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Abstract: The problem regarding of optimal power flow in bipolar DC networks is addressed in
this paper from the recursive programming stand of view. A hyperbolic relationship between
constant power terminals and voltage profiles is used to resolve the optimal power flow in bipolar
DC networks. The proposed approximation is based on the Taylors’ Taylor series expansion. In
addition, nonlinear relationships between dispersed generators and voltage profiles are relaxed based
on the small voltage voltage-magnitude variations in contrast with power output. The resulting
optimization model transforms the exact nonlinear non-convex formulation into a quadratic convex
approximation. The main advantage of the quadratic convex reformulation lies in finding the
optimum global via recursive programming, which adjusts the point until the desired convergence is
reached. Two test feeders composed of 21 and 33 buses are employed for all the numerical validations.
The effectiveness of the proposed recursive convex model is verified through the implementation of
different metaheuristic algorithms. All the simulations are carried out in the MATLAB programming
environment using the convex disciplined tool known as CVX with the SEDUMI and SDPT3 solvers.

Keywords: recursive optimal power flow solution; sequential quadratic programming; bipolar DC
networks; unbalanced loads; power loss minimization

1. Introduction

Bipolar DC distribution networks are emerging technologies based on the well-known
bipolar configuration HVDC transmission lines [1], where two poles are used to increase the
power transference capabilities of the system [2,3]. In the case of bipolar DC distribution
grids, the typical configuration employed is composed of three conductors marketed
as positive (p), negative (n), and neutral (o). Additionally, there is the possibility of
connecting monopolar loads (loads connected between one of the positive or negative
poles and the neutral one). B and bipolar loads (i.e., connections between the positive
and the negative pole) [4,5]. There are three main important characteristics: (i) the bipolar
DC configuration can transfer double of energy in comparison with a monopolar DC
configuration by increasing about 33.33% the initial investment by with the inclusion of an
additional conductor along the grid topology [6]; (ii) the presence of multiple monopolar
loads can produce essential grid unbalances, which are reflected in the total grid power
loss and the voltage profiles [7]; and (iii) the neutral wire can operate solidly-ly grounded
at each node of the system as well as with a floating configuration, which impacts on the
voltage profile in terminals of the loads as well as in the total grid power loss [8].

Owing to the aforementioned operative characteristics attributable to DC networks,
it is important to develop efficient analysis tools that accurately know their behavior
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under steady-state conditions. Two main analyses in steady-state operation are essential
in asymmetric bipolar DC grids: the power flow solution [9] and the optimal power flow
solution [10]. However, both problems have the same common core, which corresponds to
the solution of the power balance equations at each node of the network, with the main
difficulty that these are a set of nonlinear equations (i.e., a non-convex problem) [11].

Numerical methods are implemented to solve the power flow problem in asymmetric
bipolar DC networks. These methods allow finding a set of voltage variables that fulfill the
power balance equations. This is made through an iterative solution approach. The authors
of [8] presented a derivative-free power flow methodology for bipolar DC networks with
multiple constant power loads based on the upper-triangular power flow formulation pro-
posed in [12] for three-phase AC distribution grids. Ref. [9] have presented the application
of the successive approximation power flow approach for unbalanced bipolar DC grids,
with the main advantage that its convergence was proved through the application of the
Banach- fixed-point theorem [13]. Authors The authors of [11] presented a generalization
of the bipolar power flow problem considering the current limitations in power electronic
converters. The convergence was also proved using the fixed-point theorem. In [14], a
derivative-based power flow method was proposed based on approximating the hyperbolic
relationship between voltage and powers via Taylor’s series expansion. Note that the main
characteristic of these approaches is that they all focus on applying numerical methods
to deal with the power flow solution. These can be classified into derivative-free and
derivative-based approaches, where the former exhibits linear convergence and the latter
exhibits quadratic convergence. However, regarding processing times, the derivative-free
approaches are faster than derivative-based approaches since these do not require the
calculation of inverse matrices at each iteration, which is not the case for the methods based
on derivatives.

In [15], an optimal power flow (OPF) model for bipolar DC grids using voltage and
current as variables was formulated. Furthermore, the OPF model used an objective
function bilinear which is non-convex and generates a weak duality between the objective
function and constraints. To solve this problem, the authors of this work employed the
locational marginal prices to transform the OPF problem into a linear problem of two steps.
In [16], a model of bipolar dc distribution networks considering asymmetric loading was
proposed. This model also included the locational marginal prices evaluated in different
case studies to analyze the effect of line congestion and asymmetric loading in the objective
function. In [17], a current injection power flow model was initially used to compute steady-
state analysis. Furthermore, this model simultaneously reduced the voltage unbalance,
which was reached by employing the sensitivity matrix performed from the Jacobian matrix.
In [8], a model for the optimal pole-swapping in bipolar DC grids that included multiple
monopolar and bipolar constant power loads was described. This model was solved and
compared with three metaheuristic techniques implemented with a master-slave structure.
In the master step, it was used a metaheuristic technique to select the connection of each
load at nodes. At the same time, the slave step implemented power flow analysis based
on a triangular formulation, which computed the whole grid power losses. In [10], an
OPF model to minimize power losses, generation cost, and voltage unbalance in bipolar
DC microgrids was proposed. This model also considered the integration of distributed
generations and supply power to end-users. In [18], an OPF model in hybrid (monopolar
and bipolar) DC grids considering the unbalanced operation was presented. Even though
the above methods are excellent in solving the OPF problem in bipolar networks, they
cannot guarantee the global optimum and have a simple formulation. This paper presents a
convex quadratic approximation to solve the OPF problem in unbalanced bipolar networks.
The proposed approximation uses a recursive strategy to reduce the error generated for the
relaxations used.

