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Abstract: The problem of optimal siting and dimensioning of photovoltaic (PV) generators in medium-
voltage distribution networks is addressed in this research from the perspective of combinatorial
optimization. The exact mixed-integer programming (MINLP) model is solved using a master–slave
(MS) optimization approach. In the master stage, the generalized normal distribution optimization
(GNDO) with a discrete–continuous codification is used to represent the locations and sizes of the PV
generators. In the slave stage, the generalization of the backward/forward power method, known as
the successive approximation power flow method, is adopted. Numerical simulations in the IEEE
33-bus and 69-bus systems demonstrated that the GNDO approach is the most efficient method
for solving the exact MINLP model, as it obtained better results than the genetic algorithm, vortex-
search algorithm, Newton-metaheuristic optimizer, and exact solution using the General Algebraic
Modeling System (GAMS) software with the BONMIN solver. Simulations showed that, on average,
the proposed MS optimizer reduced the total annual operative costs by approximately 27% for both
test feeders when compared with the reference case. In addition, variations in renewable generation
availability showed that from 30% ahead, positive reductions with respect to the reference case
were obtained.

Keywords: solar photovoltaic generation; master–slave optimization; generalized normal distribution
optimizer; radial distribution networks; annual operative cost minimization

1. Introduction

Medium-voltage distribution networks cover big areas, with hundreds of kilometers
in both urban and rural zones, to attend to the electricity end-users [1]. A distribution
grid essentially interfaces the power systems in transformation nodes (i.e., substations)
with consumers at medium- and low-voltage magnitudes to provide a quality, reliable, and
secure service [2]. The main feature of an electrical network is mainly associated with its
topology, as these grids are normally structured in radial form to simplify the protection
schemes and reduce investment costs in all infrastructures related to conductors [3]. The
radial characteristics of these networks result in considerable energy losses when compared
with the transmission/subtransmission grids [4].

On the other hand, the harmful effects of global warming have significantly increased
the interest in the reduction of greenhouse gas emissions from fossil fuels [5], that is
combustion of coal, diesel, natural gas, and in general, petroleum-derived products [6].
Renewable energy resources are essential elements in the evolution of the electrical sector
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to achieve this goal, as this is the third emitter of greenhouse gas emissions after beef
and pork production [7] and transportation systems [8], respectively. In the context of
renewable generation, wind turbines and solar photovoltaic (PV) sources have been widely
developed in recent decades, which have allowed essential reductions in the investment
and maintenance costs of small-scale installations, making these technologies suitable for
installation in medium- and low-voltage distribution grids [9].

For tropical countries, that is countries located near the Equatorial Line (as in the
case of Colombia), the most suitable technology to produce clean energy and replace
thermal generation from fossil fuels is PV generation since solar radiation suffers minor
variations [10]. Instead, wind power is only suitable in coastal areas [11]; thus, large
continental territories are relegated to other types of renewable energy resources, that
is mainly PV sources [12]. An important aspect that must be considered in the optimal
integration of PV generation units is the high variability of the energy production due to
the cloud-induced fluctuations, which can produce important changes in the total power
generation in intervals on the order of seconds [13]. A complete analysis regarding these
fast energy generation fluctuations (due to partially shaded conditions) and their forms
was reported in [14].

On the other hand, the low cost and high expansion of PV sources along the distribu-
tion grids makes the optimal design and inclusion of this technology not an easy task. This
is due to bad planning, which can cause over-voltages and over-currents in nodes and distri-
bution lines, energy loss increments, misoperation of protective devices, and deterioration
of the quality of service, among other problems [15] (a complete review regarding problems
derived from renewable energies in power systems can be found in [16]). To avoid those
problems, distribution companies need to efficiently plan these grids, which requires an
optimal integration of PV generation sources. Such a process must be performed by solving
the mixed-integer nonlinear programming (MINLP) model that represents the problem of
the optimal siting and sizing of the generation sources in distribution grids [17].

The current literature has addressed the problem of the optimally sizing and integra-
tion of renewable energy resources from two different perspectives. The first approach
considers only the technical improvement of the grid, that is power loss reduction [18], volt-
age profile improvement [19], and voltage stability improvement [20]; however, the main
problem of those approaches is related to the economic feasibility of those projects. The
second approach deals with the optimal integration of renewable generation technologies,
which considers a planning period based on an economic indicator as the objective function.
This approach has the main advantage of ensuring that the final solution is technically and
economically feasible [17].

Some approaches, recently reported in the scientific literature, consider economical
objective functions in the problem of the optimal siting and dimensioning of renewable
energy resources. For example, the application of the Chu and Beasley genetic algorithm
(CBGA) using discrete–continuous codification was proposed in [21], which addresses
the problem of the optimal siting and dimensioning of PV sources in medium-voltage
distribution grids. Computational validations in test feeders formed by 33 and 69 buses
demonstrated the efficiency when numerical results were compared with the exact solution
of the MINLP model in the general algebraic modeling system (GAMS) and the BONMIN
solver. Valencia et al. [9] proposed a linear approximated model to size and site batteries
and renewable energy resources in distribution networks. The optimal location of those
devices (integer problem) was left to a classical simulated annealing algorithm, and the
operation problem (sizing problem) was solved using a linear programming model. Test
feeders from 11 to 230 nodes were used to validate the effectiveness of the proposed model;
nevertheless, no comparisons with other optimization methods were provided, which is the
main problem of that work since it is impossible to ensure that the solution provides global
optimization. In [22], the application of a new metaheuristic optimizer called the Newton-
metaheuristic algorithm (NMA) for the same problem was presented. Numerical results
in test feeders with 34 and 85 nodes demonstrated the effectiveness of this optimization
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method through comparisons with the GAMS and CBGA, respectively. In [23], the authors
reported the application of the particle swarm optimizer to locate and size PV sources
and energy storage systems simultaneously. The main contribution of this research was
the complete economic analysis made by the authors, which included the installation,
maintenance, and operating costs of the devices. However, the authors simplified the
optimization problem by considering a single nodal model for the distribution grid, which
reduced the exact MINLP model to an operative nonlinear programming model. Thus, the
component associated with the optimal location of the renewables and batteries remains
unsolved. Cortes-Caicedo et al. [17] presented a discrete–continuous version of the vortex-
search algorithm (DCVSA) for the PV location and sizing problem. Simulations in the IEEE
33-bus and IEEE 69-bus grids demonstrated the effectiveness of the proposed approach
through comparisons with the exact solution in the GAMS software and the application of
the CBGA, respectively. A two-stage methodology based on the combination of a mixed-
integer quadratic convex model to decide the location of the PV sources and the optimal
power flow (PF) solution via the interior point method to determine the PV sizes was
proposed in [12]. Numerical results obtained in this work demonstrated that the method
reached similar results to the CBGA and the NMA approaches for the IEEE 33-bus and
IEEE 85-bus grids.

