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COUNTING INTEGERS REPRESENTABLE AS IMAGES OF

POLYNOMIALS MODULO n

FABIÁN ARIAS, JERSON BORJA, LUIS RUBIO

Abstract. Given a polynomial f(x1, x2, . . . , xt) in t variables with integer
coefficients and a positive integer n, let α(n) be the number of integers 0 ≤

a < n such that the polynomial congruence f(x1, x2, . . . , xt) ≡ a (mod n)
is solvable. We describe a method that allows to determine the function α

associated to polynomials of the form c1x
k

1
+ c2x

k

2
+ · · · + ctx

k
t
. Then we

apply this method to polynomials that involve sums and differences of squares,
mainly to the polynomials x2 + y2, x2 − y2 and x2 + y2 + z2.

1. introduction

For a polynomial f(x1, x2, . . . , xt) in t variables with integer coefficients, consider
the polynomial congruence

(1.1) f(x1, x2, . . . , xt) ≡ a (mod n)

where n is a positive integer and a is an integer. Since the congruence (1.1) has
solution for a if and only if it has solution for a + qn for any integer q, we can
assume that a belongs to a complete residue system modulo n. We will use the
system of residues In = {0, 1, , . . . , n− 1}.

For any positive integer n, we set An to be the set of all a ∈ In for which (1.1)
has solution. We define α(n) = |An|, where |An| stands for the size of An. The
following natural questions about these sets An and their sizes α(n) guide our work:

(1) Give explicit descriptions of An for all n.
(2) Find a formula for α(n).
(3) Determine or describe all the values of n such that α(n) = n. This is

equivalent to determine when the polynomial f(x1, x2, . . . , xt) is surjective
when it is considered as a map f : Zt

n → Zn. When this map is surjective,
we will say that f(x1, x2, . . . , xt) is surjective on n.

Some results related to these questions with respect to the polynomials x2 + y2

and x3 + y3 are found in [2, 3, 4].
In [4], it is solved the problem of characterizing all positive integers n such that

every element in the ring Zn can be represented as the sum of two squares in Zn,
or, in our terms, that x2 + y2 is surjective on n. Such integers n are those that
satisfy the two conditions

(i) n 6≡ 0 (mod 4) and
(ii) n 6≡ 0 (mod p2) for any prime p ≡ 3 (mod 4) with n ≡ 0 (mod p).

In [4] it is also solved the problem of finding all positive integers n such that every
element in Zn is expressible as a sum of two squares without allowing zero as a
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summand. Our interest is on the case where zero is allowed as a summand because
in that case the sizes α(n) define a multiplicative function.

In [3] it is considered the general problem of representing elements of Zn as the
sum of two squares. It is also determined the sizes α(n) of sets An associated to
the polynomial x2 + y2. The numbers α(n) define a multiplicative function, which
implies that for finding α(n) for all positive integers n, it suffices to find α(pn) where
p is prime and n ≥ 1. This is done in [3] by giving first an explicit description of
sets Apn and then making a direct calculation of the size of Apn .

Formulas for the numbers α(n) associated to the polynomial x3 + y3 are found
in [2]. There, it is considered the fraction δ(n) = α(n)/n instead of α(n). There is
no explicit description of the sets Apn associated to x3 + y3, but some properties
of δ(n) give essentially recursive ways of finding δ(n).

For a general polynomial f(x1, x2, . . . , xt), if every nonnegative integer is of the
form f(x1, x2, . . . , xt), then α(n) = n for every n ≥ 1. This is the case for some
polynomials as x2+ y2+ z2+w2 or x2+ y2− z2. There are theorems that establish
that all nonnegative numbers are of the form f(x1, x2, . . . , xt) for some specific
polynomials. Three of these theorems that are important for us are the following.

Theorem 1.1. (Euler) A positive integer n is expressible as a sum of two squares
if and only if each prime of the form 4k + 3 appears to an even exponent in the
prime decomposition of n.

Theorem 1.2. (Gauss-Legendre) An nonnegative integer is the sum of three squares
if and only if it is not of the form 4a(8b+ 7).

Theorem 1.3. (Lagrange) Every nonnegative integer is expressible as the sum of
four squares.

So, if t ≥ 4, the polynomial x2
1 + x2

2 + · · · + x2
t is surjective on n for all n ≥ 1.

We are interested in what happens with the polynomials x2 + y2 and x2 + y2 + z2.
For a general polynomial f(x1, x2, . . . , xt), the associated sizes α(n) define a

multiplicative function. Then, for determining α(n) for all n, it suffices to determine
α(pn) for any prime number p and n ≥ 1. Thus, we focus on studying the sets Apn

where p is a prime number and n ≥ 1.
We prove some structural results that give us tools to find recurrence formulas

for α(pn) for polynomials of the form c1x
k
1 + c2x

k
2 + · · · + ctx

k
t . Then, we apply

this results to find explicit formulas for the associated function to the polynomials
x2 + y2, x2 − y2 and x2 + y2 + z2. With our method, we deduce the results related
to x2 + y2 already found in [3].

The polynomials x2−y2 and x2+y2+z2 share the following property: if n = 2sm
where s ≥ 0 and m is odd, then α(n) = α(2s)m.

In the case of x2 − y2 we find that α(2) = 2 and α(2s) = 3 · 2s−2 for s ≥ 2. In
particular, x2 − y2 is surjective on n if and only if n 6≡ 0 (mod 4).