Based on the revision mentioned above of state of the art, the following contributions
are presented in this research:
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i. A detailed formulation of the OPF problem for bipolar unbalanced distribution net-
works is presented in this research. In addition, a general procedure to become the
hyperbolic relationships between voltages and powers in the demand nodes is intro-
duced to become the exact nonlinear programming (NLP) model that represents the
OPF problem into a convex approximation.

ii. A recursive quadratic approximation is proposed to minimize/eliminate the error
in the OPF problem’s solution by applying Taylor’s series expansion. This recursive
quadratic approximation redefines the linearizing point of the approximated quadratic
OPF model iteratively until the desired convergence is reached.

In this research, the distribution company previously defined the location of the
dispersed generators and the maximum values. We are only interested in determining their
optimal dispatch to minimize the total grid power losses. In addition, no uncertainties
in the expected demand values are considered; and to demonstrate the effectiveness of
the proposed convex approximation, different power flow methods and combinatorial
optimization algorithms are used during the numerical validation in the 21-bus system.

The remainder of this document is structured as follows: Section 2 reveals the detailed
formulation of the OPF problem for bipolar asymmetric DC distribution networks using
an NLP formulation. Section 3 describes the main characteristics of the proposed convex
approximation of the OPF problem using Taylor’s series expansion to approximate the
hyperbolic relationship between voltages and currents in the demand nodes and the lin-
ear approximation implemented in the case of dispersed generation sources. Section 3.4
presents the main characteristics of the test feeders implemented in the numerical sim-
ulations. Section 4 shows all the numerical comparisons between the proposed convex
approximation to solve the conventional power flow problem and the OPF problem. These
comparative results include conventional graph-based power flow methods and combina-
torial optimization techniques. Finally, Section 5 lists the main concluding remarks derived
from this work and some possible future works.

2. OPF Formulation for Bipolar DC Networks

DC bipolar networks can integrate multiple distributed energy sources at their poles,
with the particularity that each dispersed generation source is usually connected between
one of its poles and the neutral wire to ensure their satisfactory operation and protec-
tion [16]. The main idea of the OPF problem for bipolar DC networks is minimizing the
expected grid power losses in a particular load operative condition by defining the set of
power injections in the dispersed sources as a function of the grid requirements [10]. The
mathematical formulation of the OPF problem in bipolar DC networks with unbalanced
loads is formulated as follows.

2.1. Objective Function

The objective function associated with the OPF problem considered in this research
is associated with the minimization of the total grid power loss (ploss), i.e., the electrical
energy transformed into heat in all the resistive effects of the distribution lines.

min ploss = ∑
r∈P

∑
j∈N

Vr
j

(
∑

s∈P
∑

k∈N
Gjk

rsVs
k

)
, (1)

where ploss is the objective function value regarding the total power losses in the bipolar DC
network; Vr

j is the voltage value at node j for the rth pole; Vs
k is the voltage value at node

k for the sth pole; Grs
jk corresponds to the value of the conductance matrix that associates

nodes j and k between poles r and s. Note that P corresponds to the set that contains all
the poles in the network, i.e., positive, neutral, and negative poles market as {p, o, n}; N
is the set that contains all nodes in the network; r and s are superscripts associated with
poles; j and k are subscripts regarding nodes.
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In the objective function calculation as defined in (1), it is important to mention that if
there is a mutual coupling conductance between two poles, the value of the parameter Grs

jk ,
when j = k, and r 6= s will be different from zero. Otherwise, these parameters always take
zero value when r 6= s.

2.2. Set of Constraints

The set of constraints associated with the OPF problem in bipolar DC networks is
composed of the current balance at each node and pole, the relationship between currents
and powers per pole, and the voltage regulation constraints, among others. The complete
set of constraints considered in this research is presented from (2) to (20)

Ip
g,k + Ip

dg,k − Ip
d,k − Ip−n

d,k = ∑
r∈P

∑
j∈N

Gpr
jk Vr

k , {∀k ∈ N} (2)

Io
g,k + Io

dg,k − Io
d,k − Iground

d,k = ∑
r∈P

∑
j∈N

Gor
jk Vr

k , {∀k ∈ N} (3)

In
g,k + In

dg,k − In
d,k + Ip−n

d,k = ∑
r∈P

∑
j∈N

Gnr
jk Vr

k , {∀k ∈ N} (4)

Ip
d,k =

Pp
d,k

Vp
k −Vo

k
, {∀k ∈ N} (5)

In
d,k =

Pn
d,k

Vn
k −Vo

k
, {∀k ∈ N} (6)

Io
d,k =

Pp
d,k

Vo
k −Vp

k
+

Pn
d,k

Vo
k −Vn

k
, {∀k ∈ N} (7)

Ip−n
d,k =

Pp−n
d,k

Vp
k −Vn

k
, {∀k ∈ N} (8)