In addition, optimization methodologies for the locating and sizing of PV generation
units in distribution networks, considering technical or economic objective functions, in-
clude the Jaya optimization algorithm [24], the heuristic-based local search algorithm [25],
the modified gradient-based metaheuristic optimizer [26], the mixed-integer linear ap-
proximation [27], the multi-criteria decision system [28], and recursive simulations using
multiple PF evaluations [29], among other methods. The main characteristic of those ap-
proaches is that they overcome the problem of location from the problem of sizing. The
former problem is solved with sensitivity analyses or heuristic algorithms, and the latter
problem is solved using multiple PF evaluations.

Considering the previous revision of the literature, the main contribution of the article
is the following: the application of a recently developed generalized normal distribution
optimizer (i.e., GNDO), with a discrete–continuous codification, to solve the problem of
the PV location (selection of nodes) and optimal sizing in the master stage. This solution
allows transforming the MINLP model into a simple PF problem for distribution networks,
which is solved using the successive approximation power flow (SAPF) method in the slave
stage. Simulations in the IEEE 33-bus and IEEE 69-bus grids confirmed the effectiveness of
the proposed optimization method, since the final objective function values were better
than those provided by current literature approaches. In this way, the satisfactory results
reported by the vortex-search algorithm in [17] were improved by approximately USD
89.95 and USD 341.18 per year of operation, respectively.

It is important to remark that the GNDO has not been previously applied to problems
of distribution system planning; thus, it is as an opportunity for research addressed in
this work. The GNDO algorithm was proposed in 2020 by Zhang et al. [30] to extract
the parameters of PV modules with different numbers of diodes. However, that is an
optimization problem defined in the domain of the real variables (i.e., continuous variables).
Therefore, the work reported in this paper adapted the GNDO method to deal with a mixed
codification, which combines integer variables related to the buses where the PV sources
will be assigned and continuous variables describing their optimal sizes.

The rest of the paper is organized as follows: Section 2 shows the exact MINLP model
for the studied problem using a mathematical representation in the complex domain. Then,
Section 3 describes the main features of the proposed MS optimization approach, which
combines the GNDO in the master stage with the PF method based on the successive
approximations in the slave stage. Section 4 presents the test feeder characteristics, includ-
ing their peak load behavior, demand, and generation curves; moreover, this section also
describes the parametrization of the objective function. Section 5 presents the complete
analysis and discussion of the results obtained by the proposed MS optimizer and provides
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comparisons with approaches recently reported in the scientific literature. Finally, Section 6
lists the main conclusions of this work.

2. Mathematical Formulation

The optimal allocation and sizing of PV generation units in distribution networks
correspond to a mixed-integer nonlinear programming (MINLP) model. The integer
component of the optimization model is associated with selecting the nodes where the PV
generation units are located, which is indeed a binary decision. The remaining variables are
continuous, and those are related to the optimal sizes of the PV generation units, the solution
of which is equivalent to the PF problem (i.e., voltage, power, and current calculations) [31].
The MINLP model, which represents the problem of the optimal allocation and sizing of PV
generation units in distribution grids, is presented below. This work adopted the complex
domain representation to reduce the extension of the optimization model with respect to
the classical rectangular representation.

2.1. Objective Function Representation

The studied problem is a time-dependent optimization problem, which includes
the demand and generation curves. Those curves help to improve the estimation of the
final grid operating costs with respect to approaches based only on peak demand. The
main interest in the integration of PV sources in electrical distribution grids is associated
with the minimization of the annualized operative costs of the grid, which includes the
investment and maintenance costs of the PV generators, and the energy acquisition costs in
the substation node. This objective function is described by Equations (1)–(3).

min Acost = f1 + f2, (1)

f1 = CkWhT fareal

{
∑

h∈H
∑

k∈N
scg

k,h∆h

}(
∑
t∈T

(
1 + te

1 + ta

)t
)

. (2)

f2 = Cpv fareal

{
∑

k∈N
spv

k

}
+ CO&MT real

{
∑

h∈H
∑

k∈N
spv

k,h∆h

}
. (3)

being:

fa =

(
ta

1− (1 + ta)−Nt

)
,

where the value of the objective function is Acost. Such a value is related to the annual
grid operative costs, where f1 determines the annualized energy purchasing costs in the
substation node, and f2 measures the total investment and maintenance costs of the PV
generation sources installed along with the distribution network. CkWh is the expected
energy purchasing cost at the terminals of the substation, which is taken from the spot
market. The number of years is defined as T. fa is the cost annualization factor, which
depends on the expected internal return rate, that is ta and Nt define the length of the
planning period in years. scg

k,h represents the complex power output at the terminals of the
substation bus connected at node k for each period of time h. ∆h represents the period
of time in which all the electrical variables are constants, that is 1 h for a daily operative
scenario. te is the parameter that measures the expected increment of the energy costs
in the substation node for the duration of the planning project (this value is provided by
the distribution company). Cpv is a parameter that defines the average cost of installing
1 kWp using PV generation. CO&M represents the operating and maintenance costs of the
PV generation units, and spv

k,h represents the complex power output of the PV generation
unit assigned to k in period h. Finally, the sets that contain all the nodes, periods of time,
and years of the planning project are defined as N ,H, and T , respectively.
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2.2. Set of Constraints

