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Abstract: With this study, we address the optimal phase balancing problem in three-phase networks
with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective
function considers the minimization of the sum of the square currents through the distribution
lines multiplied by the average resistance value of the line. As constraints are considered for
the active and reactive power redistribution in all the nodes considering a 3× 3 binary decision
variable having six possible combinations, the branch and nodal current relations are related to an
extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated
using the triangular-based three-phase power flow method in order to determine the final steady
state of the network with respect to the number of power loss upon the application of the phase
balancing approach. The numerical results in three radial test feeders composed of 8, 15, and
25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic
optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex
search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the
Gurobi solver.

Keywords: approximated mixed-integer quadratic convex model; phase balancing problem; asym-
metric distribution networks; triangular-based power flow method

1. Introduction

Three-phase electric networks are the most common topology at medium- and low-
voltage distribution levels to supply electricity to residential, industrial, and commercial
users in urban and rural areas [1,2]. Owing to the asymmetry of the impedances and the
power consumptions, which can have single-, two-, and three-phase connections, the num-
ber of energy losses occurring in these networks is considerably higher than it would
have been in a perfect symmetric case [3]. To reduce the number of power losses in such
asymmetric grids, there exists a number of methodologies such as the ones based on the
installation of shunt devices (disperse generators, capacitors, static distribution compen-
sators, etc.), reconfiguration of the feeder, and phase balancing, among others. The first
two approaches require higher levels of investment relating to acquisition, installation,
and maintenance of electrical components, as these methodologies entail the introduction
of new devices to the grid; however, the phase balancing approach requires no such high
investments, as this methodology only requires working groups to be sent to reconfigure
the load points based on the phase balancing optimal plan, which means that there is no
need for new devices to be included [4].

In the existing literature, several different approaches have been proposed for solving
the phase balancing problem. Most of them are based on master–slave optimization strate-
gies using metaheuristics and three-phase power flow methods. Some of the most recurrent
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optimization approaches are the Chu and Beasley genetic algorithms (CBGA) [3,5,6], par-
ticle swarm optimization [7], vortex search algorithm (VSA) [8], simulated annealing [9],
black hole optimizer (BHO) [3], differential evolution algorithm [10], and sine–cosine
algorithm (SCA) [11]. A characteristic of these methodologies is that the master stage
is entrusted with the responsibility of determining the connection of the loads in all the
nodes using an integer codification, which is then transferred to the slave stage where the
asymmetric power flow problem is evaluated to determine the number of power losses,
which would guide the exploration through the solution space. Even if the master–slave
optimization methodologies are simple to implement, they do not guarantee the global
optimum finding, as they use random search criteria that require statistical studies to verify
their efficiency level.

In this study, we propose a simplified version of the mixed-integer quadratic model
recently introduced in [1] to solve the problem of optimal phase balancing by neglecting
the effect of voltage drops in the distribution lines. The main advantage of our proposed
mixed-integer quadratic convex (MIQC) model is that this model guarantees a global
optimal solution with the use of branch and bound with interior point methods available in
optimization packages such as CVX in MATLAB with the Gurobi solver. In addition, in or-
der to validate the feasibility and optimality of the solution, a triangular-based three-phase
power flow method has been implemented to determine the initial and final power losses
in the network. The numerical results of the present study demonstrate the effectiveness
and robustness of the proposed MIQC model as compared to metaheuristic optimizers
such as the genetic algorithms, SCA, BHO, and VSA in three individual radial test feeders
composed of 8, 15, and 25 nodes.

The remainder of this paper is organized as follows. In Section 2, we present the
proposed MIQC model to demonstrate the phase balancing problem in three-phase asym-
metric networks; in Section 3, we present the solution methodology for the phase balancing
problem, which evaluates the solution offered by the MIQC model in the triangular-based
power flow method for asymmetric networks so as to determine the level of power loss
reduction after implementing the phase balancing plan. In Section 4, we present the
main characteristics of the test feeders employed in the numerical validations, which are
composed of 8, 15, and 25 nodes that are operated at medium-voltage levels with radial
structures. In Section 5, we present the computational implementations and shows the
results of comparisons of the model with metaheuristics. Finally, in Section 6, we present
the study’s concluding remarks and also highlights a few possible future developments.