For the polynomial x2 + y2 + z2 we find the explicit formula

α(2s) =

{

1
3 (5 · 2

s−1 + 1), if s is odd,
2
3 (5 · 2

s−2 + 1), if s is even.

and in particular, x2 + y2 + z2 is surjective on n if and only if n 6≡ 0 (mod 8).
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2. The multiplicative family associated to a polynomial

In general we can consider a family of nonempty sets {An}n∈Z+ where An ⊆ In
for all positive integers n. We define the associated function α : Z+ → Z

+ by
α(n) = |An| for all n. Note that α(1) = 1. The first thing we do is to define
general adequate conditions on the family {An}n so that the associated function α
is multiplicative.

2.1. Multiplicative families and polynomials. If n and m are integers such
that 1 ≤ m ≤ n, we define

An(m) := {s ∈ In : s ≡ a (mod m) for some a ∈ Am}

= {a+ jm : a ∈ Am, 0 ≤ j < n/m}.

We call the family {An}n multiplicative, if whenever n = m1m2 with m1 and m2

relatively prime, the equality An = An(m1)∩An(m2) holds. This condition on the
family of sets {An}n guaranties that the associated function α is multiplicative.

Lemma 2.1. If {An}n is a multiplicative family, then the associated function α is
multiplicative.

Proof. Let n = m1m2 where m1 and m2 are relatively prime. We can decompose
An(m1) as the disjoint union of subsets B(a,m1) := {a+ jm1 : 0 ≤ j < m2}, where
a ∈ Am1

. Similarly, An(m2) is the disjoint union of subsets B(b,m2) = {b+ jm2 :
0 ≤ j < m1}, where b ∈ Am2

. Then,

An(m1) ∩An(m2) =
⋃

a∈Am1
b∈Am2

(B(a,m1) ∩B(b,m2)).

Note that c ∈ B(a,m1)∩B(b,m2) if and only if c ≡ a (mod m1) and c ≡ b (mod m2);
moreover, by the Chinese remainder theorem, there is exactly one solution in In
of the system of congruences x ≡ a (mod m1), x ≡ b (mod m2). This means that
B(a,m1) ∩ B(b,m2) has exactly one element. Since the sets B(a,m1) ∩ B(b,m2)
for a ∈ Am1

, b ∈ Am2
are pairwise disjoint, we have that |An(m1) ∩ An(m2)| =

|Am1
| · |Am2

|. Now, if the family {An}n is multiplicative, then we have α(n) =
|An| = |An(m1) ∩ An(m2)| = |Am1

| · |Am2
| = α(m1)α(m2). Thus, the associated

function α is multiplicative. �

Now we define two conditions on {An}n that will permit us to show that {An}n
is multiplicative.

C1. If m divides n and a ∈ An, then a (mod m) ∈ Am, where a (mod m) is the
residue of a when a is divided by m.

C2. If n = m1m2 for relatively prime m1 and m2; a1 ∈ Am1
, a2 ∈ Am2

and a
is the unique solution in In to the system of congruences x ≡ a1 (mod m1), x ≡
a2 (mod m2), then a ∈ An.

Note that if {An}n satisfies condition C1 and m divides n, then An ⊆ An(m).

Lemma 2.2. If {An}n satisfies C1 and C2, then {An}n is multiplicative.
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Proof. We assume that n = m1m2 for relatively prime m1 and m2. Since {An}n
satisfies C1, we have An ⊆ An(m1) ∩ An(m2). To show the other inclusion, take
a ∈ An(m1) ∩ An(m2). Then, there exist a1 ∈ Am1

and a2 ∈ Am2
such that

a ≡ a1 (mod m1) and a ≡ a2 (mod m2) and, since {An}n satisfies C2, a ∈ An.
This shows that An = Am1

n ∩ Am2
n . �

We assume that the family of sets {An}n satisfy conditions C1 and C2. Then, by
Lemmas 2.1 and 2.2, the associated function α is multiplicative. Thus, to determine
the values of α on all positive integers, it is enough to determine α(pn) for all primes
p, and n ≥ 1. This yields us to study the sets Apn for powers of primes pn.

Condition C1 on the family {An}n implies that if p is prime and n ≥ 1, then
Apn ⊆ Apn(pn−1). For n ≥ 1, we define Npn := Apn(pn−1) \Apn and call these sets
the N -sets of the prime p.

Lemma 2.3. Let p be a prime and n ≥ 1. Then

α(pn) = pα(pn−1)− |Npn |.

Proof. The size of Apn(pn−1) is p · |Apn−1 | = pα(pn−1). Then

α(pn) = |Apn(pn−1) \Npn | = |Apn(pn−1)| − |Npn | = pα(pn−1)− |Npn |.

�

From now on, we focus on the size of sets |Npn | for n ≥ 1.

The important families of sets {An}n we are interested in are those associated
to a polynomial f(x1, x2, . . . , xt), that is, An is the set of elements a ∈ In such that
the congruence f(x1, x2, . . . , xt) ≡ a (mod n) is solvable. We refer to the associated
function α as the fuction associated to f(x1, x2, . . . , xt).

Proposition 2.4. The family {An}n associated to a polynomial f(x1, x2, . . . , xt)
is multiplicative. In particular, the function α associated to f(x1, x2, . . . , xt) is
multiplicative.

Proof. Condition C1 is trivially satisfied by this family of sets. Condition C2 is also
true. To prove it, assume that f(a1, a2, . . . , at) ≡ a1 (mod m1) and f(b1, b2, . . . , bt) ≡
a2 (mod m2), where ai, bj ∈ Z, m1 and m2 are relatively prime, n = m1m2,
ai ∈ Imi

, i = 1, 2. Let a be the only solution in In of the system of congruences
x ≡ a1 (mod m1), x ≡ a2 (mod m2). By the Chinese remainder theorem, for each
j = 1, 2, . . . , t, there exists cj ∈ Z such that cj ≡ aj (mod m1) and cj ≡ bj (mod m2).
Since f is a polynomial, f(c1, c2, . . . , ct) ≡ f(a1, a2, . . . , at) ≡ a1 ≡ a (mod m1) and
f(c1, c2, . . . , ct) ≡ f(b1, b2, . . . , bt) ≡ a2 ≡ a (mod m2), from what follows that
f(c1, c2, . . . , ct) ≡ a (mod n), that is, a ∈ An. The result follows from Lemmas 2.1
and 2.2. �

Remark 2.5. Let us consider r families {A
(i)
n }n, i = 1, 2, . . . , r, where A

(i)
n ⊆ In.

