BONMIN solution 
clearly shows that most of the 90% of the solutions found through the 
proposed discrete-continuous version of the SCA find objective functions 
with better numerical performance than the BONMIN solver. For 
instance, there are more than 90% possibilities of having a better nu-
merical solution when the SCA is run once compared with the method 
available in the GAMS package. This result is especial since the multiple 
solutions found by the SCA will allow the distribution company to make 
the best decision regarding the optimal placement and sizing of their D- 
STATCOM as a function of the grid requirements. This distribution is not 
possible when only one solution is reached, as is the case of the BONMIN 
solver. 

It is necessary to mention that between the first solution and the 
fiftieth solution reached by the SCA, the difference was about 870.22 
USD per operation year, which implies that this solution will allow a 
reduction of 11.82% concerning the benchmark case, being at least 
2.69% better than the solution reported by the BONMIN solver. 

Regarding the total processing time, it is worth saying that the SCA 
takes about 47 s to solve the studied optimization problem. This result 
implies that, for planning purposes, the proposed approach is faster. 
Besides, it can carry out multiple evaluations in a short period allowing 
the distribution company to study numerous scenarios before deciding 
the solutions that will be implemented along with the distribution grid. 

Table 5 
Comparative results between the proposed SCA and the GAMS solvers.  

Method Location (node) 
Size (MVAr) 

Acost (USD/year) 

Benchmark case − 112740.90 
COUENNE 16(0.0109), 17(0.0224), 18(0.2065) 107589.50 
BONMIN 17(0.0339), 18(0.0227), 30(0.2395) 102447.29 
SCA 15(0.1557), 30(0.3364), 32(0.1282) 98550.08  

Fig. 4. Relation between the solutions reached by the SCA and the solution reported by the BONMIN solver.  

Table 6 
Best five solutions reached by the proposed SCA in the IEEE 69-bus system.  

Solution Location (node) 
Size (MVAr) 

Acost (USD/year) 

Benchmark case − 119715.63 
Solution 1 26(0.0735), 61(0.4945), 64(0.0816) 103049.30 
Solution 2 23(0.0594), 61(0.4077), 64(0.1699) 103054.20 
Solution 3 21(0.0634), 61(0.3514), 62(0.2277) 103128.06 
Solution 4 19(0.1063), 61(0.3509), 63(0.2302) 103153.50 
Solution 5 23(0.0873), 61(0.1741), 62(0.3949) 103165.25  
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6.1. Results for IEEE 69-bus system 

In the IEEE 69-bus system, when is evaluated the exact optimization 
model (1)–(8), both solves, i.e., the BONMIN and the COUNNE, fail to 
reach a feasible solution. For this reason, Table 6 reports the best five 
solutions found by the SCA for this system. 

Results in Table 6 show that the best solution reached by the SCA 
allows a reduction of 13.92% concerning the benchmark case, while the 
fifth solution represents a cutback of 13.82%. These reductions imply 
that the difference between both solutions is about 0.10%, which is 
about 115.95 USD per operation year. 

Table 6 details the best solution by selecting nodes 26, 61, and 64 to 
locate all the D-STATCOM with a total installed capacity of 649.67 kvar. 
The fifth solution selects nodes 23, 61, and 62 with a total installed 
capacity of 656.25 kvar. In addition, for all the five answers in Table 6, 
node 61 is identified as part of the optimal solution. This outcome is 
relevant since the distribution company has confirmed that this node is 
indispensable in the final solution. This result is due to the high 
compromise of this node with the reactive power injection and the en-
ergy losses reduction. 

Fig. 5 confirms the effectiveness of the proposed SCA in the solution 
of the optimal placement and sizing of the D-STATCOM problem in the 
IEEE 69-bus system, the relation between the 100 solutions found by the 
SCA and the benchmark case. 

The percentage of reduction performance, when is achieved the 
cutback of each of the 100 solutions reached by the SCA, compared to 
the benchmark case, shows that more than 95% of the solutions find 
reductions higher than 8%; and 100% of solutions reduce the total costs 
of the grid when no D-STATCOM are considered. It is relevant to 
mention that about 70% of the solutions find a reduction concerning the 
benchmark case of about 12% or higher, which implies that in one 
execution of the proposed approach, there is a 70% possibility of 
improving the annual grid operative costs about 14,365.87 USD per 
operation year. 

It is necessary to mention that the average processing time of the 
proposed SCA in the IEEE 69-bus system is about 223.66 s. This result is 
a minimum processing time considering that the SCA is solving a 

planning optimization problem that will improve the electrical perfor-
mance of the grid for more than one decade. 

7. Conclusions and future works 

This study addresses the optimal placement and sizing of the D- 
STATCOM problem in distribution grids considering the reduction of the 
annual grid operative costs through the discrete-continuous version of 
the sine-cosine algorithm application. The main advantage of the 
discrete-continuous codification is that in just one stage, it is possible to 
solve the location (binary) and the size (continuous) part of the opti-
mization model by employing only a power flow problem to calculate 
the objective function value. This strategy helps to reduce considerably 
the total processing time that requires master-slave methodologies that 
decouple the siting and sizing problems and solve these with different 
metaheuristics and embedded power flows. 

Numerical results demonstrated that in the IEEE 33-bus system, the 
reduction for the benchmark case was about 12.59%. In the case of the 
IEEE 69-bus system, this reduction was around 13.92%. In addition, in 
the first test feeder, the BONMIN solution only reached about a 9.13% 
reduction, and the COUNNE only 4.57%. In the second test feeder, both 
solvers failed. In addition, for the IEEE 33-bus system, the SCA dem-
onstrates an efficiency of about 90% to improve the BONMIN solver 
solution. In the IEEE 69-bus system, the SCA experienced 70% of pos-
sibilities to find a solution that allows a reduction of 12% or higher 
concerning the benchmark case. 

In further studies, it is possible to develop the following research: (i) 
range the application of the discrete-continuous version of the SCA to 
the optimal siting and sizing problem of photovoltaic sources in distri-
bution grids considering the investment, operating, and maintenance 
costs. (ii) Extend the application of the discrete-continuous version of 
the SCA to the integrated wind-solar-hydro-thermal power system 
considering the wind speed and solar radiation uncertainty. (iii) to 
combine the optimal reactive power injection problem with active 
power support from renewable sources to improve the electrical per-
formance of the distribution networks considering technical, economic, 
and environmental objective functions. 

Fig. 5. Relation between the solutions reached by the SCA and the benchmark case.  
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Additionally, taking into account the characteristics of the Metaphor- 
based metaheuristics, other types of strategies can be used, such as DE/ 
PSO/GSA/ABC/SCA, etc. However, it is relevant to highlight that if the 
objective is to compare results between metaheuristics, it is necessary to 
implement statistical tests, e.g.., Wilcoxon rank-sum/signed-rank test or 
t-test or ANOVA and parameter sensitivity methodologies. It is relevant 
to obtain several quality metrics to characterize the efficiency and 
effectiveness of the results; the work is permanent and requires a 
continuous research process. 
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K. Sörensen, T. Stützle, Metaphor-based metaheuristics, a call for action: the 
elephant in the room, Swarm Intelligence 16 (1) (2022) 1–6, https://doi.org/ 
10.1007/s11721-021-00202-9. 
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