2. Proposed Mixed-Integer Approximation

The optimal phase balancing problem in three-phase unbalanced distribution net-
works is a classical and widely studied optimization problem in electrical distribution
systems [5]. The complete optimization model of the grid involves a general mixed-integer
nonlinear programming (MINLP) model due to (i) the presence of binary variables asso-
ciated with the load connection in the model that can be modeled with a binary matrix
with 3 × 3 dimensions [1] and (ii) the intrinsic nonlinearity of the power balance con-
straints in their three-phase form, i.e., the products among voltages and trigonometric
functions [12,13]. However, to address the problem of phase balancing in three-phase
unbalanced networks, here, we propose a simplified mixed-integer convex model that
would allow for the redistribution of all the loads by considering the ideal voltages for all
the buses of the network as well as Kirchhoff’s first law in all the nodes of the network.
Note that the simplicity of our model lies in the elimination of the right-hand-side part
of the power balance equations which contains trigonometric functions that relate the
voltage magnitudes and angles through the nodal admittance matrix by assuming that
all the voltages are exactly 1.00 pu with their respective phase angles. Moreover, note
that these assumptions make it possible for the exact MINLP model to transform into
an approximated mixed-integer convex approach. The proposed optimization model is
described in the following section.
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2.1. Objective Function Formulation

The objective function of the proposed approximated MIQC model for load redistribu-
tion in three-phase networks is the minimization of the square components of the current
(real and imaginary parts) at each three-phase line. This objective function is formulated in
Equation (1) as follows:

min z = ∑
l∈L

∑
f∈F

Rave
l

((
Jr
l f

)2
+
(

Ji
l f

)2
)

, (1)

Here, z represents the objective function value, and Jr
lk and Ji

lk are the real and imaginary
parts of the current through line l in phase f , respectively. Rave

l is a parameter that calculates
the average resistance value of the three-phase line. Note that L is the set containing all the
lines of the network, and F is the set that consists of all the phases of the network.

2.2. Set of Constraints

The set of constraints associated with the load redistribution in all the nodes of the
networks takes the active and reactive power connections at each node into account, as well
as the calculation of the ideal net injected current in nodes and current flows in lines.
The complete set of constraints is presented as follows:

Pd
k f = ∑

g∈F
xk f gPd

kg, {∀k ∈ N , ∀ f ∈ F} (2)

Qd
k f = ∑

g∈F
xk f gQd

kg, {∀k ∈ N , ∀ f ∈ F} (3)

Ir
k f =

Pd
k f

Vk f
, {∀k ∈ N , ∀ f ∈ F} (4)

Ii
k f =

Qd
k f

Vk f
, {∀k ∈ N , ∀ f ∈ F} (5)

Jr
l f = ∑

k∈N
∑
g∈ f

Tl f kg Ir
k f , {∀l ∈ L, ∀ f ∈ F} (6)

Ji
l f = ∑

k∈N
∑
g∈ f

Tl f kg Ii
k f , {∀l ∈ L, ∀ f ∈ F} (7)

Here, Pd
k f and Qd

k f are the final active and reactive power consumptions at node k in the

phase f ; Pd
kg, and Qd

kg are the initial active and reactive power demands at node k in the
phase g; xk f g is a binary variable (binary 3× 3 matrix) that determines whether the demand
connected at node k in the phase g is transferred to the phase f ; Ir

k f and Ii
k f are the real

and imaginary components of the current demanded at node k in the phase f , respectively;
Vk f is the ideal voltage magnitude at node k in the phase f , and Tl f kg is the matrix that
allows for the calculation of the branch currents once the demanded currents of the nodes
are defined. Note that F and N are the sets that contain all the phases and nodes of the
network, respectively.