For each n ≥ 1, let An :=
⋂r

i=1 A
(i)
n . Assume that An 6= ∅ for all n. If the r

families satisfy C1 (resp. C2), then the family {An}n satisfy C1 (resp. C2).

In the particular case that {A
(i)
n }n is the family associated to some polynomial

fi(x
(i)
1 , x

(i)
2 , . . . , x

(i)
ti
), and assuming that the intersections An are nonempty, then

{An}n is multiplicative. The associated function α counts the numbers of elements
a ∈ In such that the system of congruences
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fi(x
(i)
1 , x

(i)
2 , . . . , x

(i)
ti
) ≡ a (mod n), i = 1, 2, . . . , r

is solvable.

2.2. The multiplicative family associated to c1x
k
1+c2x

k
2+· · ·+ctx

k
t . We study

the multiplicative function α and the sets Apn associated to a polynomial of the
form f(x1, x2, . . . , xt) = c1x

k
1 + c2x

k
2 + · · · + ctx

k
t , where c1, c2, . . . , ct ∈ Z, k ≥ 1.

To determine the value of α at prime powers, we need to understand the sets Apn

and Npn . The following lemmas give us tools to study these sets.

Lemma 2.6. Let {An}n be the family associated to the polynomial c1x
k
1 + c2x

k
2 +

· · ·+ ctx
k
t . Let p be a prime number that does not divide c1, c2, . . . , ct and let s be

the highest nonnegative integer such that ps divides k. Suppose a ∈ Apn and

c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ a (mod pn),

where m1,m2 . . . ,mt ∈ Z and at least one mi is not divisible by p. If n ≥ 2s+ 1,
then a+ jpn ∈ Apn+1 for all j such that 0 ≤ j < p.

Proof. We have that there is some integer w such that c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t =

a+wpn. Assume that p does not divide m1. Write k = psk0 where s ≥ 0 and p does
not divide k0. Since p does not divide c1m

k−1
1 k0, the congruence c1m

k−1
1 k0x+w ≡

j (mod p) has solution; so there are integers d and e such that c1m
k−1
1 k0d + w =

j + ep. By the binomial theorem,

(m1 + dpn−s)k = mk
1 + kmk−1

1 dpn−s +
∑

2≤t≤k

(

k

t

)

mk−t
1 dtpt(n−s)

= mk
1 +mk−1

1 k0dp
n +

∑

2≤t≤k

(

k

t

)

mk−t
1 dtpt(n−s)

Since n ≥ 2s + 1, for t ≥ 2 we have t(n − s) ≥ 2(n − s) = n + (n − 2s) ≥ n + 1.
Then

(m1 + dpn−s)k ≡ (mk
1 +mk−1

1 k0dp
n) (mod pn+1).

Therefore, modulo pn+1 we have

c1(m1 + dpn−s)k + · · ·+ ctm
k
t ≡ (c1m

k
1 + · · ·+ ctm

k
t ) + c1m

k−1
1 k0dp

n

≡ a+ wpn + c1m
k−1
1 k0dp

n

≡ a+ (w + c1m
k−1
1 k0d)p

n

≡ a+ jpn + epn+1

≡ a+ jpn,

which shows that a+ jpn ∈ Apn+1 . �

Lemma 2.7. Let p be a prime number and consider the N -sets Npn associated to
the polynomial c1x

k
1 + c2x

k
2 + · · ·+ ctx

k
t . If p does not divide c1, . . . , ct, then

Npn ⊆ {pka : a ∈ Npn−k}.

for every n > k + 1
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Proof. If ps is the highest power of p that divides k, then k ≥ ps ≥ 2s ≥ 2s. Thus,
if n > k + 1, then n − 1 ≥ 2s+ 1 and we can apply Lemma 2.6. If b ∈ Npn , then
b ∈ Apn(pn−1) and b = c + jpn−1 for some c ∈ Apn−1 and 0 ≤ j < p. There are

integers m1, . . . ,mt such that c1m
k
1 + · · · + ctm

k
t ≡ c (mod pn−1). If some mi is

not divisible by p, then by Lemma 2.6, b = c + jpn−1 ∈ Apn , a contradiction. It
follows that all the mi are divisible by p. Since n− 1 > k, pk divides c and we get
the congruence c1(m1/p)

k + · · ·+ ct(mt/p)
k ≡ c/pk (mod pn−k−1) that shows that

c/pk ∈ Apn−k−1 .

We claim that c/pk + jpn−k−1 ∈ Npn−k . On the contrary, if c1q
k
1 + · · ·+ ctq

k
t ≡

c/pk + jpn−k−1 (mod pn−k) for some integers q1, . . . , qt, then by multiplying by
pk we obtain that c1(pq1)

k + · · · + ct(pqt)
k ≡ c + jpn−1 (mod pn), that is, b =

c + jpn−1 ∈ Apn , a contradiction. Thus, if a := c/pk + jpn−k−1, then a ∈ Npn−k

and b = c+ jpn−1 = pka, which ends the proof. �

We now define a condition on the prime p and the polynomial such that the
other inclusion in Lemma 2.7 holds. This condition is satisfied by most of the cases
we are interested in. When this condition fails, we find another way to tackle the
problem.

