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Abstract: Microgrids are a part of the power system that consists of one or more units of distributed
generation and are expected to remain in operation after being disconnected from the system. Since
they rely on overlying networks, frequency control is very important for network-independent
operation. Some of the most common problems in independently operating microgrids are frequency
sustainability and its fluctuations. The main purpose of this study is to control the frequency of a
microgrid in island mode in different scenarios. The objective function is defined based on time and
changes in the system frequency. Thus, the variable parameters of the PID controller are transformed
into an optimization problem and are solved through the hybrid PSO-GSA algorithm. The study
considers four scenarios: (a) a microgrid dynamic model and optimal PID controller coefficients;
(b) variable velocity disturbance applied to the studied system in order to observe power changes
and the microgrid frequency; (c) stepped load changes applied to the studied system; and (d) the
proposed methods on the standard test function. Simulations under different operating conditions
are performed, indicating improvements in the stability of microgrid frequency fluctuations by means
of the proposed control method.

Keywords: sustainability; frequency control; optimization; PSO-GSA algorithm; microgrid; PID design

1. Introduction

A microgrid usually consists of a set of distributed generation sources, an energy
storage system, and local loads. It can be connected to a network or operate in island mode,
and it has many benefits for both consumers and power generation companies. From
the perspective of the consumer, microgrids are able to simultaneously provide electricity
and heat [1], increase reliability [2], reduce greenhouse gas emissions [3], improve the
quality of power, and reduce the costs of consumption [4,5]. As for electricity companies [6],
the use of microgrids has the potential to reduce consumption demand and, in turn, the
facilities necessary for the development of transmission lines [7]. In addition, they eliminate
peak consumption points [8], which results in reduced network losses [9]. By definition,
distributed generation (DG) includes electrical power generation units with a capacity
of less than 10 MW which have distribution feeders or common levels connected to the
network. Depending on the capacity and location of the source installation, connecting DG
to a distribution network can have a positive or negative effect on its performance [10]. On
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the other hand, DG causes the power flow in distribution networks to change. Therefore, a
main network with the presence of DG is not optimal for reducing losses; there needs to
be a proper control in the network, so that the distribution network operates at optimal
cost and with increased reliability [11]. In other words, with the advent of DG resources,
several problems have appeared, such as maintaining and protecting resources [12], the
way in which these resources are involved in setting the basic parameters of the network
(such as frequency and voltage [13,14]), and the method for power exchange between the
global network and distributed generation sources [15]. In 1998, to solve these problems
and consider these resources and local loads as integrated, the concept of micro-grid
was introduced in modern power systems [16]. Accordingly, microgrids are small power
networks composed of several distributed generation sources and local loads. They are
usually connected to the global network, and they are isolated from the main network in
the event of heavy disturbances. They can also feed sensitive loads [17].