Ip
dg,k =

Pp
dg,k

Vp
k −Vo

k
, {∀k ∈ N} (9)

In
dg,k =

Pn
dg,k

Vn
k −Vo

k
, {∀k ∈ N} (10)

Io
dg,k =

Pp
dg,k

Vo
k −Vp

k
+

Pn
dg,k

Vo
k −Vn

k
, {∀k ∈ N} (11)

Ip,min
g,k ≤ Ip

g,k ≤ Ip,max
g,k , {∀k ∈ N} (12)

Io,min
g,k ≤ Io

g,k ≤ Io,max
g,k , {∀k ∈ N} (13)

In,min
g,k ≤ In

g,k ≤ In,max
g,k , {∀k ∈ N} (14)

Pp,min
dg,k ≤ Pp

dg,k ≤ Pp,max
dg,k , {∀k ∈ N} (15)

Po,min
dg,k ≤ Po

dg,k ≤ Po,max
dg,k , {∀k ∈ N} (16)

Pn,min
dg,k ≤ Pn

dg,k ≤ Pn,max
dg,k , {∀k ∈ N} (17)

Vp,min ≤ Vp
k ≤ Vp,max, {∀k ∈ N} (18)

Vn,min ≤ Vn
k ≤ Vn,max, {∀k ∈ N} (19)Vp

j
Vo

j
Vn

j

 =

 1
0
−1

Vnom, {j = slack} (20)
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where Ip
g,k, Io

g,k, and In
g,k are the current injections at node k for the positive, neutral and

negative poles by the slack source; Ip
dg,k, Io

dg,k, and In
dg,k are the current injections at node

k for the positive, neutral and negative poles by the dispersed generation sources; Ip
d,k,

Io
d,k, and In

d,k are the current consumptions at node k for the positive, neutral and negative

poles, respectively; Ip−n
d,k is the current consumption of a load connected between positive

and negative poles; Iground
d,k is the total current drained to the ground in the case of the

neutral-grounded operation scenario; Pp
d,k and Pn

d,k are the monopolar constant power

consumptions at poles p and n with respect to the neutral pole; Pp−n
d,k is the bipolar constant

power consumption connected between positive and negative poles; Vp
k , Vo

k , and Vn
k are

the voltage values at node k for the positive, neutral and negative poles, respectively. Ip,min
g,k ,

Io,min
g,k , and In,min

g,k , are the minimum current injections with a slack source connected at node

k for the positive, neutral, and negative poles, respectively; Ip,max
g,k , Io,max

g,k , and In,max
g,k are

the maximum current injections with a slack source connected at node k for the positive,
neutral and negative poles, respectively; Note that Pp,min

g,k , Po,min
g,k , Pn,min

g,k , Pp,max
g,k , Po,max

g,k and
Pn,max

g,k represent the minimum and maximum power injections permitted to the dispersed

sources; Vp,min and Vp,max are the minimum and maximum voltage values allowed at
node k for the positive pole; Vn,min and Vn,max are the minimum and maximum voltage
values allowed at node k for the negative pole; and Vnom means the nominal voltage at the
substation terminal (i.e., slack node).

The interpretation of the set of constraints listed from (2) to (20) is the following:

i. Equations (2)–(4) correspond to the current balance at each node, i.e., the application
of first Kirchhoff’s law to each node and pole of the bipolar DC network.

ii. Equations (5)–(8) present the hyperbolic relationship between power and voltages in
the demand nodes for each pole, in the case of monopolar loads, and between poles in
the case of bipolar DC loads, respectively.

iii. Equations (9)–(11) present the clear hyperbolic relationship between power and voltages
in the dispersed generation sources and its current injection for each pole, respectively.

iv. The set of box-type constraints (12)–(17) list the current limitations associated with the
slack and dispersed generation sources, respectively.

v. Box-type constraints defined in (18) and (19) present the voltage regulation constraints
applicable to the positive and negative poles for each node of the network. Regulatory
policies define no specifications regarding voltage values in the neutral wire.

An important feature of the optimization model (1)–(20) is the possibility of adding
linear loads (resistances) with the monopolar and bipolar structures without introducing
additional nonlinearities in the optimization model. For these loads, the current and voltage
relationships will be directly proportional. For more details regarding the inclusion of
linear loads in the OPF problem, the reference [6] can be consulted.

On the other hand, the optimization model (1)–(20) is a family of nonlinear non-convex
problems owing to the hyperbolic relationships between voltages and powers in demand
and dispersed generation sources. For this reason, to reach an approximate convex model, it
is required to convexify the set of Equations (5)–(11), as will be presented in the next section.

3. Recursive Quadratic Approximation of the OPF Problem

In this section, we present the convex approximation of the optimization model (1)–(20)
by applying two recently developed concepts developed by Montoya et al., in [19]. The
main characteristics of the proposed convex approximation are presented below.