The classical power equilibrium equations, maximum and minimum device capa-
bilities, and voltage regulation restrictions constrain the PV location and sizing problem.
Those restrictions are listed in Equations (4)–(12).

scg
k,h + spv

k,h − Sd
k,h = vk,h

(
∑

j∈N
Ykjvj,h

)∗
,
{
∀k ∈ N , ∀h ∈ H

}
, (4)

spv
k,h = spv

k Gpv
h ,
{
∀k ∈ N , ∀h ∈ H

}
, (5)

imag
(

spv
k,h

)
= 0,

{
∀k ∈ N , ∀h ∈ H

}
, (6)

scg,min
k ≤ |scg

k,h| ≤ scg,max
k ,

{
∀k ∈ N , ∀h ∈ H

}
, (7)

ykspv,min
k ≤ |spv

k | ≤ ykspv,max
k ,

{
∀k ∈ N

}
, (8)

vmin
k ≤ |vk,h| ≤ vmax

k ,
{
∀k ∈ N , ∀h ∈ H

}
, (9)

|ikj,h| ≤ imax
kj ,

{
∀k ∈ N , ∀h ∈ H

}
, (10)

∑
k∈N

yk ≤ Nava
pv , (11)

yk ∈ {0, 1},
{
∀k ∈ N

}
, (12)

In the previous expressions, Sd
k,h is the power demand in the complex domain at

node k during period h. vk,h and vj,h are variables in the complex domain associated with
the voltages at nodes k and j for each period of time h, respectively. Ykj represents the
complex admittance that relates nodes j and k. Gpv

h represents the expected PV production

curve, while scg,min
k and scg,max

k represent the minimum and maximum bounds of the

complex power output in the substation bus connected at k. spv,min
k and spv,max

k are the
complex power lower and upper generation bounds, respectively, related to the PV source
installed at node k. ikj,h represents the complex current flow through the distribution lines
interconnecting nodes k and j at each period h. yk represents the decision variable regarding
the installation (yk = 1) or not (yk = 0) of a PV source in the bus k. vmin

k and vmax
k represent

the lower and upper bounds for the voltage regulation assigned to all the distribution grid
nodes at any period of time. Finally, Nava

pv corresponds to the PV generation units available
for installation.

2.3. Model Characterization and Interpretation

The mathematical MINLP formulation presented in Equations (1)–(12) can be inter-
preted as follows: the objective function is defined in Equation (1), which is formed by the
total energy purchasing costs in terminals of the substation bus defined by f1 in Equation (2)
and the investment and maintenance costs of the installed PV sources defined by f2 in
Equation (3). In Equation (4), the complex power equilibrium constraint at each node
of the network is defined, which is the most challenging constraint because it is a set of
nonlinear non-affine constraints that require numerical methods to be solved efficiently [32].
Equation (5) shows that the generation of the complex power in the PV generation units is
a factor, that is their peak sizes, multiplied by the expected generation curve in the zone of
influence of the medium-voltage distribution grid. Equation (6) shows that the generation
in the PV generation units has a unity power factor, which implies that the reactive power
generation is set to zero for all the periods under analysis. The box-type constraint (7)
determines the lower and upper apparent power generation bounds admissible for the
secure operation of the conventional generation (i.e., substation bus) connected at node k
for each period of time. The inequality constraint (8) determines the admissible bounds
for power generation in the PV source connected at node k when the binary variable yk
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takes a value of 1. The box-type constraint (9) bounds the voltage magnitudes in all nodes
of the network for any time [33]. The inequality constraint (10) ensures that the current
variables in the distribution lines remain between their thermal limits. The inequality (11)
fixes the maximum number of PV generators available for integration in the distribution
grid. Finally, Constraint (12) shows the binary nature of the decision variables regarding
the optimal location of the PV sources in the distribution grid.

The solution of the model (1)–(12) can be addressed using MS optimization methodolo-
gies from the family of metaheuristics. Those methodologies allow decoupling the discrete
optimization problem from a continuous one. With such a decoupling, it is easy to assess
the objective function with a simple PF methodology for distribution grids if a metaheuris-
tic algorithm provides the location and sizes of the PV sources. These MS optimization
approaches were applied successfully to this problem by the authors of [21] using a CBGA,
the authors of [22] with the application of the Newton-metaheuristic optimizer, by the
authors of [9] with the application of the simulated annealing optimization algorithm, as
well as by the authors of [17] via the DCVSA.

Based on those recent works, this work proposes the application of the recently
developed GNDO in the slave stage to determine the optimal location and sizes of PV
sources using a discrete–continuous codification [30], while in the slave stage, the SAPF
method is used to evaluate the objective function value [34]. The following sections show
that this novel solution provides improved results for the IEEE 33-bus and IEEE 69-node
grids in comparison with the solutions recently published in the literature.

3. Solution Methodology

The GNDO method is defined as the master algorithm to determine the optimal
location and sizing of the PV generators in distribution grids. This is based on a discrete–
continuous codification with the structure defined in Equation (13).

xt
i =

[
2, k, · · ·, 10 |1.3846, spv

k , · · ·, 0.6259
]

(13)

In such an expression, xt
i is the ith individual in population X for the current iteration

t. The main characteristic of this codification is that the size is 1× 2Nava
pv , where the first

Nava
pv positions are associated with the buses where the PV generators will be assigned,

whereas the positions Nava
pv + 1 to 2Nava

pv are defined as their optimal sizes.
The main characteristic of the codification given in Equation (13) is that it solves

the problem of the location and sizing of the PV sources in one stage, which allows the
transformation of the MINLP model defined in (1)–(12) into a nonlinear programming
problem that is easily solvable with a PF method for distribution grids.

3.1. Slave Stage: SAPF Method

This PF method is a generalization of the classical backward/forward PF solution
proposed by Montoya and Gil-González in [34]. This PF approach deals with the power
balance equations in the complex domain using a recursive PF formula that is derivative-
free. This recursive formula decouples the slack power balance equation from the demand
nodes to obtain a matrix relation as a function of the admittance submatrices. The recursive
PF formula is given by Equation (14).