Real power systems face a variety of uncertainties, which are caused by changes
in load [18], system modeling errors, and structural changes [19]. Therefore, classical
controllers with constant interest are not suitable for solving the Load Frequency Control
(LFC) problem [20–22]. In order to cover these limitations, a flexible controller is required.
So far, various controllers for LFC have been presented. Among these controllers, the PID
controller has generally attracted more attention than the others [23,24]. The controller’s
interests are determined at the nominal working points. The controller’s interests are
determined through the classical method [25]. In other words, increasing the number of
microgrids changes the fundamental rules of power systems and causes the production
resources to be distributed throughout them [26]. This leads to an increase in the complexity
and nonlinearity of power networks, so the proper response of classical controllers can no
longer be observed. PD-PI controllers are widely used in power systems because they have
a simple and cost-effective structure, and, in power systems, they are more reliable than any
other controller. However, the problem with these controllers is that their control coefficients
are set up for a single time and placed in the system according to the linear conditions and
operating points of the system. If the nominal working conditions or the system’s linear
conditions change due to turbulence, the values considered for these controllers are not
optimal, and they do not have the same response. A possible solution is to update and
optimize the control coefficients according to the incident changes in the system [27]. The
development of power networks due to increased energy demand and technical issues has
caused today’s power systems to activate within their own boundaries. This has led to more
sustainability in said systems. In order to increase stability and overcome the problems
with classical controllers in different working conditions, fuzzy controllers have been used
as resistant stabilizers to modulate small signal fluctuations [28–30]. Ref. [31] used a new
method for controlling the microgrid frequency with a drop control in a photovoltaic
converter and battery, in which a low-voltage microgrid is considered to be multiple virtual
microgrids. This strategy has improved the finetuning of the microgrid frequency. In [32],
the torque and frequency power drop control are applied to the converter of a wind turbine’s
doubly fed induction generator. In [33], the optimal self-healing strategy for microgrid
islanding is formulated as an optimization problem. A reconstruction framework and
solutions for power outages in microgrids are provided in [34]. A regulatory management
of renewable resources based on controllers is discussed in [35]. In [36], the optimization
method is used by planning to maximize profit and minimize operation cost. In [37],
a microgrid strategy is proposed using a self-healing agent that operates based on a
centralized or decentralized approach. Small-signal stability analysis is performed to
evaluate the stability of microgrids to avoid any instability problems. Ref. [38] employed
the Frequency Containment Reserves (FCR) technique with the goal of improving the
economic profitability of microgrids. The primary loop control of the frequency (drop
control) was established in order to control the microgrid frequency and reduce pollution
and the cost of power generation. Drop control cannot properly control the microgrid
frequency under heavy load variations, and it is not properly efficient in island mode. To
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control the frequency of an islanded microgrid, a secondary control loop is generally used
for reducing frequency fluctuations under severe load variations [39]. LFC is one of the
most important issues in microgrids. LFC has been investigated due to the relatively low
inertia of these systems [40]. In [41], a multivariate unconstrained pattern search method
for the optimization of digital PID controllers applied in an isolated forward converter
is studied. Conventional digital PID controllers are considered to be designed based on
digital redesign and direct digitalization, adjusted by one of the multivariate name search
pattern search methods called the Hooke–Jeeves (H-J) search method; with an excellent
performance, output voltage regulation can be ensured. Droop control techniques are
currently used to coordinate DG units in a microgrid. However, this method has its own
advantage. It is used for a nonlinear analysis to predict the qualitative behavior of the
system with the aim of reducing the differential equations [42,43]. In [44], an isolated
non-DC–DC boost converter is designed. This converter is designed by adding to networks
and VMCs. In [45], frequency control in hybrid distributed power systems via a type-2
fuzzy PID controller studied. A new Internet of Things-based optimization scheme of
a residential demand side management system was tested [46]. In addition, in [47], the
Optimized Robust Controller Design based on the CPSOGSA Optimization Algorithm
and H2/H∞ Weights Distribution Method for Load Frequency Control of Microgrids
was investigated.

This paper investigates the communication aspects of multiple markets with primary
control (centralized and decentralized) loops. Designing a controller usually consists
of three steps: first, choosing a control rule that contains changeable parameters; second,
choosing a method to set these parameters; third, analysis of system convergence properties.
The PID controller and coordination algorithm and parameter optimization are used due
to the advantages of robustness against system parameter uncertainties, faster convergence
speed when approaching the reference point, adaptability to system uncertainties, and
the ability to prove stability. However, so far there have been few research results that
use the combination method to design a controller for different coordinations. This still
remains an open and challenging issue and has motivated us to write this paper. Therefore,
one of the most important goals of reducing the effect of disturbances on the system and
maintaining the quality of power and frequency is to improve the dynamic performance of
the system in microgrids and the accuracy of power distribution between units in a limited
time. In addition, an optimization method based on the PSO-GSA optimization algorithm
is presented to achieve better and more accurate results. The rest of the article is as follows:
Section 2 studies an example of independent microgrid modeling. In Section 3, the proposed
PSO-GSA algorithm and its hybrid are discussed. In Section 4, the intelligent PID controller
is designed to optimally adjust the parameters. Section 5 introduces a new method for
damping and sustainability frequency fluctuations in the microgrid (while separated from
the main grid) based on the PID controller and a hybrid PSO-GSA algorithm. The following
aspects are studied: (a) the microgrid dynamic model and PID controller; (b) Calculation
of optimal controller coefficients; (c) PID and hybrid PSO-GSA coordination; (d) Variable
velocity disturbance; (e) Power and frequency changes; (f) Stepped load changes applied to
the system; and (g) Effect of the proposed methods on the standard test function. Finally,
Section 6 presents the conclusions. The results show the appropriate efficiency of the
proposed controller in quenching fluctuations in a shorter period of time.