2.3. Model Characteristics

The optimization model defined from (1) to (7) has the following characteristics:

• It is an optimization model with a set of linear integer constraints and a quadratic
objective function that produces a mixed-integer quadratic programming model that
can be solved completely with the combination of the branch and bound method and
linear interior point methods [14].
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• The objective function corresponds to a sensibility function that guides the exploration
through the solution space; in other words, it is a performance indicator. However,
to determine the real number of power losses, the evaluation of a three-phase power
flow method is required [8].

• Equations (4) and (5) do not consider the effect of the voltage angle in the calculation
of the real and imaginary parts of the currents, since the magnitude of the currents
in all the branches (see Equations (6) and (7)) used in the objective function remains
unaltered independent of the angle assigned to the voltages.

• The inputs of the optimization model corresponds to the average resistance value
(Rave

l ) per distribution line, the initial active and reactive power demands in all the
nodes and phases (Pd

kg) and (Qd
kg), respectively, and the triangular-based matrix to

calculate branch currents from the the nodal ones, i.e., Tl f kg. In addition, the main
outputs of the optimization model are the objective function value and the final load
redistribution at each node, which is provided by the final value of the variable xk f g.

It is worth mentioning that the proposed mixed-integer quadratic convex model was
based on the convex formulation that was recently proposed in [11], which neglected the
effect of the currents through the lines and the objective function associated with the total
load consumption at the terminals of the substation, while our proposal includes a sensitive
index in the objective function related to the minimization of the power losses under ideal
voltage conditions considering the branch current calculations.

3. Optimization Methodology

The solution of the MIQC model defined from (1) to (7) is addressed by the combi-
nation of the branch and bound method with an interior point method available in the
convex optimization package CVX in the MATLAB programming environment using an
MIQC tool [1]. However, as previously mentioned, the solution of the MIQC proposed
model does not generate the real value of the power losses of the network; the proposed
optimization model approximates the grid variables associated with the voltage profiles.
Therefore, it is necessary to evaluate the final load configurations provided in the variables
Pd

k f and Qd
k f . This evaluation was conducted using a three-phase power flow approach,

which is briefly presented in the following section.

3.1. Three-Phase Power Flow Method

The solution of the three-phase power flow problem in three-phase networks is an
important task in the static analysis of electrical networks. The power flow problem is,
in general, a complex numerical problem as it is composed of a set of nonlinear nonconvex
equations that include products among voltage variables. In the literature on three-phase
networks, several numerical methods have been reported, including the Newton–Raphson
method [15], sweep backward/forward method [16], graph-based methods [17], and the
triangular-based power flow method [6]. Here, we have adopted the use of the triangular-
based method to solve the power flow problem in three-phase networks.

The general recursive formula for the triangular-based power flow method for three-
phase networks having loads with Y—connections and those that are solidly grounded is
presented in Equation (8).

Vt+1
3ϕ = 13ϕV13ϕ − TT

3ϕZ3ϕT3ϕdiag−1
(
Vt,?

3ϕ

)
S?3ϕ. (8)

Here, V3ϕ ∈ C3(n−1)×1 is a vector of the three-phase voltage in all the demand nodes;
V13ϕ ∈ C3×1 is the three-phase voltage at terminals of the substation; T3ϕ ∈ R3b×3(n−1) is the
upper-triangular matrix that relates nodal currents with branch currents, 13ϕ ∈ R3(n−1)×3

is a rectangular matrix filled by 3 × 3 identity matrices, Z3ϕ ∈ R3b×3b is the primitive
three-phase impedance matrix that contains the information pertaining to all the branches
of the network, and S3ϕ ∈ C3(n−1)×1 is the vector that contains all the complex demands
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of the network. Note that n and b represent the number of nodes and branches of the
network, respectively, and z? corresponds to the conjugate operator of the complex variable
z. In addition, t represents an iterative counter.