The objective function in (1) is a nonlinear function owing to the product between
voltages, i.e., it is a quadratic function. However, it is a convex function because the
conductance matrix representing the electrical topology of the bipolar DC network is a
positive semidefinite matrix if and only if there are no isolated nodes, which is the case of
radial and meshed bipolar DC grids [11].
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3.1. Approximation for Nodes with Constant Power Loads

To obtain an equivalent linear approximation of the hyperbolic relationship between
power and voltages in the constant power terminals, let us consider the following auxiliary
function f (x, y) with the hyperbolic structure below presented:

f (x, y) =
1

x− y
, (21)

which can be expressed as a linear function applying Taylor’s series expansion of a function
of two variables as follows:

f (x, y) ≈ f (x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0), (22)

being (x0, y0) is the linearization point, and fx(x0, y0), and fy(x0, y0) are the first derivatives
of the function f (x, y) with respect to the x and y variables evaluated in the linearization
point, respectively.

Now, applying (22) to the nonlinear function (21) yields the linear approximation for
this function as presented below.

f (x, y) =
2

x0 − y0
− x− y

(x0 − y0)
2 . (23)

With the linear approximation in (23), it is possible to obtain the linear equivalences
for the demanded currents defined in Equations (5)–(8) by defining (x0, y0) as the initial
values of the voltages. The list of linear equivalent equations for the demanded currents is
presented below.

Ip
d,k0 = Pp

d,k

 2
Vp

k0 −Vo
k0

−

(
Vp

k −Vo
k

)
(

Vp
k0 −Vo

k0

)2

 {∀k ∈ N} (24)

In
d,k0 = Pn

d,k

(
2

Vn
k0 −Vo

k0
−

Vn
k −Vo

k(
Vn

k0 −Vo
k0

)2

)
, {∀k ∈ N} (25)

Io
d,k0 = Pp

d,k

 2
Vo

k0 −Vp
k0

−
Vo

k −Vp
k(

Vo
k0 −Vp

k0

)2

+ Pn
d,k

(
2

Vo
k0 −Vn

k0
−

Vo
k −Vn

k(
Vo

k0 −Vn
k0

)2

)
, {∀k ∈ N} (26)

Ip−n
d,k0 = Pp−n

d,k

 2
Vp

k0 −Vn
k0

−
Vp

k −Vn
k(

Vp
k0 −Vn

k0

)2

. {∀k ∈ N} (27)

where Vp
k0, Vo

k0, and Vn
k0 are the initial values of the voltage profiles at note k for the positive,

neutral, and negative poles, which can be defined initially equal to the voltage profile in the
slack source as presented in Equation (20). In addition, Ip

d,k0, Io
d,k0, In

d,k0 defines the linearized
absorbed currents in the positive, neutral and negative poles caused by monopolar loads.
Ip−n
d,k is the linearized absorbed current produced by bipolar constant power load between

positive and negative poles.
The set of Equations (24)–(27) show that the demanded currents in all the poles of

the DC network are a function of the initial voltage values, and these are the first linear
approximation of the power flow Equations. In addition, to reduce/eliminate the estimation
error between these and the original hyperbolic Equations (5)–(8), it is required to introduce
a recursive approximation using an iterative counter as proposed by authors [19].
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3.2. Approximation for Nodes with Dispersed Generators

In the case of dispersed generation connected to the bipolar DC networks, we consider
three main aspects of this connection. Firstly, the dispersed generators are connected with
monopolar topology, i.e., these can be installed only between the positive or negative pole
and the neutral pole, which implies that no bipolar dispersed generators are considered [19].
Secondly, the dispersed sources can be operated unbalanced, i.e., a node can have only one
generator in one of the poles or both poles injecting different values of constant power [16].
Thirdly, the dispersed generators cannot control voltage in nodes where these are connected,
i.e., they only have the possibility of injecting power between their generation bounds [17].

To linearize the hyperbolic relationship in the dispersed generation sources, we con-
sider the following approximation [19]:

g(x, y, z) =
z

x− y
, (28)

where we can assume that the denominator of this expression has soft variations in com-
parison with the numerator, i.e., the values of the variables x and y are near the operative
point (x0, y0) (this means that ∆xy ≈ 0), then, Equation (28) can be linearized as follows:

g(x, y, z) ≈ z
x0 − y0 + ∆xy

≈ z
x0 − y0

. (29)

Now, considering the approximation presented in (29) is possible to obtain a linear
equivalent for the current injections with the dispersed sources in Equations (9)–(11), as
presented below.

Ip
dg,k0 =

Pp
dg,k

Vp
k0 −Vo

k0

, {∀k ∈ N} (30)

In
dg,k0 =

Pn
dg,k

Vn
k0 −Vo

k0
, {∀k ∈ N} (31)

Io
dg,k0 =

Pp
dg,k

Vo
k0 −Vp

k0

+
Pn

dg,k

Vo
k0 −Vn

k0
. {∀k ∈ N} (32)

The linear approximation of the current provided by the dispersed generators in
conjunctions with Taylor’s based approximation for the load currents allows obtaining a
convex model that approximates the OPF solution for bipolar unbalanced DC networks.

3.3. Proposed Recursive Quadratic Approximation

To minimize the error introduced by the linear approximations on the demanded
and generation currents, here, we proposed a recursive solution methodology to eliminate
this error by using a recursive solution methodology. For implementing this solution
methodology, the proposed sequential quadratic optimization is proposed.

Objective Function

min ploss = ∑
r∈P

∑
j∈N

Vr
jt+1

(
∑

s∈P
∑

k∈N
Gjk

rsVs
kt+1

)
, (33)

where t is the iterative counter.