2. Microgrid Modeling

Nowadays, the expansion of transmission and distribution networks can pose chal-
lenges to power systems, even though they have advantages such as increased network
reliability and improved stability. Among these challenges are the non-economic transmis-
sion of electrical energy from power plants to remote and impenetrable areas, the increase
in transmission and distribution losses, and the increased complexity of the network’s
protection system due to its widespread use. All of these have led to the widespread use of
DG resources in recent years, whose main principle is the production of electrical energy at
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the place of consumption. The concept of the microgrid is a result of several DG resources
placed together [48]. Microgrids include DG resources and local loads that can feed the
loads both disconnected from and connected to the global network. The overall structure
of a microgrid is shown in Figure 1.
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Figure 1. General structure of a microgrid.

The following resources are included: photovoltaic generator (PV), diesel engine
generator (DEG), wind turbine generator (WTG), fuel cell (FC), battery energy storage
system (BESS), flywheel energy storage system (FESS), and aqua electrolyzer (AE). The
microgrid and the global network communicate with each other at the PCC. The micro-
resources used in these networks are interconnected with the help of electronic elements.
In fact, in these microgrids, AC or DC elements are used as converters or the like [49].

3. PSO-GSA Algorithm
3.1. Gravitational Search Algorithm (GSA)

The GSA is a collective and non-memory intelligence algorithm [50,51]. This optimiza-
tion algorithm has been designed by modeling the rules and the movement of factors in
an artificial system in discrete times at which the system space is the same as the problem
definition range. According to the law of gravity, each mass perceives the location and
condition of other masses. In this algorithm, the mass of the agents is provided according
to the objective function [51]. In a system with mass n, the position of each mass is a point
in space, which is the answer to the problem. The position of mass i is shown with Xi in
Equation (1):

Xi = (X1
i , . . . , Xd

i , . . . , Xn
i ) (1)

where n is the dimension of the problem, and Xd
i is the dimension d of the mass i. This

system, with mass i at time t and in the direction d, is powered by a force with a Fd
ij(t) value.

The size of this force is obtained via Equation (2):

Fd
ij(t) = G(t)

Mpi(t) ∗Maj(t)
Rij(t) + ε

(xd
j (t)− xd

i (t)) (2)
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where Maj is the active gravitational mass of j, and Mpi is the inactive gravitational mass of
j, both of which are considered the same and equal to M in the mentioned algorithm; G(t) is
the gravitational constant at time t; and Rij is the distance between the two masses i and j,
which is also a very small number. The gravitational constant is an appropriate parameter
for controlling the search and productivity capabilities, which is expressed by Equation (3):

G(t) = G0e
−at

T (3)

where α and G0 are the control coefficients of the algorithm, and T indicates the system’s
lifetime. The force on mass i in the direction of dimension t at time t is equal to the sum of
all the forces that the other masses of the system exert on this mass. In this equation, randj
is a random number with uniform distribution in the interval (1.0), which is considered for
the sake of randomness [51]:

Fd
i (t) = ∑N

j=1,j 6=i randjFd
ij(t) (4)

Furthermore, each of the masses has a specific speed and acceleration, each of which
is shown in Equations (5) and (6), respectively. According to Newton’s second law, each
mass is accelerated in the direction of dimension d, which is proportional to the force on
the mass in that dimension, divided by its inertia mass, as stated in Equation (4). On the
other hand, the velocity of each factor at time t is equal to the sum of the coefficients of the
current velocity and the acceleration of the factor, as expressed in Equations (5) and (6):

vd
i (t + 1) = rand× vid(t) + ad

i (t) (5)

ad
i (t) =

Fd
i (t)