The convergence of the recursive Formula (8) can be ensured by applying the Banach
fixed-point theorem, as recently demonstrated by the authors of [6]. In addition, this
convergence is achieved when max

{∣∣∣∣∣∣Vt+1
3ϕ

∣∣∣− ∣∣∣Vt
3ϕ

∣∣∣∣∣∣} ≤ ε, where ε is the maximum

tolerance error that is typically assigned as 1× 10−10.

3.2. General Solution Methodology

The optimization methodology for solving the problem of phase balancing in three-
phase networks using the proposed MIQC model in conjunction with the triangular-
based power flow formulation defined by the recursive Formula (8) is summarized in
Algorithm 1.

Algorithm 1: Approximate solution of the phase balancing problem by combin-
ing the MIQC model with the triangular-based power flow method

Data: Define the test feeder under study
1 Calculate the three-phase power flow matrices;
2 Calculate the initial solution of the three-phase power flow problem using

Equation (8);
3 Report the initial grid power losses;
4 Construct the MIQC model (1)–(7);
5 Solve the MIQC model using a mixed-integer quadratic programming tool;
6 Evaluate the solution of the MIQC model in the power flow Formula (8);

Result: Report the final grid power losses

4. Test Feeders

To validate the proposed methodology in order to solve the problem of phase balanc-
ing in three-phase asymmetric networks, we employed three test feeders composed of 8, 15,
and 25 nodes. All of these test feeders correspond to radial distribution networks operated
at medium-voltage levels.

4.1. 8-Bus Test Feeder

The 8-bus system is a radial distribution network operated at the substation bus with
a nominal line-to-line voltage of 11 kV. The electrical configuration of the test feeder is
depicted in Figure 1. In this system, phase a absorbs 1005 kW and 485 kvar, phase b absorbs
785 kW and 381 kvar, and phase c absorbs 1696 kW and 821 kvar. The initial state of this
system with respect to power losses was 13.9925 kW.

Slack

1 2 5 6
3

8

7

4

Figure 1. Connection among the nodes in the 8-bus test feeder.

The information regarding impedances and loads for this test system are presented in
Tables 1 and 2, respectively.
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Table 1. Demand information and distribution line parameters of the 8-bus test system (all powers in
kW and kvar).

Line Node i Node j Cond. Length (mi) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 1 519 250 259 126 515 250
2 2 3 2 1 0 0 259 126 486 235
3 2 5 3 1 0 0 0 0 226 109
4 2 7 3 1 486 235 0 0 0 0
5 3 4 4 1 0 0 0 0 324 157
6 3 8 5 1 0 0 267 129 0 0
7 5 6 6 1 0 0 0 0 145 70

Table 2. Impedance information for the type of conductors in the 8-node test system.

Conductor Impedance Matrix
(Ω/mi)

0.093654 + j0.0402930 0.031218 + j0.0134310 0.031218 + j0.0134310
1 0.031218 + j0.0134310 0.093654 + j0.0402930 0.031218 + j0.0134310

0.031218 + j0.0134310 0.031218 + j0.0134310 0.093654 + j0.0402930

0.156090 + j0.0671550 0.052030 + j0.0223850 0.052030 + j0.0223850
2 0.052030 + j0.0223850 0.156090 + j0.0671550 0.052030 + j0.0223850

0.052030 + j0.0223850 0.052030 + J0.0223850 0.156090 + j0.0671550

0.046827 + j0.0201465 0.015609 + j0.0067155 0.015609 + j0.0067155
3 0.015609 + j0.0067155 0.046827 + j0.0201465 0.015609 + j0.0067155

0.015609 + j0.0067155 0.015609 + j0.0067155 0.046827 + j0.0201465

0.031218 + j0.0134310 0.010406 + j0.0044770 0.010406 + j0.0044770
4 0.010406 + j0.0044770 0.031218 + j0.0134310 0.010406 + j0.0044770