Vm+1
d,h = Y−1

dd

[
diag−1

(
Vm

d,h

)(
S?pv,h − S?d,h

)
−YdsVs,h

]
, (14)

where m is the counter of iterations; Vd corresponds to the vector that contains all the
complex demanded voltage variables for each period of time h; Spv,h is a vector in the
complex domain that contains the power outputs in the PV generators at each period of
time h; Sd,h is a vector in the complex domain that contains all the active and reactive power
consumptions in the demand nodes, which are represented in rectangular coordinates for
each period of time h; Vs,h corresponds to the complex voltage output in the substation
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bus at any period of time (this is a known input for PF problems [34]); Ydd contains all
the admittance relations among demand nodes, which is a square invertible matrix; Yds
is a rectangular matrix that associates the substation bus with the demand nodes; finally,
diag(z) is a diagonal matrix composed of the elements of the z vector, and z? is the conjugate
version of the z vector.

One of the main features of the SAPF method, defined by the recursive Formula (14), is
that the Banach fixed-point theorem can demonstrate its convergence [35]. In this study, the
maximum difference of the voltage magnitudes in the demand nodes, in two consecutive
iterations, was used to determine the convergence of the recursive Formula (14) to the PF
solution. This convergence condition was evaluated using Equation (15), where ζ is defined
as the convergence error, which was set as suggested by authors of [34] to ζ = 1× 10−10.

max
h

{
||Vm+1

d,h | − |V
m
d,h||

}
≤ ζ, (15)

When the PF solution is reached, the following step in the slave stage corresponds to
the calculation of the power generation in the slack bus, as presented below.

Ss,h =
{

diag(Vs.h)
(
Y?

ssV?
s,h +Y?

sdV
?
d,h

)}
, (16)

Then, with the solution of Equation (16), it is possible to obtain the value of f1. In
addition, with the codification provided in Equation (13), the value of f2 is also obtained.
This notwithstanding, to deal with the possible unfeasible solutions in the solution space,
the objective function (1) is typically replaced by a fitness function [36]. In this study, the
proposed fitness (A f ) is presented below:

A f = Acost +


θ1 maxh

{
|Vd,h| − vmax

d , 0
}
+

θ2 maxh
{
|vmin

d − |Vd,h|, 0
}
−

θ3 minh
{

real
{
Ss,h
}

, 0
}
−

θ4 minkj,h

{
imax
kj − |ikj,h|, 0

}
, (17)

In A f , the variables θ1, θ2, θ3, and θ4 represent the penalization factors of the objective
function. These factors are activated in the case of the voltage regulation bounds, the
thermal current limits of the conductors, or the substation active power generation bounds
being violated. In this work, the magnitude of those penalty factors is defined as 100× 103,
each one with the adequate units.

The most important characteristic of the fitness function in (17) is that if all the con-
straints of the optimization model are satisfied, i.e., Restrictions (4)–(12), then the final
value of A f is equal to the original objective function Acost.

3.2. Master Stage: GNDO

The GNDO is inspired by the Gaussian distribution theory, which is a powerful tool
for describing multiple natural phenomena [30]. The general Gaussian distribution takes
the form presented in Equation (18), where x is a random variable that corresponds to the
distribution probability with the location parameter µ and the scaling parameter δ [37,38].

f (x) =
1√
2πδ

exp

(
(x− µ)2

2δ2

)
, (18)

From Equation (18), the main variables of a normal distribution are the location (µ)
and the scaling (δ) parameters. These parameters define the mean value and standard
deviation of random variables x. Figure 1 depicts the behavior of a Gaussian distribution
for different values of µ and δ [30].
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Figure 1. Behavior of a Gaussian distribution with different µ and δ parameters: (a) variation in
the µ parameter by fixing the δ parameter; note that the variation of the µ parameter moves the
density probability function from left to right with the same amplitude as this parameter increases;
(b) variation in the δ parameter by fixing the µ parameter; observe that the increment in the δ

parameter makes the density probability increase its amplitude and also reduce its bandwidth.

The behavior of the normal distribution shown in Figure 1 exhibits the following
characteristics [30]:

X When the δ parameter remains constant (see Figure 1a), the Gaussian distribution is
moved to the direction where the µ parameter increases;

X In the case of the µ parameter holding constant (see Figure 1b), the probability density
is expanded in the direction of the δ parameter’s change.

Then, the previous characteristics of the Gaussian distribution function in (18) were
used in [30] to propose an efficient combinatorial optimization method.

Moreover, it is widely known that metaheuristic optimizers based on populations
have three stages in their implementation [39]:

i. The initial population is generated with a normal distribution scattered along the
solution space. This population evolves by exploring and exploiting the solution
space, searching for the global optimum guided by specific movement rules. At
the beginning of the searching process, the variance of the positions of all the so-
lution individuals is significant, and the random position of the decision variables
around the global optimum can be considered as random variables subject to a normal
distribution behavior;

ii. Then, the distance between the mean position and the global optimum is continuously
reduced, and the variance of the positions among all individuals is also gradually
decreased;

iii. Finally, the distance between the mean position and the global optimum, as well as
the variance of the positions among individuals reach a minimum value.



Computers 2022, 11, 53 9 of 22

Based on the previous characteristics of the general evolution process of a population-
based optimizer, the general characteristics of the GNDO approach are described below [30].

3.2.1. Local Exploration

The local exploration process involves finding better optimal solutions around the
current locations of all solution individuals. Considering the relationship between all the
solution individuals in the current population and the normal distribution, a generalized
model can be constructed as follows:

vt
i = µi + δiη, i = 1, 2, · · ·, Ni, (19)

where vt
i is the trail vector of the ith individual in the current iteration t, µi represents

the generalized mean position of the ith individual, δi corresponds to the generalized
standard variance, and η is a penalty factor. Ni represents the number of individuals
in the population, and each solution individual has the general structure presented in
Equation (13). Then, parameters µi, δi, and η are calculated using Equations (20) and (22).