Mi(t)
(6)

When the acceleration and velocity of each mass are calculated, the new position of
agent i in the dimension d is calculated according to Equation (7):

xd
i (t + 1) = xi

d(t) + vd
i (t + 1) (7)

New situations are considered as the locations of new masses within the search space,
where the weight of new masses is normalized via Equations (8) and (9):

mi(t) =
fiti

best(t)− worst(t)
(8)

Mi(t) =
mi(t)

∑N
j=1 mj(t)

(9)

where fiti(t) represents the degree of maturity of the mass of agent i at time t, and worst(t)
and best(t), respectively, indicate the suitability of the worst and the best factors of popula-
tion in time, whose size can be calculated using Equations (10) and (11):

worst(t) = max{ fiti(t)} (10)

Best(t) = min{ fiti(t)} (11)

3.2. Particle Swarm Optimization (PSO)

In this section, the particle swarm optimization algorithm is briefly outlined. For
more information on this topic, the readers are advised to refer to [52,53]. In the topology
of the particle swarm optimization algorithm in the D-dimensional search space, the
best personal position of particle i is indicated by pid(t), and the best position of the
group is represented by gd(t). The relationship between the velocity and the motion of
particle i at a given moment or the repetition of the dimension are obtained in the form of
Equations (12) and (13):

vd
i (t + 1) = ωvid(t) + c1rand1(pid(t)− xid(t)) + c2rand2(gd(t)− xid(t)) (12)

x(t + 1) = x(t) + v(t + 1) (13)
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In Equation (12), ω is the inertia coefficient of the particle, and c1 and c2 are Hook
spring coefficients or acceleration coefficients, which are usually set to 2. To randomize the
nature of the velocity, the coefficients c1 and c2 are multiplied by the random numbers rand1
and rand2. Usually, in the implementation of the PSO, the value of ω decreases linearly
from one to values close to zero. The inertia coefficient ω is generally determined according
to Equation (14):

ω = ωmax −
ωmax −ωmin

itermax
× iter (14)

where itermax is the maximum repetition number, iter is the current repetition number,
and ωmax and ωmin are the maximum and minimum values of the inertial coefficients,
which are set at 0.9 and 0.3, respectively.

→
vi is the magnitude of the velocity of particle

i in each dimension of the D-dimensional search space, which is limited to the interval
[−vmax, +vmax], so that the particle’s possibility of leaving the search space is reduced.
The value of vmax is usually chosen so that vmaxx = kvmax, where 0.1 < k < 1, so that xmax
specifies the length of the search.

4. Hybrid PSO-GSA Algorithm

The aim of combining different methods is to achieve better results than each technique
would obtain on its own. The particle swarm optimization and gravitational search algo-
rithms are well suited to be combined, through which a primary randomized population,
generational upgrading, and the generation of new solutions can be achieved. Figure 2
shows such a combination with a primary population [54]. If the problem is N-dimensional,
then the hybrid algorithm has 4N members, which are generated in a completely random
way. 4N members are arranged by competency, and 2N upper members are considered as
masses in the gravitational search algorithm. Additionally, a new 2N member population is
created. Particle swarm optimization is applied to the 2N lower members. In applying the
particle swarm optimization mechanism, the new population created by the gravitational
search algorithm is used as a regulator. The best member of this new population is used
as the Pgbest, and each corresponding member is used as a neighborhood or Pibest in
Equation (12). The population generated by applying particle swarm optimization and the
population created by the gravitation search algorithm are merged and integrated, and the
new 4N members are arranged by competency. The previous process is then repeated until
convergence is achieved. The mechanism of particle swarm optimization is applied to the
2N lower members as particles. In applying the particle swarm optimization mechanism,
the new population created by the gravitational search algorithm is used as a regulator.