0.010406 + j0.0044770 0.010406 + j0.0044770 0.031218 + j0.0134310

0.062436 + j0.0268620 0.020812 + j0.0089540 0.020812 + j0.0089540
5 0.020812 + j0.0089540 0.062436 + j0.0268620 0.020812 + J0.0089540

0.020812 + j0.0089540 0.020812 + j0.0089540 0.062436 + j0.0268620

0.078045 + j0.0335775 0.026015 + j0.0111925 0.026015 + j0.0111925
6 0.026015 + j0.0111925 0.078045 + j0.0335775 0.026015 + j0.0111925

0.026015 + j0.0111925 0.026015 + j0.0111925 0.078045 + j0.0335775

4.2. 15-Bus System

The 15-bus system is a three-phase asymmetric distribution network built with
15 nodes and 14 lines. The line-to-line voltage in the terminals of the substation (i.e., node 1)
is 13.2 kV. A schematic single-line diagram of this test feeder is displayed in Figure 2.

AC

Slack

1 2

3 4 5

6
11

12

13

7

8

9

10

14 15

Figure 2. Single-line diagram of the 15-bus system.
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The total active and reactive power consumptions in this system are 9605 kW and
5226 kvar for phase a, 6480 kW and 4940 kvar for phase b, and 11977 kW and 8778 kvar
for phase c, respectively. Note that, with this load distribution, the total power loss of this
system is 134.2472 kW. The parametric information of this test feeder is reported in Table 3.
It is worth mentioning that the information of the impedance matrices for this system is
the same used in the 8-bus test feeder [18].

Table 3. Demand information for the 15-bus test feeder (all power values are in kW and kvar).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 603 0 0 725 300 1100 600
2 2 3 2 776 480 220 720 600 1040 558
3 3 4 3 825 2250 1610 0 0 0 0
4 4 5 3 1182 700 225 0 0 996 765
5 5 6 4 350 0 0 820 700 1220 1050
6 2 7 5 691 2500 1200 0 0 0 0
7 7 8 6 539 0 0 960 540 0 0
8 8 9 6 225 0 0 0 0 2035 1104
9 9 10 6 1050 1519 1250 1259 1200 0 0
10 3 11 3 837 0 0 259 126 1486 1235
11 11 12 4 414 0 0 0 0 1924 1857
12 12 13 5 925 1670 486 0 0 726 509
13 6 14 4 386 0 0 850 752 1450 1100
14 14 15 2 401 486 235 887 722 0 0

4.3. 25-Bus System

The 25-bus system is a radial distribution network operated at substation terminals
with a line-to-line voltage of 4.16 kV. The electrical configuration of the test feeder is
depicted in Figure 3. In this system, phase a absorbs 946 kW and 648 kvar, phase b absorbs
573.6 kW and 430.6 kVAr, and phase c absorbs 771.8 kW and 554 kvar. With these power
load consumptions, the total power loss in this test feeder is 75.4207 kW.

Slack

1
2

3
4 5

6

8

18

20

19

21 22

7 9 10 11 12

16
23 24 25

1314

15

17

Figure 3. Single-line diagram of the 25-bus system.

The electrical information of the constant power consumptions and distribution line
impedances for this test system are presented in Tables 4 and 5, respectively. This parametric
information was taken from [6].
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Table 4. Loads and lines parameters of the 25-bus test system (all powers are in kW and kvar).