Let p be a prime and f(x1, . . . , xt) any polynomial with coefficients in Z. We say
a non-negative integer e is an exponent of p in f(x1, . . . , xt) if whenever p

e divides
an integer of the form f(m1, . . . ,mt), then the quotient f(m1, . . . ,mt)/p

e is also of
the form f(q1, . . . , qt) for some integers q1, . . . , qt.

Lemma 2.8. The following statements are true.

(1) For every prime number p and k ≥ 1, k is an exponent of p in xk.
(2) If p = 2 or p is prime with p ≡ 1 (mod 4), then 1 is an exponent of p in

the polynomial x2 + y2.
(3) If p is prime and p ≡ 3 (mod 4), then 2 is an exponent of p in the polynomial

x2 + y2.
(4) 2 is an exponent of 2 in the polynomial x2 + y2 + z2.

Proof. (1). If pk divides mk, then p divides m and mk/pk = (m/p)k.
(2). If p divides an integer of the form x2 + y2, then (x2 + y2)/p is a sum of two

squares by Theorem 1.1.
(3). If p ≡ 3 (mod 4) divides an integer of the form x2 + y2, then (x2 + y2)/p2 is

a sum of two squares by Theorem 1.1.
(4) If 4 divides m2

1 +m2
2 +m2

3 for integers m1,m2 and m3, there are two cases:
two of the three are odd and one is even, or the three are even. In the first case, say
m1 = 2w1 + 1,m2 = 2w2 + 1 and m3 = 2m3. Then m2

1 +m2
2 +m2

3 = 4(w2
1 + w2

2 +
w1 + w2 + w2

3) + 2, which is not divisible by 4. Then, the three integers are even.
Write m1 = 2m1,m2 = 2w2,m3 = 2w3; therefore, m

2
1+m2

2+m2
3 = 4(w2

1+w2
2+w2

3)
and this ends the proof. �

Note that if e is an exponent of a prime p in a polynomial f(x1, x2, . . . , xt), then
any positive multiple of e is also an exponent of p in f(x1, x2, . . . , xt).

Lemma 2.9. If an exponent e of a prime p in the polynomial c1x
k
1 + · · · + ctx

k
t

divides k, then {pka : a ∈ Npn−k} ⊆ Npn for n > k.

Proof. If pka ∈ Apn where a ∈ Npn−k , then there are integers m1, . . . ,mt such that

c1m
k
1 + · · · + ctm

k
t ≡ pka (mod pn). Since e divides k, k is an exponent of p in
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c1x
k
1 + · · ·+ ctx

k
t . Then we can write (c1m

k
1 + · · ·+ ctm

k
t )/p

k = c1q
k
1 + · · ·+ ctq

k
t for

some integers q1, . . . , qt. Then, c1q
k
1 + · · ·+ctq

k
t ≡ a (mod pn−k), that is, a ∈ Apn−k ,

a contradiction. Thus, pka ∈ Npn for all a ∈ Npn−k . �

Lemmas 2.7 and 2.9 tell us that if there is an exponent of p in c1x
k
1 + c2x

k
2 +

· · ·+ ctx
k
t that divides k, then for n > k + 1 we have

Npn = {pka : a ∈ Npn−k}.

If we use the notation mA to represent the set {ma : a ∈ A}, then we can say that
for n > k + 1, Npn = pkNpn−k . If we write n = qk + r where 2 ≤ r ≤ k + 1, then
we have

Npn = pkNpn−k = p2kNpn−2k = · · · = pkqNpr .

For 2 ≤ r ≤ k + 1 we define nr := |Npr |. We have the following result.

Proposition 2.10. Let p be a prime, k ≥ 1 and suppose that some exponent e of p
in the polynomial c1x

k
1 + · · ·+ ctx

k
t divides k, and p does not divide c1, . . . , ct. Then

(2.1) α(pn) = pα(pn−1)− nr

for all n > 1 such that n ≡ r (mod k).

Proof. The result follows from the fact that |Npn | = |Npr | = nr and Lemma 2.3. �

It is not difficult to deduce from (2.1) the following explicit formulas for α(pn).

Corollary 2.11. Let p be a prime, k ≥ 1 and suppose that some exponent e of p
in the polynomial c1x

k
1 + · · ·+ ctx

k
t divides k, and p does not divide c1, . . . , ct. Then

for all n ≥ 1:

(i) If n ≡ 1 (mod k), then

α(pn) = pn−1α(p)−
pn−1 − 1

pk − 1

k+1
∑

j=2

njp
k−j+1;

(ii) If n ≡ r (mod k) where 2 ≤ r ≤ k, then

α(pn) = pn−1α(p)−
pn−1 − pr−1

pk − 1

k+1
∑

j=2

njp
k−j+1 −

r
∑

j=2

njp
r−j.

For the sets Npn with 2 ≤ n ≤ k + 1 we have the following result.

Proposition 2.12. Consider the N -sets associated to the polynomial c1x
k
1+c2x

k
2+

· · ·+ ctx
k
t . Let p be a prime number that does not divide c1, . . . , ct and let ps be the

highest power of p that divides k. If 2s+ 2 ≤ n ≤ k + 1, then

Npn ⊆ {jpn−1 : 0 < j < p}.

Moreover,

Npk+1 ⊆ {jpk : j /∈ Ap, 0 < j < p},

and if some exponent of p in c1x
k
1 + c2x

k
2 + · · ·+ ctx

k
t divides k, then

Npk+1 = {jpk : j /∈ Ap, 0 < j < p}.
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Proof. We show that a+ jpn−1 ∈ Apn for any a ∈ Apn−1 with a 6= 0 and 0 ≤ j < p.
In fact, if a ∈ Apn−1 and a 6= 0, then there are integers m1, . . . ,mt such that

c1m
k
1 + c2m

k
2 + · · ·+ ctm

k
t ≡ a (mod pn−1).