In the proposed controller (according to Figure 3), in the first stage, the changes in
power sources, load, and frequency of the microgrid are evaluated and measured. Then, in
the next step, the output of the system (frequency changes) and the appropriate controller
signals are applied according to the law. The relationships governing the behavior of the
controller are described using relationships (15) to (21).

minJ = ∑N2
J=N1 Wj(∆F)(k + j)2 + ∑Nu

i=1 Vi(∆uDEG)(k + j)− (∆uDEG)(k + j− 1)2 (15)

(∆uDEG)(k) = (∆uDEG)(k− 1) + ∑Nt
i=0 δi(∆F)(k− i) (16)

∆umin ≤ (∆uDEG)(k)− (∆uDEG)(k− 1) ≤ ∆umax (17)

Vjmin ≤ Vj ≤ Vjmax (18)

U = [∆uDEG, ∆uBESS, ∆uFESS] (19)

W = [∆PFC + ∆PWTG + ∆PPV + ∆PFC − ∆PL] (20)
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Function: J = N1, N2 . . . which should be minimized; N1: Lower limit; N2: Upper
limit; Nu: Control limit; δi is the numerical coefficients resulting from solving the problem
(by minimizing J). The index introduced in relation (21) is used to compare control methods
in the simulation section.

findex =
∫ t=tsimolation

t=0
∆ f (dt) (21)

5. Case Study

The studied system is shown in Figure 3, i.e., the main grid system containing conven-
tional DEG, solar panels, wind turbines, fuel cells, and battery energy storage systems. The
hierarchical control structure of the microgrid includes WTG, FC, BESS, PV, DEG, FESS,
and AE.

The dynamic model of a wind turbine for the analysis of a small signal is expressed by
relation, and its characteristic function is expressed as follows:

∆PWTG =
KakWTG∆PWTG

TWTG
− ∆PWTG

TWTG
(22)

GWTG(s) =
KakWTG

1 + sTWTG
=

∆PWTG
∆PW

(23)

where kWTG and TWTG are the gain coefficient and the time constant, Ka is a numerical
coefficient that expresses the wind turbine power percentage, ∆PWTG represents the changes
in the electrical output of the wind turbine, and ∆PW expresses changes in the power
obtained from the wind.

The following is the dynamic PV model:

∆PPV =
kpv∆ϕ

Tpv
−

∆Ppv

Tpv
(24)

Gpv(s) =
kpv

1 + sTpv
(25)

where kpv and Tpv are the PV gain coefficient and the time constant, ∆Ppv are the changes
in the PV electrical output, and ∆ϕ are changes are in solar radiation intensity.

Diesel generators play a major role in hybrid microgrids; as the load increases, they are
responsible for providing part of the capacity needed to reach equilibrium. The dynamic
model of a diesel generator is expressed via small-signal analysis as follows:

∆PDEG =
kDEG∆PC

TDEG
− kDEG∆F

RTDEG
− ∆PDEG

TDEG
(26)

GDEG(s) =
kpv

1 + sTpv
(27)

where kDEG and TDEG are the gain coefficient and the time constant of the diesel generator,
R is the speed drop coefficient, and ∆PDEG represents changes in the DEG power.

The dynamic model of the fuel cell, electrolyzer, battery, and flywheel is described below:

∆PFC =
kFC∆PAE

TFC
− ∆PFC

TFC
(28)

GFC(s) =
kFC

1 + sTFC
(29)

∆PAE =
kAE(1− ka)∆PWTG

TAE
− ∆PAE

TAE
(30)

GAE(s) =
kAE

1 + sTAE
(31)

GBEES(s) =
kBESS

1 + sTBESS
(32)
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GFEES(s) =
kFESS

1 + sTFESS
(33)

where kFC, TFC, kAE, TAE, kBESS, TBESS, kFESS, and TFESS are the interest rate and time
constant of the diesel generator, electrolyzer, battery, and flywheel, respectively; R is the
speed drop coefficient, ∆PFC represents changes in the fuel cell power, and ∆PAE expresses
changes in the electrolyzer power.

The parameters of the microgrid’s power sources are shown in Table 1, and the nominal
power of the microgrid is shown in Table 2. The proposed algorithm is applied to the
studied system and used to optimize the controller parameters. Table 3 shows the initial
parameters for the PSO-GSA. The results for the studied system are shown in Table 4, and
Figure 4 depicts the proposed algorithm in the sample system.