µi =
1
3
(

xt
i + xt

best + M
)
, (20)

δi =
1√
3

((
xt

i − µ
)2

+
(
xt

best − µ
)2

+ (M− µ)2
) 1

2 , (21)

η =

{
(−log(λ1))

1
2 cos(2πλ2) if a ≤ b

(−log(λ1))
1
2 cos(2πλ2 + π) if a > b

(22)

In the previous equations, λ1, λ2, a, and b are numbers between 0 and 1 with a uniform
distribution, xt

best is the best solution found so far, and M is the vector with the mean
position of the current individuals in the population. Finally, M can be obtained as defined
in (23).

M =
1
Ni

Ni

∑
i=1

xt
i . (23)

3.2.2. Global Exploration

Global exploration in metaheuristics attempts to determine the location of the promis-
ing solution regions through the solution space [40]. The authors of [30] proposed a global
exploration using three main components, as presented in Equation (24).

vt
i = xt

i + β× (|λ3| × v1) + (1− β)× (|λ4| × v2), (24)

where β× (|λ3| × v1) contains information about the local solution region and (1− β)×
(|λ4| × v2) shares the global information of the solution space. In addition, λ3 and λ4 are
random numbers with a uniform distribution, β represents an adjusting parameter that is
selected randomly between 0 and 1, and v1 and v2 correspond to two trail vectors.

v1 =

{
xt

i − xt
j if A f

(
xt

i
)
< A f

(
xt

j

)
xt

j − xt
i otherwise

(25)

v2 =

{
xt

k − xt
k if A f

(
xt

k
)
< A f

(
xt

m
)

xt
m − xt

k otherwise
(26)

In (25) and (26), j, k, and m are three integer numbers between 1 and Ni, that is three
individuals in the current population, which must be different among each other and also
different from the current ith individual.
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Prior to deciding whether the potential solution vt
i will make part of the next popula-

tion, each gen in it is revised to ensure the feasibility of the solution space, that is,

vt
i,l =

{
vt

i,l if xmin
l ≤ vt

i,l ≤ xmax
l

vt
i,l = xmin

l + λ5
(
xmax

l − xmin
l
)

otherwise.
(27)

where xmin
j and xmax

j are the minimum and maximum admissible bounds of the decision
variable j, respectively. In addition, because of the integer component of the codification,
the first Nava

pv is rounded to its nearest integer values. Finally, the selection of the next
individual is made using the following rule:

xt+1
i =

{
vt

i if A f
(
vt

i
)
< A f

(
xt

i
)

xt
i otherwise

(28)

3.3. General MS Implementation

The application of the GNDO method combined with the SAPF method for the prob-
lem under study is presented in Algorithm 1.

Algorithm 1: General implementation of the proposed MS optimizer.
Data: Choose the AC network under study
Find the per-unit network equivalent;
Select the values of Ni and tmax;
Select the µ parameter as 1

2 and t = 0;
Generate the initial population with the structure of (13);
Evaluate the fitness function value (slave stage) for each individual solution xt

i ,
that is A f

(
xt

i
)
;

Select xt
best as the individual with the minimum value of the fitness function;

for t ≤ tmax do
for i = 1 : Ni do

Generate a random value γ between 0 and 1;
if γ > 1

2 then
/*Local exploration search*/;
Select the best current solution xt

best;
Compute the value of the vector M using Equation (23);
Calculate the generalized mean value µi using Equation (20);
Obtain the generalized standard variance δi through Equation (21);
Compute the penalty factor η with Equation (22);
Make the local exploration using Equation (19);

else
/*Local exploration search*/;
Generate three integer random numbers j, k, and m different among
each other and also different from i;

Compute the value of the vector v1 with Formula (25);
Compute the value of the vector v2 with Formula (26);
Evaluate the global exploration rule (24) to obtain vt

i ;
end
Revise the upper and lower bounds of vt

i using the rule (27);
Evaluate the slave stage to obtain the fitness function value A f

(
vt

i
)
;

Select the next individual xt+1
i through Equation (28);

end
Result: Report the final solution value xt+1

best
end
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4. Test Feeder Characteristics
4.1. First Test Feeder

This is a grid with 32 lines and 33 nodes operated at medium-voltage values with a
magnitude of 12.66 kV in the slack source. The grid topology is shown in Figure 2. During
the peak load condition, this system absorbed 3715 + j2300 kVA, and with this load, the
total power loss increased to 210.9876 kW. The electrical data for this system are reported
in Table 1.

slack

1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18

23

24

25

19

20

21

22

26 27 28 29 30 31 32 33

Figure 2. Single-phase circuit for the first test feeder.

Table 1. Parametric information regarding branches and loads for the first test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60
2 3 0.4930 0.2511 90 40
3 4 0.3660 0.1864 120 80
4 5 0.3811 0.1941 60 30
5 6 0.8190 0.7070 60 20
6 7 0.1872 0.6188 200 100
7 8 1.7114 1.2351 200 100
8 9 1.0300 0.7400 60 20
9 10 1.0400 0.7400 60 20
10 11 0.1966 0.0650 45 30
11 12 0.3744 0.1238 60 35
12 13 1.4680 1.1550 60 35
13 14 0.5416 0.7129 120 80
14 15 0.5910 0.5260 60 10
15 16 0.7463 0.5450 60 20
16 17 1.2890 1.7210 60 20
17 18 0.7320 0.5740 90 40
2 19 0.1640 0.1565 90 40
19 20 1.5042 1.3554 90 40
20 21 0.4095 0.4784 90 40
21 22 0.7089 0.9373 90 40
3 23 0.4512 0.3083 90 50
23 24 0.8980 0.7091 420 200
24 25 0.8960 0.7011 420 200
6 26 0.2030 0.1034 60 25
26 27 0.2842 0.1447 60 25
27 28 1.0590 0.9337 60 20
28 29 0.8042 0.7006 120 70
29 30 0.5075 0.2585 200 600
30 31 0.9744 0.9630 150 70
31 32 0.3105 0.3619 210 100
32 33 0.3410 0.5302 60 40

4.2. Second Test Feeder

This is a grid with 68 lines and 69 nodes operated at medium-voltage values with a
magnitude of 12.66 kV in the slack bus. The grid topology is shown in Figure 3. During
the peak load condition, this system absorbed 3890.7 + j2693.6 kVA, and with this load,
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the total power loss increased to 225.0718 kW. The electrical parameters for this system are
reported in Table 2.

slack
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65

51

52

66

67

68

69

28 29 30 31 32 33 34 35

Figure 3. Single-phase circuit for the second test feeder.