If p divides all the mi, then pn−1 divides a since n− 1 ≤ k. But 0 ≤ a < pn−1 and
a ≡ 0 (mod pn−1) implies a = 0, a contradiction. We conclude that some mi is not
divisible by p and by Lemma 2.6 we have that a+ jpn−1 ∈ Apn for any 0 ≤ j < p.

Thus we have that Npn ⊆ {jpn−1 : 0 ≤ j < p}, but since 0 /∈ Npn , we have
Npn ⊆ {jpn−1 : 0 < j < p}.

Moreover, when n = k + 1, for 0 < j < p, if j ∈ Ap, then c1m
k
1 + c2m

k
2 + · · · +

ctm
k
t ≡ j (mod p) for some integers m1, . . . ,mt; then c1(pm1)

k + c2(pm2)
k + · · ·+

ct(pmt)
k ≡ jpk (mod pk+1), and this shows that Npk+1 ⊆ {jpk : j /∈ Ap, 0 < j < p}.

Finally, if we have c1m
k
1 + c2m

k
2 + · · · + ctm

k
t ≡ jpk (mod pk+1) for some

m1,m2, . . . ,mt, and (c1m
k
1 + c2m

k
2 + · · · + ctm

k
t )/p

k = c1q
k
1 + c2q

k
2 + · · · + ctq

k
t

for some q1, q2, . . . , qt, then c1q
k
1 + c2q

k
2 + · · ·+ ctq

k
t ≡ j (mod p), that shows that

j ∈ Ap. �

If in Proposition 2.12 p does not divide k, then the inclusion Npn ⊆ {jpn−1 : 0 <
j < p} holds for 2 ≤ n ≤ k + 1.

To determine the value α(pn) for all n ≥ 1 (if the conditions of Proposition 2.10
hold), our strategy is composed by the following steps

(1) Determine α(p) = |Ap|. This implies that we have to determine Ap.
(2) Determine the sets Npr for r = 2, . . . , k + 1. Then nr = |Npr | for r =

2, . . . , k + 1
(3) We apply (2.1) to obtain a recurrence formula for α(pn).
(4) We can find an explicit formula for α(pn) from this recurrence formula,

using Corollary 2.11, or by any other means.

2.3. An example: The polynomial xk. We illustrate our ideas by considering
the multiplicative function α of the polynomial f(x) = xk where k ≥ 1 is a given
integer. For simplicity we assume that p is any prime that does not divide k.

The steps we follow are

(1) Determine Ap and α(p).
(2) Determine Np2 , . . . , Npk+1 and the numbers n2, . . . , nk+1.
(3) Determine the recurrence given by (2.1).
(4) Give explicit formulas for α(pn).

For the first step, we have that Ap is the set of elements a ∈ Ip = {0, 1, . . . , p−
1} such that the congruence xk ≡ a (mod p) is solvable. If a 6= 0, then a
is a k-th power residue modulo p. Therefore, we have that Ap = {a ∈ Ip :
a is a k-th power residue modulo p} ∪ {0}. If d = gcd(k, p − 1), then there are
(p− 1)/d k-th power residues modulo p and so

(2.2) α(p) = (p− 1)/d+ 1.

Now, for the N -sets Np2 , . . . , Npk+1 we have the following result.

Lemma 2.13. For n = 2, . . . , k,

Npn = {jpn−1 : 0 < j < p}.

Moreover

Npk+1 = {jpk : 0 < j < p and j /∈ Ap}.
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Proof. In Proposition 2.12 we have 2s+2 = 2. Also we have that k is an exponent
of p in xk. Then for n = 2, . . . , k + 1 we have Npn ⊆ {jpn−1 : 0 < j < p} and
Npk+1 = {jpk : 0 < j < p and j /∈ Ap}.

To prove that {jpn−1 : 0 < j < p} ⊆ Npn when 2 ≤ n ≤ k, let us take 0 < j < p
and assume jpn−1 ∈ Apn . Then mk ≡ jpn−1 (mod pn) for some integer m. So p
divides m and since k ≥ n, we deduce that pn divides jpn−1. Therefore, p divides
j, which is a contradiction. Hence jpn−1 ∈ Npn . �

For r = 2, . . . , k + 1, we set nr = |Npr |. From Lemma 2.13 and (2.2) it follows
that

nr =

{

p− 1, for r = 2, . . . , k.

(d− 1)(p− 1)/d, for r = k + 1.

By Proposition 2.10 we get our recurrence formula, and it is not difficult to
deduce the formulas in the following proposition.

Proposition 2.14. Let p be a prime, n, k ≥ 1 and d = gcd(k, p − 1). If α is the
multiplicative function associated to the polynomial xk, then we have the following
recurrence formula

α(pn) =

{

pα(pn−1)− (d− 1)(p− 1)/d, if n ≡ 1 (mod k),

pα(pn−1)− p+ 1, if n 6≡ 1 (mod k).

If n ≡ r (mod k) where 1 ≤ r ≤ k, then

(2.3) α(pn) =
pn+k−1 − pr−1

d ·
(

pk−1
p−1

) + 1.

3. Polynomials that involve sums and differences of squares.

In this section we apply our ideas to the polynomials x2 + y2, x2 + y2 + z2 and
x2 − y2. In each case, we determine explicit formulas for α(pn). We also show how
to determine explicitly the sets Apn and answer the question about determining all
n such that the given polynomial is surjective on n.