Line Node i Node j Cond. Length (ft) Pja Qja Pjb Qjb Pjc Qjc

1 1 2 1 1000 0 0 0 0 0 0
2 2 3 1 500 36 21.6 28.8 19.2 42 26.4
3 2 6 2 500 43.2 28.8 33.6 24 30 30
4 3 4 1 500 57.6 43.2 4.8 3.4 48 30
5 3 18 2 500 57.6 43.2 38.4 28.8 48 36
6 4 5 2 500 43.2 28.8 28.8 19.2 36 24
7 4 23 2 400 8.6 64.8 4.8 3.8 60 42
8 6 7 2 500 0 0 0 0 0 0
9 6 8 2 1000 43.2 28.8 28.8 19.2 3.6 2.4
10 7 9 2 500 72 50.4 38.4 28.8 48 30
11 7 14 2 500 57.6 36 38.4 28.8 60 42
12 7 16 2 500 57.6 4.3 3.8 28.8 48 36
13 9 10 2 500 36 21.6 28.8 19.2 32 26.4
14 10 11 2 300 50.4 31.7 24 14.4 36 24
15 11 12 3 200 57.6 36 48 33.6 48 36
16 11 13 3 200 64.8 21.6 33.6 21.1 36 24
17 14 15 2 300 7.2 4.3 4.8 2.9 6 3.6
18 14 17 3 300 57.6 43.2 33.6 24 54 38.4
19 18 20 2 500 50.4 36 38.4 28.8 54 38.4
20 18 21 3 400 5.8 4.3 3.4 2.4 5.4 3.8
21 20 19 3 400 8.6 6.5 4.8 3.4 6 4.8
22 21 22 3 400 72 50.4 57.6 43.2 60 48
23 23 24 2 400 50.4 36 43.2 30.7 4.8 3.6
24 24 25 3 400 8.6 6.5 4.8 2.9 6 4.2

Table 5. Impedance matrix for the type of conductors in the 25-bus test system.

Conductor Impedance Matrix
(Ω/mi)

0.3686 + j0.6852 0.0169 + j0.1515 0.0155 + j0.1098
1 0.0169 + j0.1515 0.3757 + j0.6715 0.0188 + j0.2072

0.0155 + j0.1098 0.0188 + j0.2072 0.3723 + j0.6782
0.9775 + j0.8717 0.0167 + j0.1697 0.0152 + j0.1264

2 0.0167 + j0.1697 0.9844 + j0.8654 0.0186 + j0.2275
0.0152 + j0.1264 0.0186 + j0.2275 0.9810 + j0.8648
1.9280 + j1.4194 0.0161 + j0.1183 0.0161 + j0.1183

3 0.0161 + j0.1183 1.9308 + j1.4215 0.0161 + j0.1183
0.0161 + j0.1183 0.0161 + j0.1183 1.9337 + j1.4236

5. Computational Validations

The computational validations of the proposed optimization methodology were car-
ried out in the MATLAB programming environment using the CVX optimization package
with the Gurobi solver on a personal computer AMD Ryzen 7 3700U, 2.3 GHz, 16 GB
RAM with 64-bit Windows 10 Home Single Language. To compare the numerical results of
the proposed MIQC model with combinatorial optimization methods, we implemented
different optimization techniques based on metaheuristics such as the CBGA [5], BHO [6],
SCA [6], VSA [8], and the improved version of the CBGA recently presented in [6]. Note
that all of the metaheuristic optimizers were set with a population size of 10 individuals
and 1000 iterations.

5.1. 8-Bus Systems

Table 6 presents numerical values for the solution of the phase balancing problem in
the 8-bus system applying the proposed MIQC formulation with the triangular-based power
flow method, as well as the findings from comparing it with metaheuristic approaches.
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Table 6. Numerical results for the 8-bus system.

Method Power Losses (kW) Reduction (%)

Benchmark case 13.9925 —
Classical CBGA 10.5869 24.34
BHO 10.5869 24.34
SCA 10.5869 24.34
VSA 10.5869 24.34
Improved CBGA 10.5869 24.34

MIQC 10.5869 24.34

The numerical results of the 8-bus system presented in Table 6 show that (i) the
proposed MIQC model and all the comparative methods reach the same optimal solution,
which corresponds to a reduction of 3.4056 kW, i.e., 24.34%; and (ii) the value of 10.5969 kW
corresponds to the global optimum of the solution of the phase balancing problem in the
8-bus system. This was confirmed after evaluating the solution space using an exhaustive
search in DigSILENT. It is important to mention that the dimension of the solution space in
the 8-bus system is defined as 6n−1, i.e., 67 = 279,936.