Table 2. Parametric information regarding branches and loads for the second test feeder.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW)

1 2 0.0005 0.0012 0 0
2 3 0.0005 0.0012 0 0
3 4 0.0015 0.0036 0 0
4 5 0.0251 0.0294 0 0
5 6 0.3660 0.1864 2.6 2.2
6 7 0.3811 0.1941 40.4 30
7 8 0.0922 0.0470 75 54
8 9 0.0493 0.0251 30 22
9 10 0.8190 0.2707 28 19

10 11 0.1872 0.0619 145 104
11 12 0.7114 0.2351 145 104
12 13 1.0300 0.3400 8 5
13 14 1.0440 0.3450 8 5
14 15 1.0580 0.3496 0 0
15 16 0.1966 0.0650 45 30
16 17 0.3744 0.1238 60 35
17 18 0.0047 0.0016 60 35
18 19 0.3276 0.1083 0 0
19 20 0.2106 0.0690 1 0.6
20 21 0.3416 0.1129 114 81
21 22 0.0140 0.0046 5 3.5
22 23 0.1591 0.0526 0 0
23 24 0.3463 0.1145 28 20
24 25 0.7488 0.2475 0 0
25 26 0.3089 0.1021 14 10
26 27 0.1732 0.0572 14 10
3 28 0.0044 0.0108 26 18.6

28 29 0.0640 0.1565 26 18.6
29 30 0.3978 0.1315 0 0
30 31 0.0702 0.0232 0 0
31 32 0.3510 0.1160 0 0
32 33 0.8390 0.2816 10 10
33 34 1.7080 0.5646 14 14
34 35 1.4740 0.4873 4 4
3 36 0.0044 0.0108 26 18.55

36 37 0.0640 0.1565 26 18.55
37 38 0.1053 0.1230 0 0
38 39 0.0304 0.0355 24 17
39 40 0.0018 0.0021 24 17
40 41 0.7283 0.8509 102 1
41 42 0.3100 0.3623 0 0
42 43 0.0410 0.0478 6 4.3
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Table 2. Cont.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kW)

43 44 0.0092 0.0116 0 0
44 45 0.1089 0.1373 39.22 26.3
45 46 0.0009 0.0012 39.22 26.3
4 47 0.0034 0.0084 0 0
47 48 0.0851 0.2083 79 56.4
48 49 0.2898 0.7091 384.7 274.5
49 50 0.0822 0.2011 384.7 274.5
8 51 0.0928 0.0473 40.5 28.3
51 52 0.3319 0.1140 3.6 2.7
9 53 0.1740 0.0886 4.35 3.5
53 54 0.2030 0.1034 26.4 19
54 55 0.2842 0.1447 24 17.2
55 56 0.2813 0.1433 0 0
56 57 1.5900 0.5337 0 0
57 58 0.7837 0.2630 0 0
58 59 0.3042 0.1006 100 72
59 60 0.3861 0.1172 0 0
60 61 0.5075 0.2585 1244 888
61 62 0.0974 0.0496 32 23
62 63 0.1450 0.0738 0 0
63 64 0.7105 0.3619 227 162
64 65 1.0410 0.5302 59 42
11 66 0.2012 0.0611 18 13
66 67 0.0047 0.0014 18 13
12 68 0.7394 0.2444 28 20
68 69 0.0047 0.0016 28 20

4.3. Objective Function Evaluation

To obtain the objective function values, the information in Table 3 was used.

Table 3. Parameters to evaluate the objective function.

Param. Value Unit Param. Value Unit

CkWh 0.1390 USD/kWh T 365 days
ta 10 % te 2 %
Nt 20 years ∆h 1 h

CPV 1036.49 USD/kWp CO&M 0.0019 USD/kWh
ppv,max

i 2400 kW ppv,min
i

0 kW
Nava

pv 3 — ∆V ±10 %
α1 100× 103 USD/V α2 100× 103 USD/V
α3 100× 103 USD/W α4 100× 103 USD/A

In order to emulate the daily generation profile of the PV units and the load profile
behavior, typical generation and demand curves in Medellín city (Colombia) were used,
which are both depicted in Figure 4. This information was provided by Grisales et al.
in [41].
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Figure 4. Hourly behavior of the demand and generation curves in Medellín city in Colombia.

5. Computational Validation

The proposed GNDO was implemented in the MATLAB programming environment
to solve the problem under study. For comparison purposes, the following method-
ologies were considered: the BONMIN solver in the GAMS environment (solution of
the exact MINLP formulation), the discrete–continuous version of the CBGA (i.e., DC-
CBGA) [21], the Newton-metaheuristic algorithm (i.e., DCNMA) [22], and the vortex-
search algorithm (i.e., DCVSA) [17]. Moreover, to evaluate the combinatorial optimizers,
a population of 10 individuals and 100 consecutive repetitions of each algorithm, with
1000 iterations at each running, were considered as the settings. Note that the proposed
GNDO works as a comparative methodology with the discrete–continuous codification
defined in Equation (13); for this reason, it was renamed as DCGNDO. Finally, for both test
feeders, the possibility of installing three PV generation units was considered, where each
one of them had a maximum size of 2400 kW.

5.1. First Test Feeder

After the execution of the proposed and comparative optimization methods, the
optimal solutions reported in Table 4 were obtained.

Table 4. Comparative results for the first test feeder.