3.1. The polynomial x2 + y2. We consider the polynomial f(x, y) = x2 + y2 and
its associated multiplicative function α. We obtain, using our methods, the results
about the size of the sets Apn already found in [3, 4].

Lemma 3.1. For any prime number p, we have α(p) = p.

Proof. Let us show that every element in Ip = {0, 1, . . . , p − 1} is expressible as
the sum of two squares modulo p. It is known that there are (p+ 1)/2 elements in
Ip that are squares modulo p. Then for a given a ∈ Ip, then there are (p + 1)/2
elements in Ip that are expressible as a − x2 modulo p. Since 2(p + 1)/2 = p + 1
and Ip has p elements, thus, there exist x, y ∈ Ip such that y2 ≡ a − x2 (mod p),
that is x2 + y2 ≡ a (mod p). �

We now calculate α(2n) for all n ≥ 1. By Lemma 2.8, the prime 2 has exponent
1 in x2 + y2.

It is easily found that

A2 = {0, 1}, A4 = {0, 1, 2}, A8 = {0, 1, 2, 4, 5}.
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and

A4(2) = {0, 1, 2, 3}, A8(4) = {0, 1, 2, 4, 5, 6}.

Then N4 = {3} and N8 = {6}, that is, n2 = 1 and n3 = 1. Now, by applying
Corollary 2.11, for n odd we have

α(2n) = 2n−1α(2)−
2n−1 − 1

22 − 1
(2 + 1)

= 2n − (2n−1 − 1)

= 2n−1 + 1,

and for n even

α(2n) = 2n−1α(2)−
2n−1 − 2

22 − 1
(2 + 1)− 1

= 2n − (2n−1 − 2)− 1

= 2n−1 + 1.

So for all n ≥ 1

α(2n) = 2n−1 + 1.

Remark 3.2. By applying our method we obtain explicit descriptions of the sets
A2n for all n ≥ 1, as follows. Firs of all we determine N2n for all n ≥ 2. Note that
N22 = {3 · 22−2} and N23 = {3 · 23−2}. For n > 3, we can write n = 2q + r where
r ∈ {2, 3}, then N2n = {22qa : a ∈ N2r} = {2n−ra : a ∈ N2r}. Then it is easy to
see that

N2n = {3 · 2n−2} = {2n−2 + 2n−1}

for all n ≥ 2.
Now, we have that

A2n = {a+ an−12
n−1 : a ∈ A2n−1 , an−1 ∈ {0, 1}} \N2n

= {a+ an−22
n−2 + an−12

n−1 : a ∈ A2n−2 ,

a+ an−22
n−2 ∈ A2n−2 , an−2, an−1 ∈ {0, 1}} \N2n

and continuing in this way we find that A2n is the set of all integers of the form

(3.1) a0 + a1 · 2 + a2 · 2
2 + · · ·+ an−1 · 2

n−1

where

(1) a0, a1, a2, . . . , an−1 ∈ {0, 1},
(2) a0 + a1 · 2 + a2 · 2

2 + · · ·+ ai−1 · 2
i−1 ∈ A2i , i = 1, . . . , n.

Assume that an element as in (3.1) is not in A2n . Then there is some i, 2 ≤ i ≤ n,
such that a0 + a1 · 2 + a2 · 2

2 + · · ·+ ai−1 · 2
i−1 ∈ N2i . Since N2i = {2i−2 + 2i−1},

we see that a0 = · · · = ai−3 = 0 and ai−2 = ai−1 = 1. So,

a0 + a1 · 2 + a2 · 2
2 + · · ·+ an−1 · 2

n−1 = 2i−2 + 2i−1 + ai2
i + · · ·+ an−12

n−1.

Conversely, elements of the form 2i−2+2i−1+ai2
i+· · ·+an−12

n−1, ai, . . . , an−1 ∈
{0, 1} are not in A2n . Therefore, A2n is the set of all integers of the form (3.1) such
that the first two nonzero coefficients are not consecutive.
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With this, we can also find α(2n). There are 2n−i−2 elements of the form 2i−2+
2i−1 + ai2

i + · · ·+ an−12
n−1 for 2 ≤ i ≤ n, so that

α(2n) = 2n −

n
∑

i=2

2n−i = 2n − (2n−1 − 1) = 2n−1 + 1.

Now we compute α(pn) where p is an odd prime. The highest power of p that
divides 2 is p0, so by Proposition 2.12 we have that Np2 ⊆ {jp : 0 < j < p} and
Np3 = ∅ since Ap = Ip by Lemma 3.1.

Proposition 3.3. Let p be a prime such that p ≡ 3 (mod 4) and n ≥ 2. Then
Np2 = {jp : 0 < j < p} and Np3 = ∅. The recurrence for α(pn) is given by

α(pn) =

{

pα(pn−1), if n is odd,

pα(pn−1)− p+ 1, if n is even,

and an explicit formula for α(pn) is

α(pn) =

{

p
p+1 (p

n + 1), if n is odd,
1

p+1 (p
n+1 + 1), if n is even.

Proof. It only remains to prove that {jp : 0 < j < p} ⊆ Np2 , that is, jp /∈ Ap2 if
0 < j < p. By contradiction, assume that jp ∈ Ap2 . Then there are integers m1,
m2 and w such that m2

1 + m2
2 = jp + wp2. This implies that p divides m2

1 +m2
2,

and by Theorem 1.1, p is raised to an even power in the prime decomposition of
m2

1 +m2
2. In particular, p2 divides m2

1 +m2
2 and the equation m2

1 +m2
2 = jp+wp2

yields that p divides j, a contradiction. Thus Np2 = {jp : 0 < j < p}.
We have that n2 = p − 1 and n3 = 0. By Proposition 2.10, α(pn) obeys to the

recurrence formula

α(pn) =

{

pα(pn−1), if n is odd,

pα(pn−1)− p+ 1, if n is even.