Note that the key advantage of the proposed MIQC model is that the solution obtained
is the same each time it runs, which ensures the global optimum value for the mathematical
model (1) to (8), whereas all of the metaheuristic techniques present oscillations and require
multiple evaluations so as to study their efficiency using statistical indices [19].

5.2. 15-Bus Systems

The solutions of the phase balancing problem for the 15-bus system with the MIQC
model and metaheuristic optimizers are presented in Table 7.

Table 7. Numerical results for the 15-bus system.

Method Power Losses (kW) Reduction (%)

Benchmark case 134.2472 —
Classical CBGA 109.2236 18.64
BHO 110.0025 18.06
SCA 109.3973 18.51
VSA 109.3217 18.57
Improved CBGA 109.1980 18.66

MIQC 109.2539 18.62

From the solutions in Table 7, the following observations can be made: (i) The proposed
MIQC model allows for a reduction in the number of power losses by approximately 18.62%,
i.e., 24.9933 kW with respect to the benchmark case. In addition, this corresponds to the
third better solution for the 15-bus system, only suppurated by the classical and improved
Chu and Beasley genetic algorithms. (ii) The worst method for the 15-bus system is the
BHO method with a final reported power loss of 110.0025 kW, which corresponds to the
18.06% reduction of the benchmark case. (iii) All of the optimization methods reported in
Table 7 allow for a reduction in power losses higher than 18%. The best result obtained
with the improved CBGA was 18.66%, which is only 0.04% better than the proposed
MIQC model.

5.3. 25-Bus System

The solutions of the phase balancing problem in the 25-bus system with the proposed
MIQC model as well as the comparative metaheuristic methods are presented in Table 8.
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Table 8. Numerical results for the 25-bus system.

Method Power Losses (kW) Reduction (%)

Benchmark case 75.4207 —
Classical CBGA 72.2919 4.15
BHO 72.3735 4.04
SCA 72.3047 4.13
VSA 72.2888 4.15
Improved CBGA 72.3142 4.12

MIQC 72.2816 4.16

The numerical results in Table 8 show that (i) the best solution is obtained by the
proposed MIQC model with a 4.16% reduction, i.e., 3.1391 kW; (ii) the second-best solution
is reached using the VSA method with an objective function of 72.2888 kW, i.e., 4.15%;
and (iii) all the comparative methods, as well as the proposed MIQC model, allow for
decreasing the number of power losses higher than 4.00%, with the worst approach being
the BHO, which results in a reduction of only 4.04%.

It is important to mention that the proposed MIQC model offers the best solution
for the 25-bus system that has a solution space with dimensions of 624, i.e., more than
4.70 × 1018 possible solutions. This confirms the efficiency of the proposed model in
solving the phase balancing problem, as it produces results similar to those of the classical
metaheuristic methods, which has a major advantage of not requiring statistical evaluations
as the solution of the convex model is always the same (global optimization properties of
the mixed-integer convex models).

5.4. Statistical Analysis

To demonstrate that the proposed MIQC model is effective in solving the phase-
swapping problem in three-phase asymmetric networks, here, we present the statistical
analysis of each of the comparative metaheuristic optimization methods in the 25-bus test
feeder. For each one of the metaheuristic approaches, 10 individuals in the populations
are assigned, along with the use of 1000 iterations and 100 consecutive repetitions. In
Table 9, we present the behavior of each one of the comparative approaches regarding
the maximum, minimum, mean, and standard deviation of each one of the combinatorial
approaches as well as the behavior of the proposed MIQC model.

Table 9. Statistical behavior of the comparative methodologies in the 25-bus system.