Method Location (Node) Size (MW) Acost (USD/Year)

Benchmark case — — 3,700,455.38

BONMIN

17
18
33

 1.3539
0.2105
2.1452

 2,701,824.14

DCCBGA

11
15
30

 0.7605
0.9690
1.9060

 2,699,932.28

DCNMA

 8
16
30

 2.0961
1.2688
0.2770

 2,700,227.33

DCVSA

11
14
31

 0.7606
1.0852
1.8030

 2,699,761.71

DCGNDO

10
16
31

 1.0083
0.9137
1.7257

 2,699,671.76

The numerical information in Table 4 reveals that: (i) all the metaheuristic optimizers
improved the solution reached by the BONMIN solver, which confirmed that the MINLP
model is non-convex in nature; moreover, the presence of binary variables made conven-
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tional optimization methods stuck in locally optimal solutions; (ii) the proposed DCGNDO
method reached the best optimal solution for the first test feeder with a reduction of US-
D/year 1,000,783.62, which improved the solution reported in [17] for the DCVSA by about
USD/year 89.95; (iii) all the optimization methods allowed reaching reductions between
26.99% in the case of the BONMIN solver and 27.04% in the case of the proposed DCGNDO,
with respect to the benchmark case.

An additional important characteristic of the optimal solutions for the proposed and
comparative methods, reported in Table 4, is that all the solutions were near certain regions
in the distribution network. Those areas were between Nodes 8 and 11, 14 and 18, and 30
and 31, respectively. Those regions will be useful for the distribution company to have
multiple possibilities, regarding the final installation of the PV sources, to ensure reductions
with respect to the benchmark case above 26.99%.

The average performance of each metaheuristic optimizer after 100 consecutive rep-
etitions is reported in Figure 5, which shows the average reduction with respect to the
benchmark case.

DCCBGA DCNMA DCVSA DCGNDO
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26.98

26.95

26.98

27.01

R
ed

uc
ti

on
(%

)

Figure 5. Average reduction of the objective function values with respect to the benchmark case in
the first test feeder.

The most promising result, shown in Figure 5, is that the proposed DCGNDO had
the best average performance with respect to the mean objective function reduction, i.e.,
27.01%, which implies that after each 1 of the 100 executions, the expected reduction in the
objective function value would be upper higher than 27%.

To demonstrate that the proposed DCGNDO ensures that the voltage profiles are be-
tween the minimum and maximum voltage regulation bounds, that is±10%, the maximum
and minimum voltage magnitudes for the first test feeder during its daily operation are
depicted in Figure 6.
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Figure 6. Voltage profiles’ behavior in the first test feeder for the reference case and the solution
provided by the DCGNDO.

The voltage behavior shown in Figure 6 depicts that: (i) the maximum voltage magni-
tude in the first test feeder was presented in Time Period 14, i.e., when the PV generation
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was maximum, as depicted in Figure 4, with a value of 1.0321 pu; (ii) the minimum voltage
magnitude coincided with the benchmark case during Time Periods 20 and 21, with a
magnitude of 0.9038 pu, which was expected since during those periods, the demand is
maximum (i.e., peak load condition) and the PV generation is null.

However, to confirm that the active power generation in the substation bus is always
positive or zero, Figure 7 depicts the output active power in the slack terminals for both the
benchmark case and the solution provided by the proposed DCGNDO.
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Figure 7. Comparison of the power generation in the substation bus for the proposed DCGNDO and
the reference case for the first test feeder.

The output power behavior in the substation bus, presented in Figure 7, confirmed
that when the PV generation starts to increase, the slack active power generation begins to
decrease until a value of zero is reached, which corresponds to the maximum PV generation
(Time Period 14). In addition, as previously demonstrated in the literature, the slack power
generation experienced a duck curve behavior, which is natural when large amounts of
PV generation are integrated into the distribution grid [42]; however, the slack generation
curve in Figure 7 and the voltage profile behaviors in Figure 6 demonstrate the effectiveness
of the fitness function proposed in Equation (17) to ensure the feasibility of the final solution
obtained by the proposed DCGNDO approach.

5.2. Second Test Feeder

In the second test feeder, it is essential to highlight that the BONMIN solver did not
converge to any feasible solution due to the increment in the solution space compared to
the first test feeder. For this reason, Table 5 only presents the numerical results obtained by
the comparative metaheuristics, as well as the proposed optimization method.

The numerical information reported in Table 5 reveals that: (i) the proposed optimiza-
tion method also reached a better solution for the second test feeder, with a reduction of
27.16% (USD/year 1,053,276.55); this result improved the solution found by the DCVSA by
about USD 341.18 per year of operation; (ii) the margin of the objective function improve-
ment with respect to the benchmark case was between 27.12% for the DCNMA and 27.16%
for the proposed DCGNDO, respectively; (iii) the location of the PV sources was distributed
in certain regions of the network, which were formed by Nodes 12–16, 22–24, and 60–64.
Similar to the first case, those areas are essential because they will help the distribution
company select the final implementation of the PV sources, based on additional studies
such as the feasibility of the terrain or the size of the vegetation nearest to these nodes,
among other factors.

The average performance of each metaheuristic method after 100 consecutive execu-
tions (global exploration of the solution space) is depicted in Figure 5, which reports the
average reduction with respect to the benchmark case.
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Table 5. Comparative results for the second test feeder.

Method Location (Node) Size (MW) Acost (USD/Year)

Benchmark case — — 3,878,199.93

DCCBGA

24
61
64

 0.5326
1.8954
1.3772

 2,825,783.33

DCNMA

12
60
61

 0.0794
1.3805
2.3776

 2,826,368.60

DCVSA

16
61
63

 0.2632
2.2719
2.2934

 2,825,264.56

DCGNDO

22
61
64

 0.4812
2.4000
0.9259

 2,824,923.38

The behavior of the average objective function reduction, shown in Figure 8, confirms
that the proposed DCGNDO approach had the most stable performance since it reached
reductions near 27.06%, being only followed by the DCVSA proposed in [17].
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Figure 8. Average reduction of the objective function values with respect to the benchmark case in
the second test feeder.