(note that α(p0) = 1). It is easy to deduce the explicit formula

α(pn) =

{

p

p+1 (p
n + 1), if n is odd,

1
p+1 (p

n+1 + 1), if n is even.

�

Let p be a prime number such that p ≡ 3 (mod 4). We can give a description of
the set Apn for n ≥ 1. By proceeding as in the case of A2n , we can show that Apn

consists of all integers of the form

(3.2) a0 + a1 · p+ a2 · p
2 + · · ·+ an−1 · p

n−1

where

(1) a0, a1, a2, . . . , an−1 ∈ {0, 1, . . . , p− 1},
(2) a0 + a1 · p+ a2 · p

2 + · · ·+ ai−1 · p
i−1 ∈ Api , i = 1, . . . , n.

An induction argument using thatNpn = p2Npn−2 for n > 3, Np2 = {jp : 0 < j < p}
and Np3 = ∅ shows that

Npn =

{

∅, if n > 1 is odd,

{jpn−1 : 0 < j < p}, if n is even.
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This yields that an element as in (3.2) is in Apn if and only if its first nonzero term
has the form aip

i with i even.

Proposition 3.4. Let p be a prime such that p ≡ 1 (mod 4) and n be a positive
integer. Then Np2 = Np3 = ∅. Moreover, α(pn) = pn for all n ≥ 1.

Proof. We know that Np3 = ∅. To prove that Np2 = ∅, it remains to prove
that jp ∈ Ap2 if 0 < j < q. In fact, there are integers w1, w2 and w such that
w2

1 +w2
2 = j+wp. Since p ≡ 1 (mod 4), by Theorem 1.1, the product p(w2

1 +w2
2) is

a sum of two squares, say p(w2
1+w2

2) = m2
1+m2

2. Therefore,m
2
1+m2

2 = p(w2
1+w2

2) =
p(j + wp) = jp+ wp2. Thus, we have Ap2 = Ip2 and therefore Np2 = ∅.

By Proposition 2.10, the following recurrence formula follows

α(pn) =

{

p, if n = 1,

pα(pn−1), if n > 1,

which implies that α(pn) = pn for all n ≥ 1. �

3.2. The polynomial x2 + y2 + z2. In this section we consider the polynomial
f(x, y, z) = x2 + y2 + z2 and its associated function α.

By Lemma 2.8 we have that 2 is an exponent of the prime 2 in x2 + y2 + z2.
By direct computations we obtain that A2 = {0, 1}, A4 = {0, 1, 2, 3}, A8 =

{0, 1, 2, 3, 4, 5, 6}, and we see that N4 = ∅ and N8 = {7}. From Proposition 2.10 it
follows that

α(2n) =











2, if n = 1,

2α(2n−1), if n is even,

2α(2n−1)− 1, if n > is odd.

The corresponding explicit formula is

α(2n) =

{

1
3 (5 · 2

n−1 + 1), if n is odd,
2
3 (5 · 2

n−2 + 1), if n is even.

We now describe explicitly the sets A2n . Is is not difficult to show that

N2n =

{

∅, if n is even,

{7 · 2n−3}, if n ≥ 2 is odd.

For n ≥ 2 odd we have that N2n = {2n−3 + 2n−2 + 2n−1}. This yields that A2n

consists of all integers of the form a0 + a12 + · · · + an−12
n−1 that are not of the

form 2i+2i+1+2i+2+ai+32
i+3+ · · ·+an−12

n−1 for some odd i with 0 ≤ i ≤ n−3.

Now, we consider the case where p is an odd prime. In this case we cannot apply
Proposition 2.10 because there is no exponent of p in x2 + y2 + z2, so we treat
this case in a slightly different way using Lemma 2.7. In order to do this, we take
into account that odd primes are divided into 4 families depending on their residue
modulo 8. The multiplication table of {1, 3, 5, 7} modulo 8 is the following:

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1
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Recall that by Theorem 1.2, a nonnegative integer is representable as the sum of
three squares if and only if it is not of the form 4a(8b + 7). From the table we
deduce the following facts:

(1) Dividing a number that is not of the form 4a(8b+7) by a prime of the form
8k + 1 gives a number that is not of the form 4a(8b+ 7). That is, if p is a
prime of the form 8k + 1, then 1 is an exponent of p in x2 + y2 + z2.

(2) Dividing a number that is not of the form 4a(8b + 7) by the square of a
prime of the form 8k+3, 8k+5 or 8k+7 gives a number that is not of the
form 4a(8b+ 7). Thus, if p is a prime of the form 8k + 3, 8k + 5 or 8k + 7,
then 2 is an exponent of p in x2 + y2 + z2.

Lemma 3.5. If p is an odd prime and m is a sum of three squares, then there
exists c ∈ Z such that pm− cp2 is the sum of three squares.

Proof. If pm is a sum of three squares, then we can take c = 0.
Suppose that pm is not the sum of three squares, then one of the following cases

holds:

(1) p is of the form 8k + 3 and m is of the form 4a(8b+ 5),
(2) p is of the form 8k + 5 and m is of the form 4a(8b+ 3),
(3) p is of the form 8k + 7 and m is of the form 4a(8b+ 1).

We will show that in any case, pm − 2p2 is not of the form 4a(8b + 7). If a > 0,
then pm− 2p2 is not divisible by 4, so pm− 2p2 is not of the form 4a(8b+ 7) and
it is, therefore, a sum of three squares.