Method Minimum (kW) Maximum (kW) Mean (kW) Std. Deviation (kW)

Classical CBGA 72.2919 72.3316 72.3164 0.0147
BHO 72.3735 72.4718 72.4177 0.0276
SCA 72.3047 72.3415 72.3262 0.0131
VSA 72.2888 72.3520 72.3228 0.0165
Improved CBGA 72.3142 72.3849 72.3290 0.0206

MIQC 72.2816 72.2816 72.2816 1.0256 × 10−16

Numerical results in Table 9 show that:

X All of the metaheuristic optimizers have mean values for power losses higher than
72.3100 kW, which are at least 0.0284 kW higher than the best optimal solution reached
by the proposed MIQC model. This value implies that among all the simulation cases,
the proposed approach improves the average solution of the metaheuristics by about
0.03%. Even if this improvement in the final number of power losses is small when the
metaheuristic and the proposed model are compared, this implies that with only one
evaluation, the convex reformulation offers better numerical performance, while the
combinatorial methods require multiple simulations to find a good solution, with the
main problem being that each evaluation may find different local optimal solutions.
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X The standard deviation indicates that all the solutions provided by the proposed
MIQC model are the same, i.e., this methodology, due to the convexity of each node in
the branch and bound method, allows the finding of the global optimum of the prob-
lem, which is noninsurable with the metaheuristic optimizers owing to the random
processes used to explore and exploit the solution space. Note that the standard devia-
tion of the MIQC model is a billion times smaller than all of the metaheuristics, which
confirms that the convex reformulation is 100% effective, while the effectiveness of
metaheuristic methods ranges between 10% and 30%. However, one of the main prob-
lems with metaheuristics is that a high dependence on the programmer can affect the
final results since the selection of the parameters is key for their implementation [20].

Regarding processing time, it is important to mention that all the optimization meth-
ods, i.e., the metaheuristics and the proposed MIQC model, take less than 150 s, which
is considered small for solving a complex optimization problem, as in the case of the
phase-swapping problem that has a billion different possible combinations for solving the
problem. This confirms the effectiveness of the proposed approach in providing practical
solutions for the three-phase asymmetric electrical networks.

6. Conclusions and Future Works

An approximated MIQC model combined with the triangular-based power flow
method for asymmetric distribution networks was proposed in this study in order to solve
the optimal phase balancing problem in medium-voltage distribution grids. The numerical
results for three test feeders composed of 8, 15, and 25 nodes demonstrate that the proposed
MIQC model reaches the optimal solution in the 8- and 25-bus systems with reductions
in the power losses of 24.34% and 4.16%, respectively, relative to the benchmark cases.
In the case of the 15-bus system, the solution reported by the proposed MIQC model is only
supported by the Chu and Beasley genetic approaches (CBGA). However, the difference
among these methodologies was found to be only 0.04%, which demonstrates that the
proposed optimization methodology adequately solves the phase balancing problem with
the main advantage that it does not require statistical evaluations owing to the properties
of the convex optimization; this is not the case for the metaheuristic optimization methods,
as was demonstrated in the 25-bus system where the standard deviation for the MIQC
model was a billion times smaller than the metaheuristic methods.

Note that the main advantage of the proposed MIQC model is that it is independent
of the solution space size, which is measured as 6n−1. The solution is consistent and allows
for important reductions with regard to power losses without considering the effect of
the power balance equations in the approximated model. However, the evaluation of its
results in the triangular-based power flow method ensures that the solution is feasible and
also has better numerical performance than metaheuristic methods such as BHO, SCA,
and VSA.

Owing to the contributions of this study, in the future, it will be possible to (i) obtain
a convex approximation of the power balance equations using conic programming in
order to obtain a general mixed-integer conic model to solve the phase balancing problem
exactly and (ii) use the proposed MIQC model to solve the phase balancing problem in
three-phase networks, including renewable energy resources and battery energy storage
systems, from the point of view of economic dispatch operations.
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