Set of Constraints



Energies 2023, 16, 589 8 of 17

Ip
g,kt+1 + Ip

dg,kt+1 − Ip
d,kt+1 − Ip−n

d,kt+1 = ∑
r∈P

∑
j∈N

Gpr
jk Vr

kt+1, {∀k ∈ N} (34)

Io
g,kt+1 + Io

dg,kt+1 − Io
d,kt+1 − Iground

d,kt+1 = ∑
r∈P

∑
j∈N

Gor
jk Vr

kt+1, {∀k ∈ N} (35)

In
g,kt+1 + In

dg,kt+1 − In
d,kt+1 + Ip−n

d,kt+1 = ∑
r∈P

∑
j∈N

Gnr
jk Vr

kt+1, {∀k ∈ N} (36)

Ip
d,kt+1 = Pp

d,k

 2
Vp

kt −Vo
kt
−

(
Vp

kt+1 −Vo
kt+1

)
(

Vp
kt −Vo

kt+1

)2

 {∀k ∈ N} (37)

In
d,kt+1 = Pn

d,k

(
2

Vn
kt −Vo

kt
−

Vn
kt+1 −Vo

kt+1(
Vn

kt −Vo
kt
)2

)
, {∀k ∈ N} (38)

Io
d,kt+1 = Pp

d,k

 2
Vo

kt −Vp
kt
−

Vo
kt+1 −Vp

kt+1(
Vo

kt −Vp
kt

)2

+ Pn
d,k

(
2

Vo
kt −Vn

kt
−

Vo
kt+1 −Vn

kt+1(
Vo

kt −Vn
kt
)2

)
, {∀k ∈ N} (39)

Ip−n
d,kt+1 = Pp−n

d,k

 2
Vp

kt −Vn
kt
−

Vp
kt+1 −Vn

kt+1(
Vp

kt −Vn
kt

)2

. {∀k ∈ N} (40)

Ip
dg,kt+1 =

Pp
dg,kt+1

Vp
kt −Vo

kt
, {∀k ∈ N} (41)

In
dg,kt+1 =

Pn
dg,kt+1

Vn
kt −Vo

kt
, {∀k ∈ N} (42)

Io
dg,kt+1 =

Pp
dg,kt+1

Vo
kt −Vp

kt
+

Pn
dg,k+1

Vo
kt −Vn

kt
, {∀k ∈ N} (43)

Ip,min
g,k ≤ Ip

g,kt+1 ≤ Ip,max
g,k , {∀k ∈ N} (44)

Io,min
g,k ≤ Io

g,kt+1 ≤ Io,max
g,k , {∀k ∈ N} (45)

In,min
g,k ≤ In

g,kt+1 ≤ In,max
g,k , {∀k ∈ N} (46)

Pp,min
dg,k ≤ Pp

dg,kt+1 ≤ Pp,max
dg,k , {∀k ∈ N} (47)

Po,min
dg,k ≤ Po

dg,kt+1 ≤ Po,max
dg,k , {∀k ∈ N} (48)

Pn,min
dg,k ≤ Pn

dg,kt+1 ≤ Pn,max
dg,k , {∀k ∈ N} (49)

Vp,min ≤ Vp
kt+1 ≤ Vp,max, {∀k ∈ N} (50)

Vn,min ≤ Vn
kt+1 ≤ Vn,max, {∀k ∈ N} (51)Vp

jt+1
Vo

jt+1
Vn

jt+1

 =

 1
0
−1

Vnom, {j = slack} (52)

The recursive solution of the convex model (33)–(52) is presented in Figure 1. Note
that this solution methodology depicted in this Figure is iteratively solved until the desired
convergence error is reached.
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Start: Sequential
quadratic model

Load and gen-
eration inputs

Bipolar DC
network data

Make t = 0

Define[
vp

kt, vo
kt, vn

kt

]
=

[1, 0,−1]>

Obtain the nodal
admittance matrix

Program the
optimization

model (33)–(52)

Solve the opti-
mization model

using a convex tool

Report voltages
and powers

Evaluation
ends?

End: Result analysis

Solution report

Increase the t value,
i.e., t = t + 1

no

yes

Figure 1. Recursive solution for the proposed quadratic convex model (33)–(52).

Note that the convergence criterion applied to the sequential quadratic model (33)–(52)
and its iterative solution depicted in Figure 1 corresponds to the difference between two
consecutive voltage profiles, as presented below [19]:

max
k∈N , r∈P

{∣∣Vr
kt+1|| − |V

r
kt|
∣∣} ≤ ε, (53)

where ε is set as the maximum convergence error, i.e., ε = 1× 10−10.

3.4. Test Feeders

In this section, the main characteristics of the test feeders are presented. These test
feeders correspond to the bipolar DC 21-bus grid and the bipolar version of the IEEE
33-bus grid.

3.5. Bipolar DC 21-Bus System

The 21-bus system is an adaptation of the original monopolar DC network proposed
by Garces in [20] to demonstrate the convergence of the Newton-Raphson power flow ap-
proach in this grid considering drop controllers. The electrical topology of this distribution
grid is presented in Figure 2.
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Figure 2. Single-diagram of the 21-bus grid.