To verify that the solution obtained with the DCGNDO fulfills the minimum and
maximum voltage regulation constraints, that is ±10%, Figure 9 depicts the maximum and
minimum voltage magnitudes for the second test feeder during its daily operation.
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Figure 9. Voltage profiles’ behavior in the second test feeder for the reference case and the solution
provided by the DCGNDO.

The results reported in Figure 9 show that the maximum voltage value occurred in Period
14, when the PV generation is maximum, with a magnitude of 1.0378 pu. However, when
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the demand is maximum (Periods 20 and 21 in Figure 4) and the PV generation is null, the
minimum voltage profile fully matched the benchmark case with a magnitude of 0.9092 pu.

To ensure that the power generation in the slack source is at least zero or positive
when PV generation is installed, the active power output at the substation terminals for
both the benchmark case and the DCGNDO solution are compared in Figure 10.
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Figure 10. Comparison of the power generation in the substation bus for the proposed DCGNDO
and the reference case for the second test feeder.

The behavior of the active power output, shown in Figure 10, reveals that without the
presence of PV generation in the distribution system, the active power in the substation
followed the behavior of the demand load, including power losses (see Figure 4). However,
when the PV generation units were installed, the power output in the substation decreased
as the PV generation increased the power injection into the grid, being zero when the PV
generation is maximum at Time Period 14.

As in the previous test, the power behavior shown in Figure 10 in conjunction with
the voltage profiles depicted in Figure 9 confirm that the fitness function ensured the
practical feasibility of the solution space since the final solution was indeed between the
voltage regulation bounds. Finally, the active power was always positive or zero for both
test feeders.

5.3. Complementary Analysis

The effect of the final objective function value when the PV generation varies from
30% to 100% of its power availability is presented in Figure 11. Such results confirm
that the optimal solution was found by the proposed DCGNDO approach under possible
generation variations along the planning project.
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Figure 11. Variations of the PV generation availability from 30% to 100% during the planning period.
Note that the shaded area is a part of the possible uncertainties of the generation availability during
the planning horizon.
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Considering the variations in the PV generation availability for both test feeders,
expected reductions reached by the solution of the DCGNDO approach with respect to the
benchmark case are presented in Figure 12.
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Figure 12. Effect of the renewable generation variation along the planning period in the expected
reduction of the annual grid costs: (a) reductions in the first test feeder and (b) reductions in the
second test feeder.

The effect of the renewable generation availability variation, shown in Figure 12,
shows that: (i) the minimum reduction with the availability of 30% in the PV power
output allowed reducing about 0.42% and 0.54% of the total grid operative costs for the
IEEE 33-bus and IEEE 69-bus systems, i.e., USD/year 15,265.74 and USD/year 21,028.33,
respectively; (ii) when the availability of the PV generation varied from 50% to 80%, the
expected reductions in the first test feeder changed from 8.33% to 19.72% and for the second
test feeder between 8.47% and 19.86%, respectively; these values imply that the expected
reductions were higher than 8.30% with a variable gain of approximately 11.40% in this
range of renewable generation variations; (iii) a the expected additional gain when the PV
generation increased by 10%, its power availability was approximately 3.80% for both test
feeders, which implies that for the first test feeder, there was an additional annual gain of
USD/year 140,617.30 and for the second test feeder of USD/year 147371.60, respectively.

It is important to remark that the proposed DCGNDO required 268.49 s for the first
test feeder and 1237.23 s for the second test feeder. These values confirm the effectiveness
of the proposed optimization approach for solving the problem, where the solution space
regarding the nodal location of the PV sources has 4960 possibilities for the first test feeder
and 50,116 combinations for the second test feeder. However, there are infinite possible
sizes between 0 kW and 2400 kW regarding the dimensions of the PV generation units
for each one of these nodal combinations. In addition, the time required to obtain the
solution was less than 4.47 min and 20.62 min in both test feeders, respectively. These
values imply that the distribution company can perform multiple simulations to investigate
the best PV location and size alternatives prior to the final physical implementation in the
selected nodes.

Note that the proposed economic analysis is subject to improvements by considering
the high variation in the power generation of the PV sources induced by partial shading
due to clouds [13]. In this sense, a detailed analysis in the time scales of seconds or minutes
is suggested as potential improvement for the proposed methodology. In addition, it is



Computers 2022, 11, 53 20 of 22

also important to highlight that the proposed optimization methodology does not depend
on the size of the distribution system, i.e., the codification retains the same structure, and
the evolution rules of the DCGNDO do not change. However, the number of nodes of the
distribution grid affects the processing times required by the slave stage for the solution of
the PF problem, which increases the total computational time to reach the optimal solution
for the problem.

6. Conclusions and Future Works

The problem of the optimal placement and sizing of PV generators in radial distribu-
tion networks was addressed in this research by applying an MS optimization approach. In
the master stage, applying the GNDO approach with a discrete–continuous codification
solved the location and sizing problems with a unified codification. An SAPF method was
applied to calculate the fitness function value. Numerical comparisons with metaheuristic
optimizers applied in the test feeders provided the following conclusions:

X The expected reductions in the annual operative costs were 27.04% and 27.16% for
both test feeders. These values imply annual reductions in the operation costs of USD
1,000,783.62 and USD 1,053,276.55 per year of operation in each test feeder, respectively;

X The average behavior of the proposed DCGNDO after 100 repetitions showed that the
expected reductions in the power losses, for both test feeders, was higher than 27%,
which implies that after each execution, the reductions in the objective function would
be higher than USD/year 999,122.95 and USD/year 1,047,113.9811 for the test feeders,
respectively;

X When the renewable generation varies from the expected output, between 30% and
100%, we note the following: If during all the 20 years, the PV generation is only 30%
of the expected value, then both test feeders experience positive reductions of the total
annual operative costs of 0.42% and 0.54%, respectively. However, if the PV availability
exceeds 60% of the nominal curve, then in the first test feeder, the expected annual
grid operative costs would be reduced to 12.18% or higher. For the second test feeder,
this reduction would be 12.33% or higher.
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