Table 1. Parameters of the microgrid’s power sources [55,56].

Parameter Value

D 0.012

H 0.1667/2

TFESS 0.1

TBESS 0.1

TFC 4

KFC 1.1

KAE 1.5

KBESS −1.3

TDEG 2

TWTG 1.5

TAE 0.5

KWTG 1.0

R 3

Ka 0.6

KDEG 1.3

KFESS −1.1

TPV 1.5

KPV 1

Table 2. Nominal microgrid power [55,56].

Nominal Power (pu) Loads (pu)

wind turbine 1

PL1 = 1.1fuel cell 0.3

photovoltaic 0.7

diesel generator 1.6

PL2 = 1flywheel 0.45

batteries 0.45

Figure 5 shows the convergence of the algorithm. As shown in the figure, the proposed
hybrid algorithm is optimized at a significant speed to the final value, which indicates its
high speed and proper accuracy.
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Table 3. Initial parameters for PSO-GSA.

Parameter Value

Number of particles 50

Max iterations 100

a 20

G0 1

C1,C2 2.2

Table 4. Optimized PID parameter results (PSO and PSO-GSA).

Optimization
Method

Parameter

Kp
0 ≤ Kp ≤ 5 Ki

0 ≤ Ki ≤ 5 Kd
0 ≤ Kd ≤ 5

PSO 1.954 3.1001 2.4686

PSO-GSA 1.8406 2.997 2.4337
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Kp, Ki, and Kd parameters are calculated according to the following equation:

kp = k∗p + ∆kp,

{
k1 > 0 ∆kp = k1k∗pcp

k1 < 0 ∆kp = k1k∗p
cp

1+cp

(34)

ki = k∗i + ∆ki,
{

k2 > 0 ∆ki = k2k∗i ci
k2 < 0 ∆ki = k2k∗i

ci
1+ci

(35)

kd = k∗d + ∆kd,

{
k3 > 0 ∆kd = k3k∗dcd
k3 < 0 ∆kd = k3k∗d

cd
1+cd

(36)
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where K1, K2, and K3 are the optimized normalized coefficients for the PID controller, and
their values are 0.044, 30, and 16.5, respectively. k∗p, k∗i , k∗d are the nominal values of the
parameters, all of which were set to 5 before optimization.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22 
 

 

Table 3. Initial parameters for PSO-GSA. 

Parameter Value 
Number of particles 50 

Max iterations 100 𝑎 20 
G0 1 

C1,C2 2.2 

Kp, Ki, and Kd parameters are calculated according to the following equation: 

𝑘 = 𝑘∗ + ∆𝑘 , 𝑘 > 0    ∆𝑘 = 𝑘 𝑘∗ 𝑐  𝑘 < 0   ∆𝑘 = 𝑘 𝑘∗   (34)

𝑘 = 𝑘∗ + ∆𝑘 , 𝑘 > 0    ∆𝑘 = 𝑘 𝑘∗𝑐  𝑘 < 0   ∆𝑘 = 𝑘 𝑘∗   (35)

𝑘 = 𝑘∗ + ∆𝑘 , 𝑘 > 0    ∆𝑘 = 𝑘 𝑘∗ 𝑐  𝑘 < 0   ∆𝑘 = 𝑘 𝑘∗   (36)

where K1, K2, and K3 are the optimized normalized coefficients for the PID controller, and 
their values are 0.044, 30, and 16.5, respectively.  𝑘∗  , 𝑘∗ ,  𝑘∗  are the nominal values of 
the parameters, all of which were set to 5 before optimization. 

Table 4. Optimized PID parameter results (PSO and PSO-GSA). 

Optimization Method Parameter 
Kp 

0 ≤ Kp ≤ 5 
Ki 

0 ≤ Ki ≤ 5 
Kd 

0 ≤ Kd ≤ 5 
PSO 1.954 3.1001 2.4686 

PSO-GSA 1.8406 2.997 2.4337 

 
Figure 5. Convergence of algorithms (PSO–PSOGSA). 