The main features assignable to this network are listed below:

i. The substation bus is located at bus 1, and it operates with a voltage value of
±1 kV in the positive and negative poles, and it is considered that its neutral pole is
solidly grounded.

ii. The total power consumption in the positive pole is 554 kW, and the total power
consumption in the negative pole is 445 kW, while the bipolar load sums 405 kW. This
grid has a radial grid configuration.

The complete parametric information for this test feeder is listed in Table 1.

Table 1. Parametric information regarding the 21-bus grid (all powers in kW).

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50
19 21 0.082 21 20 0

To evaluate the efficiency of the proposed recursive quadratic approximation to solve
the OPF problem in bipolar DC asymmetric distribution networks is considered that in
the 21-bus grid, there are four dispersed generators. The information of these sources is
presented in Table 2.
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Table 2. Location and Capacity of the dispersed sources for the 21-bus system.

Node Location Capacity (kW)

3 p 300
3 n 100

11 p 400
17 p 200
17 n 300

3.6. Bipolar DC 33-Bus System

The 33-bus system is an adaptation of the original IEEE 33-bus grid proposed by
authors of [21] to study the problem of the optimal placement and sizing of capacitor banks
in radial AC distribution networks. The single-line diagram of this test feeder is presented
in Figure 3.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 1819
20
21
22

23
24
25

26 27 28 29 30 31 32 33

Figure 3. Adaptation of the IEEE 33-bus grid for DC bipolar applications.

The main characteristics of the bipolar version of the IEEE 33-bus grid are the following:

i. The substation bus is located at bus 1, and it operates with a voltage value of
±12.66 kV in the positive and negative poles, and it is considered that its neutral
pole is solidly grounded.

ii. The total power consumption in the positive pole is 2615 kW, and the total power
consumption in the negative pole is 2185 kW, while the bipolar loads sum 2350 kW.

Regarding the parametric information of the bipolar DC 33-bus system, all the param-
eters associated with loads and branches are listed in Table 3.

Table 3. Parametric information regarding the 33-bus grid (all powers in kW).

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

1 2 0.0922 100 150 0
2 3 0.4930 90 75 0
3 4 0.3660 120 100 0
4 5 0.3811 60 90 0
5 6 0.8190 60 0 200
6 7 0.1872 100 50 150
7 8 1.7114 100 0 0
8 9 1.0300 60 70 100
9 10 1.0400 60 80 25

10 11 0.1966 45 0 0
11 12 0.3744 60 90 0
12 13 1.4680 60 60 100
13 14 0.5416 120 100 200
14 15 0.5910 60 30 50
15 16 0.7463 110 0 350
16 17 1.2890 60 90 0
17 18 0.7320 90 45 0
2 19 0.1640 90 150 0

19 20 1.5042 150 50 115
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Table 3. Cont.

Node j Node k Rjk (Ω) Pp
d,k Pn

d,k Pp−n
d,k

20 21 0.4095 0 90 0
21 22 0.7089 0 90 145
3 23 0.4512 90 110 35
23 24 0.8980 120 0 40
24 25 0.8960 150 100 100
6 26 0.2030 60 80 0
26 27 0.2842 60 0 225
27 28 1.0590 0 0 130
28 29 0.8042 120 75 65
29 30 0.5075 100 100 0
30 31 0.9744 50 150 125
31 32 0.3105 175 100 75
32 33 0.3410 95 60 120

For this test feeder, we consider that the distribution company has installed 6 dispersed
generators with the information presented in Table 4.

Table 4. Location and Capacity of the dispersed sources for the 33-bus grid.

Node Location Capacity (kW)

10 p 800
12 n 1000
15 p 950
15 n 950
30 p 1350
31 n 1125

4. Computational Results

The MATLAB programming environment, version 2021b, was used on a PC with an
AMD Ryzen 7 3700 2.3 GHz processor, and 16.0 GB RAM, was used for the computational
validation running on a 64-bit version of Microsoft Windows 10 Single Language. The
solution of the sequential quadratic programming model (33)–(52) was reached in the
convex disciplined tool environment (known as CVX) for MATLAB using the Gurobi solver.
In addition, our scripts implemented all the metaheuristic optimizers in the MATLAB
programming environment.

4.1. Results for the Bipolar DC 21-Bus System
4.1.1. Power Flow Solution

To demonstrate the effectiveness of the proposed recursive quadratic approximation
(RQA) in solving the OPF problem in bipolar asymmetric DC networks. The first com-
parative analysis considers its comparison of the conventional power flow problem with
classical power flow methods. The considered approaches are: (i) the successive approxima-
tion power flow (SAPF) method [9], (ii) the triangular-based power flow (TBPF) method [8],
and (iii) the hyperbolic approximation power flow (HAPF) method [14]. Table 5 presents
the comparative results when the proposed RQA is used to solve the power flow problem
in bipolar asymmetric DC networks. Note that for all these comparisons, we consider the
convergence error as ε = 1× 10−10, which is the maximum difference allowed for voltages
in two consecutive iterations.
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Table 5. Comparison between power flow methods and the RQA for solidly-ly grounded and neutral
floating scenarios in the 21-bus grid.