Assume a = 0. In case (1) we have pm−2p2 = (8k+3)(8b+5)−2(8k+3)2 = (8k+
3)[8(b−2k−1)+7] which is a number of the form 8k+5 and thus is the sum of three
squares. In case (2), pm−2p2 = (8k+5)(8b+3)−2(8k+5)2 = (8k+5)[8(b−2k−1)+1]
which is a number of the form 8k+5 and thus is the sum of three squares. In case
(3), pm− 2p2 = (8k + 7)(8b+ 7)− 2(8k + 1)2 = (8k + 7)[8(b− 2k) + 5] which is a
number of the form 8k + 3 and thus is the sum of three squares. �

Proposition 3.6. Let p be an odd prime number. Then α(pn) = pn for all n ≥ 1.

Proof. First of all, by Lemma 3.1 every element in Ip = {0, 1, . . . , p− 1} is the sum
of two squares modulo p and so every element in Ip is the sum of three squares.
This means that Ap = {0, 1, . . . , p− 1} and α(p) = p.

By Proposition 2.12 we have that Np2 ⊆ {jp : 0 < j < p} and Np3 = ∅.
We show that jp ∈ Ap2 for all 0 < j < p. In fact, since j ∈ Ap, there are integers

w1, w2, w3 and w4 such that w2
1 +w2

2 +w2
3 = j + w4p. By Lemma 3.5, there exists

c ∈ Z such that p(w2
1 +w2

2 +w2
3)− cp2 = u2

1 + u2
2 + u2

3 for some integers u1, u2 and
u3. Hence u

2
1+u2

2+u2
3 = p(w2

1+w2
2+w2

3)−cp2 = pj+w4p
2−cp2 = jp+(w4−c)p2,

and this shows that jp ∈ Ap2 . Thus Np2 = ∅ and consequently, Npn = ∅ for all
n ≥ 2.

Hence, α(pn) = pn for all n ≥ 1. �

Having found the value of α on prime powers, we can now determine all integers
n such that x2 + y2 + z2 is surjective on n. If we write n = 2sm where m is odd,
then we have that α(n) = α(2s)α(m) = α(2s)m. Thus, α(n) = n if and only if
α(2s) = 2s, and this last equality holds if and only if s ≤ 2. Thus, x2 + y2 + z2 is
surjective on n if and only if n 6≡ 0 (mod 8).
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3.3. The polynomial x2 − y2. We make the computations of α(pn) for the mul-
tiplicative function associated to the polynomial x2 − y2.

We will use the following result [1, Theorem 13.4]

Theorem 3.7. A positive integer n can be represented as the difference of two
squares if and only if n is not of the form 4k + 2.

By Theorem 3.7 each element a ∈ In that is not of the form 4k+ 2 is in An. So
the only elements in In that posibly do not belong to An are those that have not
the form 4k + 2. It is easy to see that A2 = {0, 1} so α(2) = 2.

Proposition 3.8. For any integer n ≥ 2, A2n is the set of all elements in I2n that
are not of the form 4k + 2. Moreover, for each n ≥ 2

(3.3) α(2n) = 3 · 2n−2.

Proof. Let n ≥ 2. By Theorem 3.7 it only remains to show that no element of the
form 4k + 2 is in A2n .

Suppose on the contrary that 4k + 2 ∈ A2n for some k. Then there are integers
m1,m2, w such that m2

1−m2
2 = 4k+2+w2n. It follows that m2

1−m2
2 is even, then

both m1 and m2 are even or both are odd. In any case it follows that m2
1 −m2

2 is
divisible by 4. This yields that 4 divides 2, which is absurd.

Now we are going to determine the size of A2n . The elements in I2n of the form
4k+2 are 2, 6, . . . , 2n−2, that is, there are 2n−2 elements in I2n of the form 4k+2.
Thus, α(2n) = 2n − 2n−2 = 3 · 2n−2. �

Lemma 3.9. If p is an odd prime, then p has exponent 1 in x2 − y2.

Proof. Suppose p = 2r+1 and p|(m2
1−m2

2). If (m
2
1−m2

2)/p is not a difference of two
squares, then m2

1−m2
2 = p(4k+2) for some k, and then m2

1−m2
2 = (2r+1)(4k+2) =

4(2rk + r + k) + 2, that contradicts Theorem 3.7. �

Proposition 3.10. If p is an odd prime, then α(pn) = pn for all n ≥ 1.

Proof. Let p be an odd prime. The proof that α(p) = p is similar to the proof of
Lemma 3.1.

By Proposition 2.12, we have Np2 ⊆ {jp : 0 < j < p} and Np3 = ∅.
We show that if 0 < j < p, then jp ∈ Ap2 . Indeed, since p is odd, p does not

divide 4, and therefore there exists an integer b such that 4b ≡ j (mod p). So
4b = j + wp for some w. Then

(p+ b)2 − (p− b)2 = 4bp = jp+ wp2,

which shows that jp ∈ Ap2 . We have shown that for all a ∈ Ip = Ap and 0 ≤ j < p,
a + jp ∈ Ap2 . Thus Np2 = ∅. It follows Npn = ∅ for all n ≥ 2 and therefore
α(pn) = pn for all n ≥ 1. �

Now we determine all integers n such that x2 − y2 is surjective on n. Again, if
we write n = 2sm where m is odd, then we have that α(n) = α(2s)m and therefore,
α(n) = n if and only if α(2s) = 2s, which holds if and only if s ≤ 1. Thus, x2 − y2

is surjective on n if and only if n 6≡ 0 (mod 4).

Remark 3.11. For the function α associated to a polynomial of the form ±x2
1 ±

x2
2 ± · · · ± x2

t with t ≥ 2, other than x2 + y2, x2 − y2 and x2 + y2 + z2, we have
α(n) = n for all n. This is due to the four squares theorem of Lagrange and the
fact that every integer can be expressed in the form x2 + y2 − z2.
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