Note that the general solution methodologies based on the combinatorial optimization methods for 
tunning the PID gains are depicted in Figure A1. 

6. Results and Discussion 

Figure 5. Convergence of algorithms (PSO–PSOGSA).

Note that the general solution methodologies based on the combinatorial optimization
methods for tunning the PID gains are depicted in Figure A1.

6. Results and Discussion

The studied source includes a fuel cell and a photovoltaic generator, which utilize
a higher technology than other conventional DGs. This source is also connected to the
distribution system by an inverter. Since the production of electrical energy in a low-velocity
fuel cell is carried out in DC and at low voltage, the accessories of the fuel processor unit
(to produce hydrogen) and a conventional DC–DC incremental converter are required to
increase the DC link voltage. To evaluate the proposed method in the modeled space, as
well as the way to improve the dynamics of the system, various simulations were run.
By applying a control signal to the sources, frequency disturbances were subsequently
reduced due to potential changes in the microgrid. In this section, noise related to variable
wind speed was applied, which ranged from 0.2 to −0.2 pu (Figure 6). Figure 7 shows
the frequency changes of the microgrid system with and without a PID controller. It
can be observed that, to some extent, the PID controller achieved good results regarding
stability and the attenuation of frequency changes. For optimal results, the hybrid PSO-GSA
algorithm was used. It was observed that, in this simulation, the proposed smart controller
had a more favorable performance than that of the particle swarm controller (Figure 8).
The power of the wind turbines, fuel cells, photovoltaic generators, batteries, flywheels,
and diesel generators before and after the disturbances are shown in Figures 9–14. Apart
from the photovoltaic power, other sources were affected by disturbances. To evaluate the
performance of the proposed control method, several different disturbances were applied
to the test microgrid, and the system’s response was compared to the results obtained with
the algorithms. As mentioned in the previous section, there are resources in microgrids
such as solar panels and wind turbines whose power is rather volatile.
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In this section, the stepped load was first applied to the system (Figure 15), and the
standard PSO and PSO-GSA algorithms were then executed. The results of the frequency
variations are shown in Figure 16. The figure shows that, with the stepped variations of
load, the combined algorithm yields less overshot and undershot.
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Figure 16. Frequency changes of the studied system per stepped load.

The performance of the algorithm on the standard test function was evaluated in order
to determine its standard deviation. For a better assessment of the effectiveness of the
proposed method, a larger range in comparison with other methods was selected. This
function is defined as follows:

f (x) = −∑n
i=1 sin (xi)

(
sin (

i ∗ x2
i

π
)

) 2m

(37)

For a better comparison, the best coefficients were extracted from other papers, albeit
considering the same initial population. Figure 17 shows the distribution of the results
obtained from 30 different implementations with the proposed methods. The proximity of
the solutions obtained by the algorithm indicates its robustness and high performance. It
also shows that the proposed method has a smaller standard deviation.
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Regarding the accuracy of the algorithm with the Sphere function, in this section, the
Sphere function is used for the accuracy of the proposed algorithm. The Sphere function
acts like a closed circle and the specified value tends to be zero. The formulation of the
desired objective function is in the form of Equation (38).

f (x) =
n

∑
i=1

(
x2

i

)
(−30, 30) (38)

The function in the algorithm is determined instead of the desired objective function,
and its goal is to minimize the desired parameter. The results of this function in Figure 18
show that the convergence reaches a zero value.
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7. Conclusions

In this paper, a sample microgrid with a PID controller was modeled while using
a hybrid PSO-GSA. To better investigate and analyze the proposed controller, various
errors were used. The results indicate that the proposed algorithm is more efficient in
comparison with particle swarm-based controllers. The optimization algorithm proposed
in this paper is novel and has a higher convergence speed compared to PSO algorithms. The
proposed method was tested on a case study, and the results show that setting the controller
parameters leads to a better frequency response. Therefore, the proposed controller has an
optimal performance at adjusting the frequency of the microgrid and achieving the final
response after a short transition time with low harmonic distortion.
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