Neutral wire solidly grounded

Method Losses (pu) Iterations Time (ms)

SAPF 0.954237 13 0.5275
TBPF 0.954237 13 0.8340
HAPF 0.954237 13 1.5542

RQA 0.954237 4 —

Neutral wire floating

Method Losses (pu) Iterations Time (ms)

SAPF 0.912701 10 0.4911
TBPF 0.912701 10 0.7672
HAPF 0.912701 4 1.0212

RQA 0.912701 4 —

Numerical results in Table 5 show that:

i. As expected, all the power flow approaches, including the proposed RQA find the
same value for the total grid power loss with a value of 95.4237 kW for the neutral
solidly-ly grounded operation scenario, and 91.2701 kW in the neutral floating case.
In addition, the SAPF and the TBPF take the same number of iterations in both
cases, which is an expected result since both methods are from the same family
of solution methods, i.e., derivative-free methods from the family of graph-based
theory approaches.

ii. The difference between power losses when considering the neutral wire operating
with or without grounded connections is about 4.1536 kW. This confirms, as expected
that the best possible scenario for electrical networks is when the neutral wire is solidly
grounded since it minimizes energy losses in this wire while allowing a local voltage
reference for each load.

iii. The HAPF approach showed a notable difference regarding the number of iterations
when both simulation scenarios are compared. This is because for the neutral wire
to be solidly grounded, it only takes 4 iterations. In contrast, when the neutral wire
is floating, it takes 13 iterations, which in the first case it has quadratic convergence,
whereas in the second case, it has linear convergence.

Regarding the proposed RQA it is noted that in both simulation scenarios, it takes
four4 iterations to find the solution to the power flow problem with the same numerical
value in the grid power losses compared with the conventional power flow approaches.
This demonstrates that the proposed convex reformulation represents the power balance
equations adequately. However, regarding processing times, it is noted that the RCA takes
about 6 seconds in both simulation cases. However, in Table 5, all the power flow approach
takes a few milliseconds to solve the problem. Nevertheless, it is expected behavior since
the RQA addresses the OPF problem as an optimization model which multiple constraints,
while the power flow methods (i.e., SAPF, TBPF, and HAPF) use an iterative formula
specially developed for the power flow solution.

4.1.2. OPF Solution

Here, we present the effectiveness of the proposed RQA in solving the OPF problem
in bipolar asymmetric DC distribution networks with multiple dispersed generators. To
compare our proposal, three metaheuristic optimization algorithms are widely known
in the current literature to solve nonlinear optimization problems. These algorithms are:
The black-hole optimizer (BHO) [22]; (ii) the sine-cosine algorithm (SCA) [23]; and (iii) the
vortex-search algorithm (VSA) [24]. For all ofall these metaheuristics, 1000 iterations were
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assigned, with 10 individuals in their populations and 100 consecutive repetitions for
making statistical analyses.

Table 6 presents the comparative results between the RQA and the combinatorial
optimization methods. In addition, only the simulation scenario with the neutral wire
floating is analyzed since it is the worst case in terms of grid power losses. It is worth
mentioning that a master-slave optimization approach was employed for implementing all
the metaheuristic optimizers. The master stage was entrusted with defining the optimal
values of power injections in generators. However, the slave stage evaluates the amount of
grid power losses by using the SAPF approach [25].

Table 6. Evaluation of the different alternatives to solve the OPF problem in bipolar asymmetric DC
networks (all values in pu).

Method Min. Mean Max. Std. Dev. Time (s)

SCA 0.23054 0.25305 0.29703 1.39× 10−2 6.7870
BHO 0.23066 0.23183 0.23329 5.90× 10−4 13.1513
VSA 0.22986 0.22986 0.22988 4.23× 10−6 8.3176

SQA 0.22985 0.22985 0.22985 <1× 10−16 7.7901

Results in Table 6 reveal that:

i. The proposed RQA finds the best solution to the OPF problem with a value of
22.985 kW, followed only by a similar value for the VSA. However, the proposed
approach has the same numerical solution at each evaluation (convexity of the so-
lution space) with a standard deviation lower than 1× 10−16. However, the VSA
approach does not necessarily finds find the same objective function value (see its
maximum value). This is an expected behavior for metaheuristics since their random
nature makes it impossible to ensure 100% of convergence in nonlinear non-convex
optimization problems, as in the case of the exact NLP that represents the studied
OPF problem.

ii. The SCA and the BHO approaches have stuck in locally optimal solutions which are
explainable in their random nature and their simple evolution rules (less sophisticated
than the VSA approach); however, both can be considered adequate approximations
to the OPF solution for problems where high precision is not relevant.

iii. Regarding processing times in Table 6, the best metaheuristic optimizer (the VSA
approach) takes about 8.3176 s to solve the OPF problem, while the worst approach in
terms of processing times corresponds to the BHO method with 13.1513 s. Neverthe-
less, the proposed RQA takes about 7.7901 s, maintaining a similar time when it was
used for solving the power flow problem. Additionally, the proposed model has the
main advantage that no statistical studies are required to evaluate its efficiency. The
convexity of the solution space in this approximation ensures the 100% of solution re-
peatability. This does not occur in the case of the combinatorial optimization methods.

Finally, the optimal dispatch found with the RQA for the dispersed generators in the
21-bus grid was the following: At node 3 for the positive pole 267.8682 kW and the negative
pole 100 kW; at node 11 is 106.2127 kW for the positive pole (note that in this node there is
not a dispersed source at the negative pole); and at node 17, these values were 193.5830 kW,
and 205.0908 kW, for the positive and negative poles, respectively. It is worth mentioning
that the main characteristic of these values is that in unbalanced bipolar DC networks when
there are dispersed generators on both poles of the same node, their work also unbalanced.
This is expected since the load unbalances require different levels of power injection at each
pole to minimize the total grid power losses as much as possible.

4.2. Results for the Bipolar DC 33-Bus System

In this section, we only present the results reached by the RQA to solve the OPF prob-
lem in the bipolar DC 33-bus grid for the neutral floating scenario since, as demonstrated
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for the 21-bus grid, the RQA allows finding the optimal solution. Table 7 presents the
power flow solution in the benchmark case (without DGs) and the optimal solution of
the OPF problem considering three cases: (i) the optimal dispatch of the DGs only for the
positive pole; (ii) the optimal dispatch of the DGs only for the negative pole; and (iii) the
OPF solution for all the DGs available.

Table 7. OPF solution for the bipolar DC 33-bus grid.

Case Power Loss (kW) Gen. Positive Pole (kW) Gen. Negative Pole (kW) Reduction (%)

Ben. case 344.4797 — — —-

Case 1 215.7037

(10) 327.4197
(15) 457.9217
(30) 576.6784

 — 37.3828

Case 2 314.6265 —

(12) 179.3277
(15) 151.0976
(32) 334.9579

 8.6662

Case 3 28.4942

 (10) 555.9692
(15) 835.0393
(30) 1013.3334

 (12) 500.8079
(15) 623.0057
(32) 803.9153

 91.7283

Numerical results in Table 7 reveal that:

i. The maximum reduction regarding power loss reduction is reached when the DGs in
both poles are optimally dispatched. This reduction is higher than 90% concerning the
benchmark case. In this scenario, the usage of the DGs capacities was about 77.5594%
and 62.6904% in the positive and negative poles, respectively.

ii. In the case of power dispatch only one pole, the best reduction of power losses is
reached in the positive pole, with a value of 37.3828%, while for the negative pole, this
reduction reaches a value of 8.6662%. Two possible facts explain this: (i) the positive
pole is the most charged (more power loss when compared with the negative pole),
and (ii) the location of the DGs may be better than the DGs in the negative pole.

iii. Power loss reductions in Table 7 confirm that the OPF problem in bipolar DC networks
is indeed a complex optimization problem where the superposition method is not
applicable since the model is nonlinear. This is demonstrated by the combination of
the generations in the positive and negative poles is different from the solution when
all the distributed generators are optimally dispatched.

Regarding processing times for all the simulation cases in Table 7, the proposed RQA
took less than 20 s. This processing time confirms the convex theory’s effectiveness and
robustness in optimally solving optimization problems without recurring combinatorial
methods that cannot ensure global convergence properties.

5. Conclusions and Future Works

A new recursive quadratic approximation to address the OPF problem in bipolar
asymmetric DC distribution networks was proposed in this research. The exact NLP model
was transformed into a convex approximation by obtaining a linear equivalent formulation
of the demanded currents as a function of their voltage magnitudes. This was allowed by
approximating the hyperbolic relationship between powers and voltages in these nodes
using a linear function. In the case of dispersed generators, the nonlinear relationship
between voltage magnitudes and powers was relaxed using their expected operative point
by considering that the voltage magnitudes have slight variations compared to the power
outputs on these sources.

Numerical simulations in the 21-bus grid considering neutral wire grounded and
non-grounded revealed that:

i. The proposed RQA can efficiently solve the power flow problem in bipolar DC net-
works by finding the same numerical result in power losses compared with specialized
power flow methods as the cases of the SAPF, TBPF, and the HAPF approaches. When
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the neutral wire is solidly grounded, the total grid power loss was 91.2701 kW, which
increased to 95.4237 kW in the case of a non-grounded connection.

ii. Comparative analysis with combinatorial optimizers showed that the proposed RQA
efficiently solved the OPF problem in the case of the neutral wire floating. Numerical
comparisons with the BHO, the SCA, and the VSA demonstrated that the RQA found
the optimal solution with a final value of 22.985 kW with a standard deviation lower
than 1× 10−16. Only the VSA approach found a similar objective function value.
However, its standard deviation is about 4.23× 10−6, which means that statistical
analysis is required to confirm its effectiveness, which is not the case for the proposed
RQA owing to the convex nature of the solution space.

In the case of the bipolar DC 33-bus grid, the nonlinear nature of the OPF problem
was confirmed with three different simulation cases. The first case considered the optimal
dispatch of the DGs connected only to the positive pole, which permitted a reduction
of about 37.3828% of the power loss regarding the benchmark case. The second case
considered the optimal dispatch of the DG sources connected only to the negative pole,
which only allowed a reduction of about 8.6662%. The third case considered the optimal
dispatch of all the DGs simultaneously, which permitted a reduction higher than 90% in
the total grid power loss.

In future works, it will be possible to make the following contributions: (i) to propose
a mixed-integer convex approximation to locate and size dispersed generators in bipolar
DC networks and (ii) to extend the proposed RQA to solve the problem of the optimal
pole-swapping problem in bipolar asymmetric distribution networks.
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